
Elgg Documentation
Release master

Various

14.05.2024

Inhaltsverzeichnis

1 Features 3

2 Examples 5

3 Continue Reading 7

i

ii

Elgg Documentation, Release master

Elgg (pronunciation) is an open source rapid development framework for socially aware web applications. It is a
great fit for building any app where users log in and share information.

Inhaltsverzeichnis 1

http://elgg.org

Elgg Documentation, Release master

2 Inhaltsverzeichnis

KAPITEL 1

Features

• Well-documented core API that allows developers to kick start their new project with a simple learning curve

• Composer is the package manager of choice that greatly simplifes installation and maintenance of Elgg core and
plugins

• Flexible system of events that allows plugins to extend and modify most aspects of application’s functionality
and behavior

• Extendable system of views that allows plugins to collaborate on application’s presentation layer and built out
complex custom themes

• Cacheable system of static assets that allows themes and plugins to serve images, stylesheets, fonts and scripts
bypassing the engine

• User authentication is powered by pluggable auth modules, which allow applications to implement custom
authentication protocols

• Security is ensured by built-in anti CSRF validation, strict XSS filters, HMAC signatures, latest cryptographic
approaches to password hashing

• Client-side API powered by asynchronous ES modules and a built-in Ajax service for easy communication with
the server

• Flexible entity system that allows applications to prototype new types of content and user interactions

• Opinionated data model with a consolidated API layer that allows the developers to easily interface with the
database

• Access control system that allows applications to build granular content access policies, as well as create private
networks and intranets

• Groups - out of the box support for user groups

• File storage powered by flexible API that allows plugins to store user-generated files and serve/stream them
without booting the engine

• Notifications service that allows applications to subscribe users to on-site and email notifications and implement
integrations with other their-party services

3

Elgg Documentation, Release master

• RPC web services that can be used for complex integrations with external applications and mobile clients

• Internationalization and localization of Elgg applications is simple and can be integrated with third-party ser-
vices such as Transifex

• Elgg community that can help with any arising issues and hosts a repository of 1000+ open source plugins
Under the hood:

• Elgg is a modular OOP framework that is driven by DI services

• NGINX or Apache compatible

• Symfony2 HTTP Foundation handles requests and responses

• modular javascript with ECMAScript modules

• Laminas Mail handles outgoing email

• htmLawed XSS filters

• DBAL

• Phinx database migrations

• CSS-Crush for CSS preprocessing

• Imagine for image manipulation

• Persistent caching with Memcached and/or Redis

• Error handling with Monolog

4 Kapitel 1. Features

KAPITEL 2

Examples

It has been used to build all kinds of social apps:

• open networks (similar to Facebook)

• topical (like the Elgg Community)

• private/corporate intranets

• dating

• educational

• company blog

This is the canonical documentation for the Elgg project.

5

https://elgg.org/showcase
http://elgg.org

Elgg Documentation, Release master

6 Kapitel 2. Examples

KAPITEL 3

Continue Reading

3.1 Getting Started

Discover if Elgg is right for your community.

3.1.1 Bundled plugins

Elgg comes with a set of plugins. These provide the basic functionality for your social network.

Blog

A weblog, or blog, is arguably one of the fundamental DNA pieces of most types of social networking site. The simplest
form of personal publishing, it allows for text-based notes to be published in reverse-chronological order. Commenting
is also an important part of blogging, turning an individual act of publishing into a conversation.

Elgg’s blog expands this model by providing per-entry access controls and cross-blog tagging. You can control exactly
who can see each individual entry, as well as find other entries that people have written on similar topics. You can also
see entries written by your friends (that you have access to).

Siehe auch:
Blogging on Wikipedia

7

http://en.wikipedia.org/wiki/Blog

Elgg Documentation, Release master

CKEditor

With this plugin enabled the longtext input fields will get a WYSIWYG editor which allows for some additional markup
options for your text.

Depending on the configuration the editor can be enriched with various text style markup options. Have a look at the
CKEditor website for a full featured editor.

Images

Elgg also supports uploading images in the editor. You can upload images using a file dialog or just drag/drop or
copy/paste the image into the editor.

Mentions

With the CKEditor plugin you also enable mention capabilities. By default you can mention:

• Users: use @ to start autocompleting users

• Groups: use ! to start autocompleting groups

• Searchable content: use [to start autocompleting content

When you select something from the autocomplete list a link to the selected user/group/content will be added to the
content. Based on the mentioned users preference they will also be notified they have been mentioned.

Toolbar configuration

This plugin provides a standard toolbar configuration for the default and simple editor. The plugin settings allow you to
configure a custom toolbar config. Almost all CKEditor plugins are available for use. Information on how to configure
a toolbar can be found here: https://ckeditor.com/docs/ckeditor5/latest/features/toolbar/toolbar.html

Dashboard

Abb. 1: A typical Elgg dashboard

The dashboard is bundled with both the full and core-only Elgg packages. This is
a users portal to activity that is important to them both from within the site and
from external sources. Using Elgg’s powerful widget API, it is possible to build
widgets that pull out relevant content from within an Elgg powered site as well
as grab information from third party sources such as Twitter or Flickr (providing
those widgets exist). A users dashboard is not the same as their profile, whereas
the profile is for consumption by others, the dashboard is a space for users to use
for their own needs.

8 Kapitel 3. Continue Reading

https://ckeditor.com/docs/ckeditor5/latest/features/toolbar/toolbar.html

Elgg Documentation, Release master

Discussions

Add a forum like place to start a discussion. This feature is mainly meant to used
in groups. The group owners can enable/disable this feature for their group.

There is a plugin setting to enable global discussions (so outside of a group). This
setting is disabled by default but can be enabled by a site administrator.

Notifications

In order to encourage discussion in a group all group members will receive notifications about comments on a discussion
topic. This will follow the notification preferences of the group member based on the global group preference or the
specific group preference for new discussions.

File repository

Abb. 2: A file in an Elgg file repo-
sitory

The file repository allows users to upload any kind of file. As with everything in an
Elgg system, you can filter uploaded files by tag and restrict access so that they’re
only visible by the people you want them to be. Each file may also have comments
attached to it.

There are a number of different uses for this functionality

Photo gallery

When a user uploads photographs or other pictures, they are automatically collated
into an Elgg photo gallery that can be browsed through. Users can also see pictures
that their friends have uploaded, or see pictures attached to a group. Clicking into
an individual file shows a larger version of the photo.

Podcasting

An Elgg file repository RSS feed automatically doubles as an RSS feed, so you
can subscribe to new audio content using programs like iTunes.

Special content

It is possible for other plugins to add to the players available for different content types. It’s possible for a plugin author
to embed a viewer for Word documents, for example.

3.1. Getting Started 9

Elgg Documentation, Release master

Note for developers

To add a special content type player, create a plugin with views of the form file/specialcontent/mime/type. For
example, to create a special viewer for Word documents, you would create a view called file/specialcontent/
application/msword, because application/msword is the MIME-type for Word documents. Within this view, the
ElggEntity version of the file will be referenced as $vars['entity']. Therefore, the URL of the downloadable file
is:

echo $vars['entity']->getDownloadURL();

Using this, it should be possible to develop most types of embeddable viewers.

Friends

Being a social network framework Elgg supports relationships between users.

By default any user can befriend any other user, it’s like following the activity of the other user.

After enabling friendship requests as a feature of the Friends plugin, when user A wants to be friends with user B, user
B has to approve the request. Upon approval user A will be friends with user B and user B will be friends with user A.

Groups

Abb. 3: A typical group profile

Once you have found others with similar interests - or perhaps you are part of a
research groups or a course/class - you may want to have a more structured setting
to share content and discuss ideas. This is where Elgg’s powerful group building
can be used. You can create and moderate as many groups as you like

• You can keep all group activity private to the group or you can use the ‚make
public‘ option to disseminate work to the wider public.

• Each group produces granular RSS feeds, so it is easy to follow group de-
velopments

• Each group has its own URL and profile

• Each group comes with a File repository, forum, pages and messageboard

Likes

Allow users to like content on your site. If content supports being likable a ‚thumbs
up‘ will appear as a social interaction with this content. Liking content will also
notify the content owner about the new like. A counter will show next to the like
action reporting about the amount of likes the content has. Clicking on the counter
will show a list of users who recently liked the content.

Bemerkung: The likes plugin uses the entity capability likable. This capability defines if an entity is likable.

10 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Messageboard

Abb. 4: A sample messageboard
placed on the profile

The messageboard - similar to ‚The Wall‘ in Facebook or a comment wall in other
networks is a plugin that lets users put a messageboard widget on their profile.
Other users can then post messages that will appear on the messageboard. You can
then reply directly to any message and view the history between yourself and the
person posting the message.

Messages

Private messaging can be sent to users by clicking on their avatar or profile link,
providing you have permission. Then, using the built in WYSIWYG editor, it is
possible to format the message. Each user has their own inbox and sentbox. It is
possible to be notified via email of new messages.

When users first login, they will be notified about any new message by the messa-
ges notification mechanism in their top toolbar.

Pages

Abb. 5: Message notification

Abb. 6: An Elgg Page

The pages plugin allows you to save and store hierarchically-organized pages of
text, and restrict both reading and writing privileges to them. This means that you
can collaboratively create a set of documents with a loose collection of people,
participate in a writing process with a formal group, or simply use the functionality
to write a document that only you can see, and only choose to share it once it’s done.
The easy navigation menu allows you to see the whole document structure from
any page. You can create as many of these structures as you like; each individual
page has its own access controls, so you can reveal portions of the structure while
keeping others hidden. In keeping with all other elements in Elgg, you can add
comments on a page, or search for pages by tag.

Usage

Pages really come into their own in two areas, firstly as a way for users to build up things such as a resume, reflective
documentation and so on. The second thing is in the area of collaboration, especially when in the context of groups.
With the powerful access controls on both read and write, this plugin is ideal for collaborative document creation.

Bemerkung: Developers should note that there are actually 2 types of pages:

1. Top-level pages (with subtype page_top)

2. Normal pages (with subtype page)

3.1. Getting Started 11

Elgg Documentation, Release master

Profile

Abb. 7: An Elgg profile

The profile plugin is bundled with both the full and core-only Elgg packages. The
intention is that it can be disabled and replaced with another profile plugin if you
wish. It provides a number of pieces of functionality which many consider funda-
mental to the concept of a social networking site, and is unique within the plugins
because the profile icon it defines is referenced as standard from all over the sys-
tem.

User details

This provides information about a user, which is configurable with the fields,
user:user event. You can change the available profile fields from the admin pa-
nel. Each profile field has its own access restriction, so users can choose exactly
who can see each individual element. Some of the fields contain tags (for example skills) limiting access to a field will
also limit who can find you by that tag.

User avatar

Abb. 8: The Elgg context menu

The user avatar represents a user (or a group) throughout the site. By default, this
includes a context-sensitive menu that allows you to perform actions on the user
it belongs to wherever you see their avatar. For example, you can add them as a
friend, send an internal message, and more. Each plugin can add to this context
menu, so its full contents will vary depending on the functionality active in the
current Elgg site.

Notes for developers

Using a different profile icon
To replace the profile icon, or provide more content, extend the icon/user/
default view.

Adding to the context menu
The context menu can be expanded by registering a event for ‚register‘ ‚me-
nu:user_hover‘, the following sections have special meaning:

• default for non-active links (eg to read a blog)

• admin for links accessible by administrators only

In each case, the user in question will be passed as $params['entity'].

Site Notifications

The Site notifications plugin offers a way for your users to keep up to date with
what’s happening on your community by sending a on-site notification.

12 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Features

• Get a notification when content is posted on the community

• Unread notifications will automatically be marked as read when you view
the content it relates to

• Notifications will automatically be removed if the content it relates to is
removed

• Plugin settings are available to automatically cleanup unread/read notifica-
tions

Note for developers

The cron based cleanup of (un)read site notifications removes the entities directly from the database. It isn’t using
$entity->delete() to help with performance. This means that no events are triggered for the entities which are
removed during the cleanup.

The Wire

Elgg wire plugin „The Wire“ is Twitter-style microblogging plugin that allows users to post notes to the wire.

User validation by e-mail

The uservalidationbyemail plugin adds a step to the user registration process. After the user registered on the site, an
e-mail is sent to their e-mail address in order to validate that the e-mail address belongs to the user. In the e-mail is an
verification link, only after the user clicked on the link will the account of the user be able to login to the site.

The process for the user

1. The user creates an account by going to the registration page of your site

2. After the account is created the user lands on a page with instructions to check their e-mail account for the
validation e-mail

3. In the validation e-mail is a link to confirm their e-mail address

4. After clicking on the link, the account is validated

5. If possible the user gets logged in

If the user tries to login before validating their account an error is shown to indicate that the user needs to check their
e-mail account. Also the validation e-mail is sent again.

3.1. Getting Started 13

Elgg Documentation, Release master

Options for site administrators

A site administrator can take some actions on unvalidated accounts. Under Administration -> Users -> Unvalidated
is a list of unvalidated users. The administrator can manualy validate or delete the user. Also the option to resend the
validation e-mail is present.

The following plugins are also bundled with Elgg, but are not (yet) documented

• activity

• bookmarks

• custom_index

• developers

• externalpages

• friends_collections

• garbagecollector

• invitefriends

• members

• reportedcontent

• search

• system_log

• tagcloud

• theme_sandbox

• web_services

3.1.2 License

MIT or GPLv2

A full Elgg package that includes the framework and a core set of plugins is available under version 2 of the GNU
General Public License (GPLv2). We also make the framework (without the plugins) available under the MIT license.

FAQ

The following answers are provided as a convenience to you; they are not legal counsel. Consult with a lawyer to be
sure about the answers to these questions. The Elgg Foundation cannot be held responsible for decisions you make
based on what you read on this page.

For questions not answered here, please refer to the official FAQ for the GPLv2.

14 Kapitel 3. Continue Reading

http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-faq.html

Elgg Documentation, Release master

How much does Elgg cost?

Elgg is free to download, install, and use. If you’d like to donate, we do appreciate our financial supporters!

Can I remove the Elgg branding/links?

Yes.

Can I modify the source code?

Yes, but in general we recommend you make your modifications as plugins so that when a new version of Elgg is
released, the upgrade process is as painless as possible.

Can I charge my users membership fees?

Yes.

If I modify Elgg, do I have to make the changes available?

No, if you are using Elgg to provide a service, you do not have to make the source available. If you distribute a modified
version of Elgg, then you must include the source code for the changes.

If I use Elgg to host a network, does The Elgg Foundation have any rights over my network?

No.

What’s the difference between the MIT and GPL versions?

Plugins are not included with the MIT version.

You can distribute a commercial product based on Elgg using the MIT version without making your modifications
available.

With the GPL licensed version, you have to include make your modifications of the framework public if you redistribute
the framework.

Why are plugins missing from the MIT version?

The plugins were developed under the GPL license, so they cannot be released under an MIT license. Also, some
plugins include external dependencies that are not compatible with the MIT license.

3.1. Getting Started 15

http://elgg.org/supporter.php

Elgg Documentation, Release master

May I distribute a plugin for Elgg under a commercial license?

We believe you can, since plugins typically depend only the core framework and the framework is available under the
MIT license. That said, we really recommend you consult with a lawyer on this particular issue to be absolutely sure.

Note that plugins released via the community site repository must be licensed under a GPLv2-compatible license. They
do not necessarily have to be GPLv2, just compatible (like MIT).

Can we build our own tool that uses Elgg and sell that tool to our clients?

Yes, but then your clients will be free to redistribute that tool under the terms of the GPLv2.

3.1.3 Installation

Get your own instance of Elgg running in no time.

Contents

• Requirements

• Overview

• Other Configurations

• Troubleshooting

Requirements

• MySQL 8.0+ or MariaDB 10.6+

• PHP 8.1+ with the following extensions:

– GD (for graphics processing)

– INTL (for internationalization)

– JSON (for AJAX responses, etc.)

– PDO (for database connection)

– XML (for xml resource and web services, etc.)

– Multibyte String support (for i18n)

– Proper configuration and ability to send email through an MTA

• Web server with support for URL rewriting

Official support is provided for the following configurations:

• Apache server
– Apache with the rewrite module enabled

– PHP running as an Apache module

• Nginx server
– Nginx with PHP-FPM using FastCGI

16 Kapitel 3. Continue Reading

http://www.php.net/mbstring
https://httpd.apache.org/docs/2.0/mod/mod_rewrite.html

Elgg Documentation, Release master

By „official support“, we mean that:

• Most development and testing is performed with these configurations

• Much of the installation documentation is written assuming Apache or Nginx is used

• Priority on bug reports is given to Apache and Nginx users if the bug is web server specific (but those are rare).

Bemerkung: If using RHEL, CentOS, or any other distribution with SELinux enabled, you will need to make sure
that the appropriate contexts and permissions are configured:

• Give your project root, your data directory, and all of their children the httpd_sys_rw_content_t context

• Enable the httpd_can_network_connect and httpd_can_network_connect_db booleans

Browser support policy

Feature branches support the latest 2 versions of all major browsers as were available at the time of the first stable
release on that branch.

Bugfix release will not alter browser support, even if a new version of the browser has since been released.

Major browsers here means all of the following, plus their mobile counterparts:

• Android Browser

• Chrome

• Firefox

• Edge

• Safari

„Support“ may mean that we take advantage of newer, unimplemented technologies but provide a JavaScript polyfill
for the browsers that need it.

You may find that Elgg happens to work on unsupported browsers, but compatibility may break at any time, even during
a bugfix release.

Overview

Upload Elgg

With Composer (recommended if comfortable with CLI):

composer self-update
composer create-project elgg/starter-project:dev-master ./path/to/project/root
cd ./path/to/project/root
composer install
composer install # 2nd call is currently required
vendor/bin/elgg-cli install # follow the questions to provide installation details

From pre-packaged zip (recommended if not comfortable with CLI):

• Download the latest version of Elgg

• Upload the ZIP file with an FTP client to your server

3.1. Getting Started 17

https://elgg.org/about/download

Elgg Documentation, Release master

• Unzip the files in your domain’s document root.

Create a data folder

Elgg needs a special folder to store uploaded files including profile icons and photos. You will need to create this
directory.

Achtung: For security reasons, this folder MUST be stored outside of your document root. If you created it under
/www/ or /public_html/, you’re doing it wrong.

Once this folder has been created, you’ll need to make sure the web server Elgg is running on has permission to write
to and create directories in it. This shouldn’t be a problem on Windows-based servers, but if your server runs Linux,
Mac OS X or a UNIX variant, you’ll need to set the permissions on the directory.

If you are using a graphical FTP client to upload files, you can usually set permissions by right clicking on the folder
and selecting ‚properties‘ or ‚Get Info‘.

Bemerkung: Directories must be executable to be read and written to. The suggested permissions depend upon the
exact server and user configuration. If the data directory is owned by the web server user, the recommended permissions
are 750.

Warnung: Setting your data directory to 777 will work, but it is insecure and is not recommended. If you are
unsure how to correctly set permissions, contact your host for more information.

Create a MySQL database

Using your database administration tool of choice (if you’re unsure about this, ask your system administrator), create a
new MySQL database for Elgg. You can create a MySQL database with any of the following tools:

Make sure you add a user to the database with all privileges and record the database name, username and password.
You will need this information when installing Elgg.

Set up Cron

Elgg uses timed requests to your site to perform background tasks like sending notifications or performing database
cleanup jobs. You need to configure the cron to be able to use those kind of features.

Visit your Elgg site

Once you’ve performed these steps, visit your Elgg site in your web browser. Elgg will take you through the rest of
the installation process from there. The first account that you create at the end of the installation process will be an
administrator account.

18 Kapitel 3. Continue Reading

https://en.wikipedia.org/wiki/File_system_permissions#Traditional_Unix_permissions

Elgg Documentation, Release master

A note on settings.php and .htaccess

The Elgg installer will try to create two files for you:

• elgg-config/settings.php, which contains local environment configuration for your installation

• .htaccess, which allows Elgg to generate dynamic URLs

If these files can’t be automatically generated, for example because the web server doesn’t have write permissions in
the directories, Elgg will tell you how to create them. You could also temporarily change the permissions on the root
directory and the engine directory. Set the permissions on those two directories so that the web server can write those
two files, complete the install process, and them change the permissions back to their original settings. If, for some
reason, this won’t work, you will need to:

• In elgg-config/, copy settings.example.php to settings.php, open it up in a text editor and fill in your
database details

• On Apache server, copy install/config/htaccess.dist to .htaccess

• On Nginx server copy install/config/nginx.dist to /etc/nginx/sites-enabled and adjust it’s con-
tents

Other Configurations

• Cloud9

• Homestead

• EasyPHP

• IIS

• MAMP

• MariaDB

• Nginx

• Ubuntu

• Virtual hosts

• XAMPP

Troubleshooting

Help! I’m having trouble installing Elgg

First:

• Recheck that your server meets the technical requirements for Elgg.

• Follow the environment-specific instructions if need be

• Have you verified that mod_rewrite is being loaded?

• Is the mysql apache being loaded?

Keep notes on steps that you take to fix the install. Sometimes changing some setting or file to try to fix a problem
may cause some other problem later on. If you need to start over, just delete all the files, drop your database, and begin
again.

3.1. Getting Started 19

Elgg Documentation, Release master

I can’t save my settings on installation (I get a 404 error when saving settings)

Elgg relies on the mod_rewrite Apache extension in order to simulate certain URLs. For example, whenever you
perform an action in Elgg, or when you visit a user’s profile, the URL is translated by the server into something Elgg
understands internally. This is done using rules defined in an .htaccess file, which is Apache’s standard way of
defining extra configuration for a site.

This error suggests that the mod_rewrite rules aren’t being picked up correctly. This may be for several reasons.
If you’re not comfortable implementing the solutions provided below, we strongly recommend that you contact your
system administrator or technical support and forward this page to them.

The .htaccess, if not generated automatically (that happens when you have problem with mod_rewrite), you can
create it by renaming install/config/htaccess.dist file you find with elgg package to .htaccess. Also if you
find a .htaccess file inside the installation path, but you are still getting 404 error, make sure the contents of .
htaccess are same as that of install/config/htaccess.dist.

``mod_rewrite`` isn’t installed.
Check your httpd.conf to make sure that this module is being loaded by Apache. You may have to restart Apache to
get it to pick up any changes in configuration. You can also use PHP info to check to see if the module is being loaded.

The rules in ``.htaccess`` aren’t being obeyed.
In your virtual host configuration settings (which may be contained within httpd.conf), change the AllowOverride
setting so that it reads:

AllowOverride all

This will tell Apache to pick up the mod_rewrite rules from .htaccess.

Elgg is not installed in the root of your web directory (ex: http://example.org/elgg/ instead of http://example.org/)

The install script redirects me to „action“ when it should be „actions“

This is a problem with your mod_rewrite setup.

Achtung: DO NOT, REPEAT, DO NOT change any directory names!

I installed in a subdirectory and my install action isn’t working!

If you installed Elgg so that it is reached with an address like http://example.org/mysite/ rather than http://example.org/,
there is a small chance that the rewrite rules in .htaccess will not be processed correctly. This is usually due to using an
alias with Apache. You may need to give mod_rewrite a pointer to where your Elgg installation is.

• Open up .htaccess in a text editor

• Where prompted, add a line like RewriteBase /path/to/your/elgg/installation/ (Don’t forget the trai-
ling slash)

• Save the file and refresh your browser.

Please note that the path you are using is the web path, minus the host.

For example, if you reach your elgg install at http://example.org/elgg/, you would set the base like this:

RewriteBase /elgg/

20 Kapitel 3. Continue Reading

https://secure.php.net/manual/en/function.phpinfo.php
http://example.org/mysite/
http://example.org/
http://example.org/elgg/

Elgg Documentation, Release master

Please note that installing in a subdirectory does not require using RewriteBase. There are only some rare circumstances
when it is needed due to the set up of the server.

I did everything! mod_rewrite is working fine, but still the 404 error

Maybe there is a problem with the file .htaccess. Sometimes the elgg install routine is unable to create one and unable
to tell you that. If you are on this point and tried everything that is written above:

• check if it is really the elgg-created .htaccess (not only a dummy provided from the server provider)

• if it is not the elgg provided htaccess file, use the htaccess_dist (rename it to .htaccess)

I get an error message that the rewrite test failed after the requirements check page

I get the following messages after the requirements check step (step 2) of the install:

We think your server is running the Apache web server.

The rewrite test failed and the most likely cause is that AllowOverride is not set to All for Elgg’s directory.
This prevents Apache from processing the .htaccess file which contains the rewrite rules.

A less likely cause is Apache is configured with an alias for your Elgg directory and you need to set the
RewriteBase in your .htaccess. There are further instructions in the .htaccess file in your Elgg directory.

After this error, every interaction with the web interface results in a error 500 (Internal Server Error)

This is likely caused by not loading the „filter module by un-commenting the

#LoadModule filter_module modules/mod_filter.so

line in the „httpd.conf“ file.

the Apache „error.log“ file will contain an entry similar to:

. . . .htaccess: Invalid command ‚AddOutputFilterByType‘, perhaps misspelled or defined by a module not
included in the server configuration

There is a white page after I submit my database settings

Check that the Apache mysql module is installed and is being loaded.

I’m getting a 404 error with a really long url

If you see a 404 error during the install or on the creation of the first user with a url like: http://example.com/
homepages/26/d147515119/htdocs/elgg/action/register that means your site url is incorrect in your si-
tes_entity table in your database. This was set by you on the second page of the install. Elgg tries to guess the correct
value but has difficulty with shared hosting sites. Use phpMyAdmin to edit this value to the correct base url.

3.1. Getting Started 21

Elgg Documentation, Release master

I am having trouble setting my data path

This is highly server specific so it is difficult to give specific advice. If you have created a directory for uploading data,
make sure your http server can access it. The easiest (but least secure) way to do this is give it permissions 777. It is
better to give the web server ownership of the directory and limit the permissions.

Warnung: Setting directory permissions to 777 allows the ENTIRE internet to place files in your directory struc-
ture an possibly infect you webserver with malware. Setting permissions to 750 should be more than enough.

The top cause of this issue is PHP configured to prevent access to most directories using open_basedir. You may want
to check with your hosting provider on this.

Make sure the path is correct and ends with a /. You can check the path in your database in the config table.

If you only have ftp access to your server and created a directory but do not know the path of it, you might be able to
figure it out from the www file path set in your config database table. Asking for help from your hosting help team is
recommended at this stage.

I can’t validate my admin account because I don’t have an email server!

While it’s true that normal accounts (aside from those created from the admin panel) require their email address to be
authenticated before they can log in, the admin account does not.

Once you have registered your first account you will be able to log in using the credentials you have provided!

I have tried all of these suggestions and I still cannot install Elgg

It is possible that during the process of debugging your install you have broken something else. Try doing a clean install:

• drop your elgg database

• delete your data directory

• delete the Elgg source files

• start over

If that fails, seek the help of the Elgg community. Be sure to mention what version of Elgg you are installing, details of
your server platform, and any error messages that you may have received including ones in the error log of your server.

3.1.4 Developer Overview

This is a quick developer introduction to Elgg. It covers the basic approach to working with Elgg as a framework, and
mentions some of the terms and technologies used.

See the Developer Guides for tutorials or the Design Docs for in-depth discussion on design.

22 Kapitel 3. Continue Reading

https://secure.php.net/manual/en/ini.core.php#ini.open-basedir
https://elgg.org/

Elgg Documentation, Release master

Database and Persistence

Elgg uses MySQL for data persistence, and maps database values into Entities (a representation of an atomic unit of
information) and Extenders (additional information and descriptions about Entities). Elgg supports additional informa-
tion such as relationships between Entities, activity streams, and various types of settings.

Plugins

Plugins change the behavior or appearance of Elgg by overriding views, or by handling events. All changes to an Elgg
site should be implemented through plugins to ensure upgrading core is easy.

Actions

Actions are the primary way users interact with an Elgg site. Actions are registered by plugins.

Events

Events are used in Elgg Plugins to interact with the Elgg engine under certain circumstances. Events are triggered
at strategic times throughout Elgg’s boot and execution process, and allows plugins to modify or cancel the default
behavior.

Views

Views are the primary presentation layer for Elgg. Views can be overridden or extended by Plugins. Views are categories
into a Viewtype, which hints at what sort of output should be expected by the view.

JavaScript

Elgg uses native ES modules. Plugins can register their own modules or load their own JS libs.

Internationalization

Elgg’s interface supports multiple languages, and uses Transifex for translation.

Caching

Elgg uses two caches to improve performance: a system cache and SimpleCache.

3rd party libraries

The use of 3rd party libraries in Elgg is managed by using Composer dependencies. Examples of 3rd party libraries
are jQuery, CSS Crush or Laminas mail.

To get a list of all the Elgg dependencies check out the Packagist page for Elgg.

3.1. Getting Started 23

https://www.transifex.com/projects/p/elgg-core/
https://getcomposer.org/
https://packagist.org/packages/elgg/elgg

Elgg Documentation, Release master

Database Seeding

Elgg provides some base database seeds to populate the database with entities for testing purposes.

You can run the following commands to seed and unseed the database.

seed the database
vendor/bin/elgg-cli database:seed

unseed the database
vendor/bin/elgg-cli database:unseed

Plugins can register their own seeds via 'seeds', 'database' event. The handler must return the class name of the
seed, which must extend \Elgg\Database\Seeder\Seed class.

3.1.5 Elgg CLI

Contents

• elgg-cli command line tools

• Available commands

• Adding custom commands

elgg-cli command line tools

Depending on how you installed Elgg and your server configuration you can access``elgg-cli`` binaries as one of the
following from the root of your Elgg installation:

php ./elgg-cli list
./elgg-cli list
php ./vendor/bin/elgg-cli list
./vendor/bin/elgg-cli list

Bemerkung: Be advised that when using elgg-cli it might be needed to run the command as the same user as the
webserver to prevent issues with rights related to files.

Available commands

cd /path/to/elgg/

Get help
vendor/bin/elgg-cli --help

List all commands
vendor/bin/elgg-cli list

(Fortsetzung auf der nächsten Seite)

24 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

Install Elgg
no-plugins: This is an optional argument, it'll prevent the activation of any plugins
config: (string) Path to php file that returns an array with installation␣
→˓configuration, if not provided the config parameters will be questioned in the console.
vendor/bin/elgg-cli install [--no-plugins] [-c|--config CONFIG]

Seed the database with fake entities
limit: (int) number of items to seed (will be asked interactively for each seeder␣
→˓unless the -n/--no-interaction is used or only one type is seeded)
type: (string) only seed given entity type
create_since: (string) a compatible PHP date/time string to set the lower bound entity␣
→˓time created (eg, '-5 months')
create_until: (string) a compatible PHP date/time string to set the upper bound entity␣
→˓time created (eg, 'yesterday')
image_folder: (string) a folder where the seeder can find images to use as icons, etc.
create: This is an argument, it'll force the creation of entities instead of building␣
→˓up to the limit
vendor/bin/elgg-cli database:seed [-l|--limit LIMIT] [-t|--type TYPE] [--create_since␣
→˓DATE/TIME] [--create_until DATE/TIME] [--image_folder FOLDER] [create]

List information about the seeded database content
this will show the available seeders to be used with the database:seed and␣
→˓database:unseed command and the currently seeded amounts
vendor/bin/elgg-cli database:seeders

Remove seeded faked entities
type: (string) only unseed given entity type
vendor/bin/elgg-cli database:unseed [-t|--type TYPE]

Optimize database tables
Requires garbagecollector plugin
vendor/bin/elgg-cli database:optimize

Run cron jobs
vendor/bin/elgg-cli cron [-i|--interval INTERVAL] [-q|--quiet]

Clear caches
vendor/bin/elgg-cli cache:clear

Invalidate caches
vendor/bin/elgg-cli cache:invalidate

Purge caches
vendor/bin/elgg-cli cache:purge

System upgrade
-v|-vv|-vvv control verbosity of the command (helpful for debugging upgrade scripts)
vendor/bin/elgg-cli upgrade [-v]

Upgrade and execute all async upgrades
vendor/bin/elgg-cli upgrade async [-v]

(Fortsetzung auf der nächsten Seite)

3.1. Getting Started 25

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

List all upgrades
vendor/bin/elgg-cli upgrade:list

Execute a specific upgrade
<upgrades>: a space separated list of upgrade classes to execute (see the upgrade:list␣
→˓command for a list)
vendor/bin/elgg-cli upgrade:batch <upgrades>

List all, active or inactive plugins
STATUS = all | active | inactive
vendor/bin/elgg-cli plugins:list [-s|--status STATUS]

Activate plugins
List plugin ids separating them with spaces: vendor/bin/elgg-cli plugins:activate␣
→˓activity blog
use -f flag to resolve conflicts and dependencies
you can set a plugin priority by using the format plugin_id:priority (eg. blog:last)
vendor/bin/elgg-cli plugins:activate [<plugins>] [-f|--force]

Deactivate plugins
List plugin ids separating them with spaces: vendor/bin/elgg-cli plugins:deactivate␣
→˓activity blog
use -f flag to also disable dependents
vendor/bin/elgg-cli plugins:deactivate [<plugins>] [-f|--force]

Adding custom commands

Plugins can add their commands to the CLI application, by adding command class name via a configuration in
elgg-plugin.php or via the 'commands','cli' event. Command class must extend \Elgg\CLI\Command.

class MyCommand extends \Elgg\li\Command {

}

elgg_register_event_handler('commands', 'cli', function(\Elgg\Event $event) {
$return = $event->getValue();

$return[] = MyCommand::class;

return $return;

});

Custom commands are based on Symfony Console Commands. Please refer to their documentation for more details.

26 Kapitel 3. Continue Reading

https://symfony.com/doc/current/console.html

Elgg Documentation, Release master

3.2 Administrator Guides

Best practices for effectively managing an Elgg-based site.

3.2.1 Getting Started

You have installed Elgg and worked through any potential initial issues. What now? Here are some suggestions on how
to to familiarize yourself with Elgg.

Focus first on core functionality

When you’re new to Elgg, it’s best to explore the stock features in core and its bundled plugins before installing any third
party plugins. It’s tempting install every interesting plugin from the community site, but exploring the core features
builds a familiarity with Elgg’s expected behavior, and prevents introducing any confusing bugs from third party plugin
into your new Elgg network.

Elgg installs with a basic set of social network plugins activated: blogs, social bookmarking, files, groups, likes, message
boards, wiki-like pages, user profiles, and microblogging. To change the plugins that are activated, log in as an admin
user, then use the topbar to browse to Administration, then to Plugins on the right sidebar.

Bemerkung: The user you create during installation is an admin user.

Create test users

Users can be created two ways in stock Elgg:

1. Complete the signup process using a different email address and username. (Logout first or use a different brow-
ser!)

2. Add a user through the Admin section by browsing to Administration -> Users -> Add New User.

Bemerkung: Users that self-register must validate their account through email before they can log in. Users that an
admin creates are already validated.

Explore user functionality

Use your test users to create blogs, add widgets to your profile or dashboard, post to the Wire (microblogging), and
create pages (wiki-like page creation). Investigate the Settings on the topbar. This is where a user sets notification
settings and configures tools (which will be blank because none of the default plugins add controls here).

3.2. Administrator Guides 27

Elgg Documentation, Release master

Explore admin functionality

All of the admin controls are found by clicking Administration in the topbar. The has a dashboard with a widget that
explains the various sections. Change options in the Configure menu to change how Elgg looks and acts.

Extending Elgg

After exploring what Elgg can do out of the box, install some themes and plugins. You can find many plugins and
themes at the community site that have been developed by third parties. These plugins do everything from changing
language strings, to adding chat, to completely redesigning Elgg’s interface. Because these plugins are not official, be
certain to check the comments to make sure you only install well-written plugins by high quality developers.

3.2.2 Composer installation

The easiest way to keep your Elgg site up-to-date is by using Composer. Composer will take care of installing all the
required dependencies of all plugins and Elgg, while also keeping those depencies up-to-date without having conflicts.

Contents

• Install Composer

• Install Elgg as a Composer Project

• Setup version controls

• Install plugins

• Commit

• Deploy to production

Install Composer

https://getcomposer.org/download/

Install Elgg as a Composer Project

composer self-update
composer create-project elgg/starter-project:dev-master ./path/to/my/project
cd ./path/to/my/project
composer install

This will create a composer.json file based of the Elgg starter project which has the basics of installing Elgg.

28 Kapitel 3. Continue Reading

https://getcomposer.org/
https://getcomposer.org/download/
https://github.com/Elgg/starter-project

Elgg Documentation, Release master

Open your browser

Go to your browser and install Elgg via the installation interface

Setup version controls

This step is optional but highly recommended. It’ll allow you to easily manage the installation of the same plugin
versions between environments (development/testing/production).

cd ./path/to/my/project
git init
git add .
git commit -a -m 'Initial commit'
git remote add origin <git repository url>
git push -u origin master

Install plugins

Install plugins as Composer depencies. This assumes that a plugin has been registered on Packagist

composer require hypejunction/hypefeed
composer require hypejunction/hypeinteractions
whatever else you need

Commit

Make sure composer.lock is not ignored in .gitignore

git add .
git commit -a -m 'Add new plugins'
git push origin master

Deploy to production

Initial Deploy

cd ./path/to/www

you can also use git clone
git init
git remote add origin <git repository url>
git pull origin master

composer install

3.2. Administrator Guides 29

https://packagist.org/

Elgg Documentation, Release master

Subsequent Deploys

cd ./path/to/www
git pull origin master

never run composer update in production
composer install

3.2.3 Upgrading Elgg

This document will guide you through steps necessary to upgrade your Elgg installation to the latest version.

If you’ve written custom plugins, you should also read the developer guides for information on upgrading plugin code
for the latest version of Elgg.

Contents

• Advice

• From 2.3 to 3.0

– 1. Update composer.json

– 2. Update .htaccess

– 3a. Composer Upgrade (recommended)

– 3b. Manual Upgrade (legacy approach)

• Applying a patch using Composer

• Earlier versions

Advice

• Back up your database, data directory and code
• Mind any version-specific comments below

• Version below 2.0 are advised to only upgrade one minor version at a time
• You can upgrade from any minor version to any higher minor version in the same major (2.0 -> 2.1 or 2.0 -> 2.3)

• You can only upgrade the latest minor version in the previous major version to any minor version in the next
version (2.3 -> 3.0 or 2.3 -> 3.2, but not 2.2 -> 3.x).

• From Elgg 2.3.* you can upgrade to any future version of Elgg without having to go through each minor version
(e.g. you can upgrade directly from 2.3.8 to 3.2.5, without having to upgrade to 3.0 and 3.1)

• Try out the new version on a test site before doing an upgrade

• Report any problems in plugins to the plugin authors

• If you are a plugin author you can report any backwards-compatibility issues to GitHub

30 Kapitel 3. Continue Reading

https://github.com/Elgg/Elgg/issues

Elgg Documentation, Release master

From 2.3 to 3.0

1. Update composer.json

If you have used Elgg’s starter project to install Elgg 2.3, you may need to update your composer.json:

• change platform requirements to PHP >= 7.0

• optionally, set autoloader optimization parameters

• optionally, disable fxp-asset plugin in favor of asset-packagist

Your composer.json would look something like this (depending what changes you may have introduced yourself):

{
"type": "project",
"name": "elgg/starter-project",
"require": {

"elgg/elgg": "3.*"
},
"config": {

"process-timeout": 0,
"platform": {

"php": "7.0"
},
"fxp-asset": {

"enabled": false
},
"optimize-autoloader": true,
"apcu-autoloader": true

},
"repositories": [

{
"type": "composer",
"url": "https://asset-packagist.org"

}
]

}

2. Update .htaccess

Find the line:

RewriteRule ^(.*)$ index.php?__elgg_uri=$1 [QSA,L]

And replace it with:

RewriteRule ^(.*)$ index.php [QSA,L]

3.2. Administrator Guides 31

Elgg Documentation, Release master

3a. Composer Upgrade (recommended)

If you had your Elgg 2.3 project installed using composer, you can follow this sequence:

Back up your database, data directory, and code

composer self-update

cd ./path/to/project/root
composer require elgg/elgg:~3.0.0
composer update
vendor/bin/elgg-cli upgrade async -v

Bemerkung: In some cases the command line upgrade will fail because some database schema changes need to be
applied first. In that case you need to execute the Phinx migrations manually

3b. Manual Upgrade (legacy approach)

Manual upgrades are a major undertaking for site admins. We discourage you from maintaining an Elgg installation
using ZIP dist packages. Save yourself some time by learning how to use composer and version control systems, such
as git. This task will also be complicated if you have third-party plugins and/or have made any modifications to core
files!

1. Back up your database, data directory, and code
2. Log in as an admin to your site

3. Download the new version of Elgg from http://elgg.org

4. Update the files
• If upgrading to a major version, you need to overwrite all core files and remove any files that were

removed from Elgg core, as they may interfere with proper functioning of your site.

• If upgrading to a minor version or patching, you need to overwrite all core files.

5. Merge any new changes to the rewrite rules
• For Apache from install/config/htaccess.dist into .htaccess

• For Nginx from install/config/nginx.dist into your server configuration (usually inside /etc/
nginx/sites-enabled)

6. Visit http://your-elgg-site.com/upgrade.php

7. Execute asynchronous upgrades at http://your-elgg-site.com/admin/upgrades

Bemerkung: Any modifications should have been written within plugins, so that they are not lost on overwriting. If
this is not the case, take care to maintain your modifications.

Bemerkung: If you are unable to access upgrade.php script and receive an error, add
$CONFIG->security_protect_upgrade = false; to your settings.php and remove it after you have
completed all of the upgrade steps.

32 Kapitel 3. Continue Reading

http://elgg.org
http://your-elgg-site.com/upgrade.php
http://your-elgg-site.com/admin/upgrades

Elgg Documentation, Release master

Bemerkung: If you encounter issues with plugins during the upgrade, add an empty file called disabled in your
/mod/ directory. This will disable the plugins, so that you can finish the core upgrade. You can then deal with issues
on per-plugin basis.

If you have installed Elgg using a dist package but would now like to switch to composer:

• Upgrade your current installation using Manual Upgrade method

• Move your codebase to a temporary location

• Create a new composer project using Elgg’s starter project following installation instructions in the root directory
of your current installation

• Copy third-party plugins from your old installation into /mod directory

• Run Elgg’s installer using your browser or elgg-cli tool

• When you reach the database step, provide the same credentials you have used for manual installation, Elgg will
understand that is’s an existing installation and will not override any database values

• Optionally commit your new project to version control

Applying a patch using Composer

The definition of a patch can be found in the Release policy.

Your composer.json requirement for Elgg should be ~3.y.0 (where y is the minor version 0, 1, etc. you wish to
have installed). This will make sure you can easily install patches without the risk of installing the next minor release.

{
"require": {

"elgg/elgg": "~3.0.0"
}

}

Just to be sure you can first verify what will be installed / upgraded by executing the folowing command

to get a full list of all packages which can be upgraded
composer update --dry-run

or if you only wish to check for Elgg
composer update elgg/elgg --dry-run

To upgrade Elgg simply execute

to upgrade all packages
composer update

or to only upgrade Elgg
composer update elgg/elgg

3.2. Administrator Guides 33

Elgg Documentation, Release master

Earlier versions

Check Elgg documentation that corresponds to the Elgg version you want to upgrade to, by switching the documentation
version in the lower left corner of Upgrading docs

3.2.4 Plugins

Plugins can modify the behavior of and add new features to Elgg.

Contents

• Where to get plugins

• The Elgg Community

– Finding Plugins

– Evaluating Plugins

• Types of plugins

– Themes

– Language Packs

• Installation

• Plugin order

Where to get plugins

Plugins can be obtained from:

• The Elgg Community

• Github

• Third-party sites (typically for a price)

If no existing plugins meet your needs, you can hire a developer or create your own.

The Elgg Community

Finding Plugins

Sort based on most popular

On the community plugin page, you can sort by date uploaded (Filter: Newest) or number of downloads (Filter: Most
downloads). Sorting by the number of downloads is a good idea if you are new to Elgg and want to see which plugins
are frequently used by other administrators. These will often (but not always) be higher quality plugins that provide
significant capabilities.

34 Kapitel 3. Continue Reading

http://community.elgg.org/plugins
https://github.com/Elgg
http://community.elgg.org/groups/profile/75603/professional-services

Elgg Documentation, Release master

Use the plugin tag search

Next to the filtering control on the plugin page is a search box. It enables you to search by tags. Plugins authors choose
the tags.

Look for particular plugin authors

The quality of plugins varies substantially. If you find a plugin that works well on your site, you can check what else
that plugin author has developed by clicking on their name when viewing a plugin.

Evaluating Plugins

Look at the comments and ratings

Before downloading and using a plugin, it is always a good idea to read through the comments that others have left.
If you see people complaining that the plugin does not work or makes their site unstable, you probably want to stay
away from that plugin. The caveat to that is that sometimes users ignore installation instructions or incorrectly install a
plugin and then leave negative feedback. Further, some plugin authors have chosen to not allow comments.

Install on a test site

If you are trying out a plugin for the first time, it is a bad idea to install it on your production site. You should maintain
a separate test site for evaluating plugins. It is a good idea to slowly roll out new plugins to your production site even
after they pass your evaluation on your test site. This enables you to isolate problems introduced by a new plugin.

Types of plugins

Themes

Themes are plugins that modify the look-and-feel of your site. They generally include stylesheets, client-side scripts
and views that alter the default presentation and behavior of Elgg.

Language Packs

Language packs are plugins that provide support for other languages.

Language packs can extend and include translations for language strings found in the core, core plugins and/or third-
party plugins.

Some of the language packs are already included in the core, and can be found in languages directory in Elgg’s root
directory. Individual plugins tend to include their translations under the languages directory within the plugin’s root.

This structure makes it easy to create new language packs that supercede existing language strings or add support for
new languages.

3.2. Administrator Guides 35

Elgg Documentation, Release master

Installation

All plugins reside in the mod directory of your Elgg installation.

To install a new plugin:
• extract (unzip) contents of the plugin distribution package

• copy/FTP the extracted folder into the mod directory of your Elgg installation

• activate the plugin from your admin panel

To activate a plugin:
• Log in to your Elgg site with your administrator account

• Go to Administration -> Configure -> Plugins

• Find your plugin in the list of installed plugins and click on the ‚enable‘ button.

Plugin order

Plugins are loaded according to the order they are listed on the Plugins page. The initial ordering after an install is more
or less random. As more plugins are added by an administrator, they are placed at the bottom of the list.

Some general rules for ordering plugins:

• A theme plugin should be last or at least near the bottom

• A plugin that modifies the behavior of another plugin should be lower in the plugin list

3.2.5 Performance

Make your site run as smoothly and responsively as possible.

Contents

• Can Elgg scale to X million users?

• Measure first

• Tune MySQL

• Enable caching

– Simplecache

– System cache

– Boot cache

– Database query cache

– Etags and Expires headers

– Memcached

– Squid

– Bytecode caching

– Direct file serving

36 Kapitel 3. Continue Reading

Elgg Documentation, Release master

– Composer Autoloader Optimization

• Hosting

– Memory, CPU and bandwidth

– Configuration

• Check for poorly-behaved plugins

• Use client-rendered HTML

Can Elgg scale to X million users?

People often ask whether Elgg can scale to large installations.

First, we might stop and ask, „where are you planning to get all those users?“ Seriously, though, this is a really interesting
problem. Making Elgg scale is, if anything, an issue of technical engineering. It’s interesting but more or less a solved
problem. Computer science doesn’t work differently for Elgg than for Google, for example. Getting millions of users?
That’s like the Holy Grail of the entire tech industry.

Second, as with most things in life, the answer is „it depends“:

• How active are your users?

• What hardware is Elgg running on?

• Are your plugins behaving well?

Improving the efficiency of the Elgg engine is an ongoing project, although there are limits to the amount that any script
can do.

If you are serious about scalability you will probably want to look at a number of things yourself.

Measure first

There is no point in throwing resources at a problem if you don’t know:

• what the problem is

• what resources the problem needs

• where those resources are needed

Invest in some kind of profiling to tell you where your bottleneck is, especially if you’re considering throwing significant
money at a problem.

Tune MySQL

Elgg makes extensive use of the back end database, making many trips on each pageload. This is perfectly normal and
a well configured database server will be able to cope with thousands of requests per second.

Here are some configuration tips that might help:

• Make sure that MySQL is configured to use an appropriate my.cnf for the size of your website.

• Increase the amount of memory available to PHP and MySQL (you will have to increase the amount of memory
available to the php process in any case)

3.2. Administrator Guides 37

https://github.com/elgg/elgg/issues?labels=performance&state=open

Elgg Documentation, Release master

Enable caching

Generally, if a program is slow, that is because it is repeatedly performing an expensive computation or operation.
Caching allows the system to avoid doing that work over and over again by using memory to store the results so that you
can skip all the work on subsequent requests. Below we discuss several generally-available caching solutions relevant
to Elgg.

Simplecache

By default, views are cached in the Elgg data directory for a given period of time. This removes the need for a view to
be regenerated on every page load.

This can be disabled by setting $CONFIG->simplecache_enabled = false; For best performance, make sure this
value is set to true.

This does lead to artifacts during development if you are editing themes in your plugin as the cached version will be
used in preference to the one provided by your plugin.

The simple cache can be disabled via the administration menu. It is recommended that you do this on your development
platform if you are writing Elgg plugins.

This cache is automatically flushed when a plugin is enabled, disabled or reordered, or when upgrade.php is executed.

For best performance, you can also create a symlink from /cache/ in your www root dir to the assetroot directory
specified in your config (by default it’s located under /path/to/dataroot/caches/views_simplecache/:

cd /path/to/wwwroot/
ln -s /path/to/dataroot/caches/views_simplecache/ cache

If your webserver supports following symlinks, this will serve files straight off disk without booting up PHP each time.

For security reasons, some webservers (e.g. Apache in version 2.4) might follow the symlinks by default only if the
owner of the symlink source and target match. If the cache symlink fails to work on your server, you can change the
owner of the cache symlink itself (and not the /views_simplecache/ directory) with

cd /path/to/wwwroot/
chown -h wwwrun:www cache

In this example it’s assumed that the /views_simplecache/ directory in the data directory is owned by the wwwrun
account that belongs to the www group. If this is not the case on your server, you have to modify the chown command
accordingly.

System cache

The location of views are cached so that they do not have to be discovered (profiling indicated that page load took a
non-linear amount of time the more plugins were enabled due to view discovery). Elgg also caches information like the
language mapping and class map.

This can be disabled by setting $CONFIG->system_cache_enabled = false; For best performance, make sure this
value is set to true.

This is currently stored in files in your dataroot (although later versions of Elgg may use memcache). As with the simple
cache it is flushed when a plugin is enabled, disabled or reordered, or when upgrade.php is executed.

The system cache can be disabled via the administration menu, and it is recommended that you do this on your deve-
lopment platform if you are writing Elgg plugins.

38 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Boot cache

Elgg has the ability to cache numerous resources created and fetched during the boot process. To configure how long
this cache is valid you must set a TTL in your settings.php file: $CONFIG->boot_cache_ttl = 3600;

Database query cache

For the lifetime of a given page’s execution, a cache of all SELECT queries is kept. This means that for a given page
load a given select query will only ever go out to the database once, even if it is executed multiple times. Any write to
the database will flush this cache. This cache will be automatically cleared at the end of a page load.

You may experience memory problems if you use the Elgg framework as a library in a PHP CLI script. This can be
disabled by setting $CONFIG->db_disable_query_cache = true;

Etags and Expires headers

These technologies tell your users‘ browsers to cache static assets (CSS, JS, images) locally. Having these enabled
greatly reduces server load and improves user-perceived performance.

Use the Firefox yslow plugin or Chrome DevTools Audits to confirm which technologies are currently running on your
site.

If the static assets aren’t being cached:
• Verify that you have these extensions installed and enabled on your host

• Update your .htaccess file, if you are upgrading from a previous version of Elgg

• Enable Simplecache, which turns select views into browser-cacheable assets

Memcached

Libmemcached was created by Brian Aker and was designed from day one to give the best performance available to
users of Memcached.

Siehe auch:
http://libmemcached.org/About.html and https://secure.php.net/manual/en/book.memcached.php

Installation requirements:

• php-memcached

• libmemcached

• memcached

Configuration:

Uncomment and populate the following sections in settings.php

$CONFIG->memcache = true;

$CONFIG->memcache_servers = array (
array (

'host' => 'server1',
'port' => 11211

(Fortsetzung auf der nächsten Seite)

3.2. Administrator Guides 39

https://addons.mozilla.org/en-us/firefox/addon/yslow/
http://libmemcached.org/About.html
https://secure.php.net/manual/en/book.memcached.php

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

),
array (

'host' => 'server2',
'port' => 11211

)
);

Optionaly if you run multiple Elgg installations but use ony one Memcache server, you may want to add a namespace
prefix. In order to do this, uncomment the following line

$CONFIG->memcache_namespace_prefix = '';

Squid

We have had good results by using Squid to cache images for us.

Bytecode caching

There are numerous PHP code caches available on the market. These speed up your site by caching the compiled byte
code from your script meaning that your server doesn’t have to compile the PHP code each time it is executed.

Direct file serving

If your server can be configured to support the X-Sendfile or X-Accel headers, you can configure it to be used in
settings.php. This allows your web server to directly stream files to the client instead of using PHP’s readfile().

Composer Autoloader Optimization

The Composer autoloader is responsible for loading classes provided by dependencies of Elgg. The way the autoloader
works is it searches for a classname in the installed dependencies. While this is mostly a fast process it can be optimized.

You can optimize the autoloader 2 different ways. The first is in the commandline, the other is in the composer.json
of your project.

If you want to optimize the autoloader using the commandline use the -o flag. The disadvantage is you have to add the
-o flag every time you run Composer.

During the installation
composer install -o

Or during the upgrade process
composer upgrade -o

The second option is to add the optimization to your composer.json file, that way you never forget it.

{
"config": {

"optimize-autoloader": true,
"apcu-autoloader": true

(Fortsetzung auf der nächsten Seite)

40 Kapitel 3. Continue Reading

http://en.wikipedia.org/wiki/Squid_cache

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

}
}

Siehe auch:
Check out the Autoloader Optimization page for more information about how to optimize the Composer autoloader.

Bemerkung: As of Elgg 3.0 all the downloads of Elgg from the website have the optimized autoloader.

Hosting

Don’t expect to run a site catering for millions of users on a cheap shared host. You will need to have your own host
hardware and access over the configuration, as well as lots of bandwidth and memory available.

Memory, CPU and bandwidth

Due to the nature of caching, all caching solutions will require memory. It is a fairly cheap return to throw memory and
CPU at the problem.

On advanced hardware it is likely that bandwidth is going to be your bottleneck before the server itself. Ensure that
your host can support the load you are suggesting.

Configuration

Lastly, take a look at your configuration as there are a few gotchas that can catch people.

For example, out of the box, Apache can handle quite a high load. However, most distros of Linux come with mysql
configured for small sites. This can result in Apache processes getting stalled waiting to talk to one very overloaded
MySQL process.

Check for poorly-behaved plugins

Plugins can be programmed in a very naive way and this can cause your whole site to feel slow.

Try disabling some plugins to see if that noticeably improves performance. Once you’ve found a likely offender, go to
the original plugin author and report your findings.

Use client-rendered HTML

We’ve found that at a certain point, much of the time spent on the server is simply building the HTML of the page with
Elgg’s views system.

It’s very difficult to cache the output of templates since they can generally take arbitrary inputs. Instead of trying to
cache the HTML output of certain pages or views, the suggestion is to switch to an HTML-based templating system so
that the user’s browser can cache the templates themselves. Then have the user’s computer do the work of generating
the output by applying JSON data to those templates.

This can be very effective, but has the downside of being significant extra development cost. The Elgg team is looking
to integrate this strategy into Elgg directly, since it is so effective especially on pages with repeated or hidden content.

3.2. Administrator Guides 41

https://getcomposer.org/doc/articles/autoloader-optimization.md
https://elgg.org/about/download

Elgg Documentation, Release master

3.2.6 Cron

Contents

• What does it do?

• How does it work?

What does it do?

Cron is a program available on Unix-based operating systems that enables users to run commands and scripts at set
intervals or at specific times.

Elgg’s cron handler allows administrators and plugin developers to setup jobs that need to be executed at set intervals.

Most common examples of cron jobs in Elgg include:

• sending out queued notifications

• rotating the system log in the database

• collecting garbage in the database (compacting the database by removing entries that are no longer required)

Plugins can add jobs by registering a event handler for one of the following cron intervals:

• minute - Run every minute

• fiveminute - Run every 5 minutes

• fifteenmin - Run every 15 minutes

• halfhour - Run every 30 minutes

• hourly - Run every hour

• daily - Run every day

• weekly - Run every week

• monthly - Run every month

• yearly - Run every year

elgg_register_event_handler('cron', 'hourly', function() {

$events = my_plugin_get_upcoming_events();

foreach ($events as $event) {
$attendees = $event->getAttendees();

// notify
}

});

42 Kapitel 3. Continue Reading

https://en.wikipedia.org/wiki/Cron

Elgg Documentation, Release master

How does it work?

crontab must be setup in such a way as to activate Elgg cron handler every minute, or at a specific interval. Once cron
tab activates the cron job, Elgg executes all event handlers attached to that interval.

If you have SSH access to your Linux servers, type crontab -e and add your crontab configuration.

* * * * * path/to/phpbin path/to/elgg/elgg-cli cron -q

The above command will run every minute and activate all due cron jobs.

Optionally you can activate handlers for a specific interval:

0 * * * * path/to/phpbin path/to/elgg/elgg-cli cron -i hourly -q

3.2.7 Backup and Restore

Contents

• Introduction

– Why

– What

– Assumptions

• Creating a usable backup - automatically

– Customize the backup script

– Configure the backup Cron job

– Configure the cleanup Cron job

• Restoring from backup

– Prepare your backup files

– Restore the files

– Restore the MySQL Database

– Edit the MySQL backup

– Create the new database

– Restore the production database

– Bringing it all together

– Finalizing the new installation

• Congratulations!

• Related

3.2. Administrator Guides 43

Elgg Documentation, Release master

Introduction

Why

Shared hosting providers typically don’t provide an automated way to backup your Elgg installation. This article will
address a method of accomplishing this task.

In IT there are often many ways to accomplish the same thing. Keep that in mind. This article will explain one method
to backup and restore your Elgg installation on a shared hosting provider that uses the CPanel application. However,
the ideas presented here can be tailored to other applications as well. The following are typical situations that might
require a procedure such as this:

• Disaster Recovery

• Moving your Elgg site to a new host

• Duplicating an installation

What

Topics covered:

• Full backups of the Elgg directories and MySQL databases are performed daily (automated)

• The backups are sent to an off-site location via FTP (automated)

• The local backups are deleted after successful transfer to the off-site location (automatic)

• Five days of backups will be maintained (automated)

• Restoration of data to the new host (manual)

This process was composed with assistance from previous articles in the Elgg documentation wiki.

Assumptions

The following assumptions have been made:

• The Elgg program directory is /home/userx/public_html

• The Elgg data directory is /home/userx/elggdata

• You’ve created a local directory for your backups at /home/userx/sitebackups

• You have an off-site FTP server to send the backup files to

• The directory that you will be saving the off-site backups to is /home/usery/sitebackups/

• You will be restoring the site to a second shared hosting provider in the /home/usery/public_html directory

Wichtig: Be sure to replace userx, usery, http://mynewdomain.com and all passwords with values that reflect
your actual installation!

44 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Creating a usable backup - automatically

Customize the backup script

The script that you will use can be found here .

Just copy the script to a text file and name the file with a .pl extension. You can use any text editor to update the file.

Change the following to reflect your directory structure:

ENTER THE PATH TO THE DIRECTORY YOU WANT TO BACKUP, NO TRAILING SLASH
$directory_to_backup = '/home/userx/public_html';
$directory_to_backup2 = '/home/userx/elggdata';
ENTER THE PATH TO THE DIRECTORY YOU WISH TO SAVE THE BACKUP FILE TO, NO TRAILING SLASH
$backup_dest_dir = '/home/userx/sitebackups';

Change the following to reflect your database parameters:

MYSQL BACKUP PARAMETERS
$dbhost = 'localhost';
$dbuser = 'userx_elgg';
$dbpwd = 'dbpassword';
ENTER DATABASE NAME
$database_names_elgg = 'userx_elgg';

Change the following to reflect your off-site FTP server parameters:

FTP PARAMETERS
$ftp_host = "FTP HOSTNAME/IP";
$ftp_user = "ftpuser";
$ftp_pwd = "ftppassword";
$ftp_dir = "/";

Save the file with the .pl extension (for the purposes of this article we will name the file: elgg-ftp-backup-script.
pl) and upload it to the following directory /home/userx/sitebackups

Be aware that you can turn off FTP and flip a bit in the script so that it does not delete the local backup file in the event
that you don’t want to use off-site storage for your backups.

Configure the backup Cron job

Login to your CPanel application and click on the „Cron Jobs“ link. In the Common Settings dropdown choo-
se „Once a day“ and type the following in the command field /usr/bin/perl /home/userx/sitebackups/
elgg-ftp-backup-script.pl

Click on the „Add New Cron Job“ button. Daily full backups are now scheduled and will be transferred off-site.

3.2. Administrator Guides 45

Elgg Documentation, Release master

Configure the cleanup Cron job

If you are sending your backups, via FTP, to another shared hosting provider that uses the CPanel application or you’ve
turned off FTP altogether you can configure your data retention as follows.

Login to your CPanel application for your FTP site, or locally if you’re not using FTP, and click on the „Cron Jobs“
link. In the Common Settings dropdown choose „Once a day“ and type the following in the command field find
/home/usery/sitebackups/full_* -mtime +4 -exec rm {} \;

The -mtime X parameter will set the number of days to retain backups. All files older than x number of days will be
deleted. Click on the „Add New Cron Job“ button. You have now configured your backup retention time.

Restoring from backup

Prepare your backup files

The assumption is that you’re restoring your site to another shared hosting provider with CPanel.

When the script backed the files up the original directory structure was maintained in the zip file. We need to do a little
cleanup. Perform the following:

• Download the backup file that you wish to restore from

• Extract the contents of the backup file

• Drill down and you will find your site backup and SQL backup. Extract both of these. You will then have:
– a MySQL dump file with a .sql extension

– another directory structure with the contents of:
∗ /home/userx/public_html

∗ /home/userx/elggdata

• Repackage the contents of the /home/userx/public_html directory as a zip file so that the files are in
the root of the zip file

– The reason for doing this is simple. It’s much more efficient to upload one zip file than it is to ftp the
contents of the /home/userx/public_html directory to your new host.

• Repackage the contents of the /home/userx/elggdata directory as a zip file so that the files are in the root of the
zip file

You should now have the following files:

• the .sql file

• the zip file with the contents of /home/userx/public_html in the root

• the zip file with the contents of /home/userx/elggdata in the root

46 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Restore the files

This is written with the assumption that you’re restoring to a different host but maintaining the original directory
structure. Perform the following:

• Login to the CPanel application on the host that you wish to restore the site to and open the File Manager.

• Navigate to /home/usery/public_html
– Upload the zip file that contains the /home/userx/public_html files

– Extract the zip file
You should now see all of the files in /home/usery/public_html

– Delete the zip file

• Navigate to /home/usery/elggdata
– Upload the zip file that contains the /home/userx/elggdata files

– Extract the zip file
You should now see all of the files in /home/usery/elggdata

– Delete the zip file

Program and data file restoration is complete

Restore the MySQL Database

Bemerkung: Again, the assumption here is that you’re restoring your Elgg installation to a second shared hosting pro-
vider. Each shared hosting provider prepends the account holder’s name to the databases associated with that account.
For example, the username for our primary host is userx so the host will prepend userx_ to give us a database name
of userx_elgg. When we restore to our second shared hosting provider we’re doing so with a username of usery so
our database name will be usery_elgg. The hosting providers don’t allow you to modify this behavior. So the process
here isn’t as simple as just restoring the database from backup to the usery account. However, having said that, it’s not
terribly difficult either.

Edit the MySQL backup

Open the .sql file that you extracted from your backup in your favorite text editor. Comment out the following lines
with a hash mark:

#CREATE DATABASE /*!32312 IF NOT EXISTS*/ `userx_elgg` /*!40100 DEFAULT CHARACTER SET␣
→˓latin1 */;
#USE `userx_elgg`;

Save the file.

3.2. Administrator Guides 47

Elgg Documentation, Release master

Create the new database

Perform the following:

• Login to the CPanel application on the new host and click on the „MySQL Databases“ icon
– Fill in the database name and click the „create“ button. For our example we are going to stick with
elgg which will give us a database name of usery_elgg

– You can associate an existing user with the new database, but to create a new user you will need
to:

∗ Go to the „Add New User“ section of the „MySQL Databases“ page

∗ Enter the username and password. For our example we’re going to keep it simple and use elgg
once again. This will give us a username of usery_elgg

– Associate the new user with the new database
∗ Go to the „Add User To Database“ section of the „MySQL Databases“ page. Add the
usery_elgg user to the usery_elgg database

∗ Select „All Privileges“ and click the „Make Changes“ button

Restore the production database

Now it’s time to restore the MySQL backup file by importing it into our new database named „usery_elgg“.

• Login to the CPanel application on the new host and click on the „phpMyAdmin icon
– Choose the usery_elgg database in the left hand column

– Click on the „import“ tab at the top of the page

– Browse to the .sql backup on your local computer and select it

– Click the „Go“ button on the bottom right side of the page

You should now see a message stating that the operation was successful

Bringing it all together

The restored elgg installation knows nothing about the new database name, database username, directory structure,
etc. That’s what we’re going to address here.

Edit /public_html/elgg-config/settings.php on the new hosting provider to reflect the database information
for the database that you just created.

// Database username
$CONFIG->dbuser = 'usery_elgg';

// Database password
$CONFIG->dbpass = 'dbpassword';

// Database name
$CONFIG->dbname = 'usery_elgg';

// Database server
// (For most configurations, you can leave this as 'localhost')

(Fortsetzung auf der nächsten Seite)

48 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

$CONFIG->dbhost = 'localhost';

// (For most configurations, you can leave this as 3306)
$CONFIG->dbport = 3306;

$CONFIG->wwwroot = 'http://your.website.com/'

Upload the settings.php file back to the new host - overwriting the existing file.

Open the phpMyAdmin tool on the new host from the CPanel. Select the usery_elgg database on the left and click
the SQL tab on the top of the page. Run the following SQL queries against the usery_elgg database:

Change the installation path

UPDATE `elgg_config` SET `value` = REPLACE(`value`, "/home/userx/public_html/grid/", "/
→˓home/usery/public_html/grid/") WHERE `name` = "path";

Change the data directory

UPDATE `elgg_config` SET `value` = REPLACE(`value`, "/home/userx/elggdata/", "/home/
→˓usery/elggdata/") WHERE `name` = "dataroot";

Change the filestore data directory

UPDATE elgg_metadata set value = '/home/usery/elggdata/' WHERE name = 'filestore::dir_
→˓root';

Finalizing the new installation

Run the upgrade script by visiting the following URL: http://mynewdomain.com/upgrade.php . Do this step twice
- back to back.

Update your DNS records so that your host name resolves to the new host’s IP address if this is a permanent move.

Congratulations!

If you followed the steps outlined here you should now have a fully functional copy of your primary Elgg installation.

Related

FTP backup script

Here is an automated script for backing up an Elgg installation.

#!/usr/bin/perl -w

FTP Backup

use Net::FTP;

DELETE BACKUP AFTER FTP UPLOAD (0 = no, 1 = yes)
(Fortsetzung auf der nächsten Seite)

3.2. Administrator Guides 49

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

$delete_backup = 1;

ENTER THE PATH TO THE DIRECTORY YOU WANT TO BACKUP, NO TRAILING SLASH
$directory_to_backup = '/home/userx/public_html';
$directory_to_backup2 = '/home/userx/elggdata';

ENTER THE PATH TO THE DIRECTORY YOU WISH TO SAVE THE BACKUP FILE TO, NO TRAILING SLASH
$backup_dest_dir = '/home/userx/sitebackups';

BACKUP FILE NAME OPTIONS
($a,$d,$d,$day,$month,$yearoffset,$r,$u,$o) = localtime();
$year = 1900 + $yearoffset;
$site_backup_file = "$backup_dest_dir/site_backup-$day-$month-$year.tar.gz";
$full_backup_file = "$backup_dest_dir/full_site_backup-$day-$month-$year.tar.gz";

MYSQL BACKUP PARAMETERS
$dbhost = 'localhost';
$dbuser = 'userx_elgg';
$dbpwd = 'dbpassword';
$mysql_backup_file_elgg = "$backup_dest_dir/mysql_elgg-$day-$month-$year.sql.gz";

ENTER DATABASE NAME
$database_names_elgg = 'userx_elgg';

FTP PARAMETERS
$ftp_backup = 1;
$ftp_host = "FTP HOSTNAME/IP";
$ftp_user = "ftpuser";
$ftp_pwd = "ftppassword";
$ftp_dir = "/";

SYSTEM COMMANDS
$cmd_mysqldump = '/usr/bin/mysqldump';
$cmd_gzip = '/usr/bin/gzip';

CURRENT DATE / TIME
($a,$d,$d,$day,$month,$yearoffset,$r,$u,$o) = localtime();
$year = 1900 + $yearoffset;

BACKUP FILES
$syscmd = "tar --exclude $backup_dest_dir" . "/* -czf $site_backup_file $directory_to_
→˓backup $directory_to_backup2";

elgg DATABASE BACKUP
system($syscmd);
$syscmd = "$cmd_mysqldump --host=$dbhost --user=$dbuser --password=$dbpwd --add-drop-
→˓table --databases $database_names_elgg -c -l | $cmd_gzip > $mysql_backup_file_elgg";

system($syscmd);

CREATING FULL SITE BACKUP FILE
$syscmd = "tar -czf $full_backup_file $mysql_backup_file_elgg $site_backup_file";

(Fortsetzung auf der nächsten Seite)

50 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

system($syscmd);

DELETING SITE AND MYSQL BACKUP FILES
unlink($mysql_backup_file_elgg);
unlink($site_backup_file);

UPLOADING FULL SITE BACKUP TO REMOTE FTP SERVER
if($ftp_backup == 1)
{
my $ftp = Net::FTP->new($ftp_host, Debug => 0)
or die "Cannot connect to server: $@";

$ftp->login($ftp_user, $ftp_pwd)
or die "Cannot login ", $ftp->message;

$ftp->cwd($ftp_dir)
or die "Can't CWD to remote FTP directory ", $ftp->message;

$ftp->binary();

$ftp->put($full_backup_file)
or warn "Upload failed ", $ftp->message;

$ftp->quit();
}

DELETING FULL SITE BACKUP
if($delete_backup = 1)
{

unlink($full_backup_file);
}

Duplicate Installation

Contents

• Introduction

– Why Duplicate an Elgg Installation?

– What Is Not Covered in This Tutorial

– Before You Start

• Copy Elgg Code to the Test Server

• Copy Data to the Test Server

• Edit settings.php

• Copy Elgg Database

• Database Entries

3.2. Administrator Guides 51

Elgg Documentation, Release master

– Change the installation path

– Change the data directory

• Check .htaccess

• Update Webserver Config

• Run upgrade.php

• Tips

• Related

Introduction

Why Duplicate an Elgg Installation?

There are many reasons you may want to duplicate an Elgg installation: moving the site to another server, creating a
test or development server, and creating functional backups are the most common. To create a successful duplicate of
an Elgg site, 3 things need to be copied:

• Database

• Data from the data directory

• Code

Also at least 5 pieces of information must be changed from the copied installation:

• elgg-config/settings.php file which could also be in the pre 2.0 location engine/settings.php

• .htaccess file (Apache) or Nginx configuration depending on server used

• database entry for your site entity

• database entry for the installation path

• database entry for the data path

What Is Not Covered in This Tutorial

This tutorial expects a basic knowledge of Apache, MySQL, and Linux commands. As such, a few things will not be
covered in this tutorial. These include:

• How to backup and restore MySQL databases

• How to configure Apache to work with Elgg

• How to transfer files to and from your production server

52 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Before You Start

Before you start, make sure the Elgg installation you want to duplicate is fully functional. You will also need the
following items:

• A backup of the live Elgg database

• A place to copy the live database

• A server suitable for installing duplicate Elgg site
(This can be the same server as your production Elgg installation.)

Backups of the database can be obtained various ways, including phpMyAdmin, the MySQL official GUI, and the com-
mand line. Talk to your host for information on how to backup and restore databases or use Google to find information
on this.

During this tutorial, we will make these assumptions about the production Elgg site:

• The URL is http://www.myelgg.org/

• The installation path is /var/www/elgg/

• The data directory is /var/data/elgg/

• The database host is localhost

• The database name is production_elgg

• The database user is db_user

• The database password is db_password

• The database prefix is elgg

At the end of the tutorial, our test Elgg installation details will be:

• The URL is http://test.myelgg.org/

• The installation path is /var/www/elgg_test/

• The data directory is /var/data/elgg_test/

• The database host is localhost

• The database name is test_elgg

• The database user is db_user

• The database password is db_password

• The database prefix is elgg

Copy Elgg Code to the Test Server

The very first step is to duplicate the production Elgg code. In our example, this is as simple as copying /var/www/
elgg/ to /var/www/elgg_test/.

cp -a /var/www/elgg/ /var/www/elgg_test/

3.2. Administrator Guides 53

Elgg Documentation, Release master

Copy Data to the Test Server

In this example, this is as simple as copying /var/data/elgg/ to /var/data/elgg_test/.

cp -a /var/data/elgg/ /var/data/elgg_test/

If you don’t have shell access to your server and have to ftp the data, you may need to change ownership and permissions
on the files.

Bemerkung: You also need to delete cache directories from your disk. These correspond to cacheroot and
assetroot directories in your config.

Edit settings.php

The elgg-config/settings.php file contains the database configuration details. These need to be adjusted for your
new test Elgg installation. In our example, we’ll look in /var/www/elgg_test/elgg-config/settings.php and
find the lines that look like this:

// Database username
$CONFIG->dbuser = 'db_user';

// Database password
$CONFIG->dbpass = 'db_password';

// Database name
$CONFIG->dbname = 'elgg_production';

// Database server
// (For most configurations, you can leave this as 'localhost')
$CONFIG->dbhost = 'localhost';
// (For most configurations, you can leave this as 3306)
$CONFIG->dbport = 3306;

// Database table prefix
// If you're sharing a database with other applications, you will want to use this
// to differentiate Elgg's tables.
$CONFIG->dbprefix = 'elgg';

We need to change these lines to match our new installation:

// Database username
$CONFIG->dbuser = 'db_user';

// Database password
$CONFIG->dbpass = 'db_password';

// Database name
$CONFIG->dbname = 'elgg_test';

// Database server
// (For most configurations, you can leave this as 'localhost')

(Fortsetzung auf der nächsten Seite)

54 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

$CONFIG->dbhost = 'localhost';
// (For most configurations, you can leave this as 3306)
$CONFIG->dbport = 3306;

// Database table prefix
// If you're sharing a database with other applications, you will want to use this
// to differentiate Elgg's tables.
$CONFIG->dbprefix = 'elgg';

$CONFIG->wwwroot = 'http://your.website.com/'

Bemerkung: Notice the $CONFIG->dbname has changed to reflect our new database.

Copy Elgg Database

Now the database must be copied from elgg_production to elgg_test. See your favorite MySQL manager’s docu-
mentation for how to make a duplicate database. You will generally export the current database tables to a file, create
the new database, and then import the tables that you previously exported.

You have two options on updating the values in the database. You could change the values in the export file or you could
import the file and change the values with database queries. One advantage of modifying the dump file is that you can
also change links that people have created to content within your site. For example, if people have bookmarked pages
using the bookmark plugin, the bookmarks will point to the old site unless your update their URLs.

Database Entries

We must now change 4 entries in the database. This is easily accomplished with 4 simple SQL commands:

Change the installation path

UPDATE `elgg_config` SET `value` = REPLACE(`value`, "/var/www/elgg_production/", "/var/
→˓www/elgg_test/") WHERE `name` = "path";

Change the data directory

UPDATE `elgg_config` SET `value` = REPLACE(`value`, "/var/data/elgg_production/", "/var/
→˓data/elgg_test/") WHERE `name` = "dataroot";

3.2. Administrator Guides 55

Elgg Documentation, Release master

Check .htaccess

If you have made changes to .htaccess that modify any paths, make sure you update them in the test installation.

Update Webserver Config

For this example, you must edit the Apache config to enable a subdomain with a document root of /var/www/
elgg_test/. If you plan to install into a subdirectory of your document root, this step is unnecessary.

If you’re using Nginx, you need to update server config to match new paths based on install/config/nginx.dist.

Run upgrade.php

To regenerate cached data, make sure to run http://test.myelgg.org/upgrade.php

Tips

It is a good idea to keep a test server around to experiment with installing new mods and doing development work.
If you automate restorations to the elgg_test database, changing the $CONFIG values and adding the follow lines to
the end of the elgg_test/elgg-config/settings.php file will allow seamless re-writing of the MySQL database
entries.

$con = mysql_connect($CONFIG->dbhost, $CONFIG->dbuser, $CONFIG->dbpass);
mysql_select_db($CONFIG->dbname, $con);

$sql = "UPDATE {$CONFIG->dbprefix}config
SET value = REPLACE(`value`, "/var/www/elgg_production/", "/var/www/elgg_test/")
WHERE name = 'path'";

mysql_query($sql);
print mysql_error();

$sql = "UPDATE {$CONFIG->dbprefix}config
SET value = REPLACE(`value`, "/var/data/elgg_production/", "/var/data/elgg_test/")
WHERE name = 'dataroot'";

mysql_query($sql);
print mysql_error();

Related

Siehe auch:
Backup and Restore

56 Kapitel 3. Continue Reading

Elgg Documentation, Release master

3.2.8 Getting Help

Having a problem with Elgg? The best way to get help is to ask at the Community Site. This site is community supported
by a large group of volunteers. Here are a few tips to help you get the help you need.

Contents

• Getting help

• Guidelines

• Good Ideas

Getting help

Don’t be a Help Vampire

We were all newbies at one time, but we can all learn. Not showing that you are making attempts to learn on your own
or do your own research is off putting for those helping. Also, very generic questions like „How do I build a forum?“
are almost impossible to answer.

Search first

Be sure to search the documentation (this site), the Community Site, and Google before asking a question. New users
to Elgg frequently have the same questions, so please search. People are less inclined to reply to a post that has been
answered many other times or that can be answered easily by Googling.

Ask once

Posting the same questions in multiple places makes it hard to answer you. Ask your question in one place only. Dupli-
cate questions may be moderated.

Include Elgg Version

Different versions of Elgg have different features (and different bugs). Including the version of Elgg that you are using
will help those helping you.

Have a reasonable profile

Profiles that look like spam or have silly names will often be ignored. Joviality is fine, but people are more likely to
help Michael than 1337elggHax0r.

3.2. Administrator Guides 57

https://community.elgg.org/
https://community.elgg.org/

Elgg Documentation, Release master

Post in the appropriate forum

Check to make sure you’re posting in the right forum. If you have a question about creating a plugin, don’t post to the
Elgg Feedback forum. If you need help installing Elgg, post to Technical Support instead of the Theming group.

Use a descriptive topic title

Good topic titles concisely describe your problem or question. Bad topic titles are vague, contain all capital letters, and
excessive punctuation.

Good title: „White screen after upgrading to 1.7.4.“

Bad title: „URGENT!!!!! site broke ;-(losing money help!!!!!!!!!!!“

Be detailed

Include as many details about your problem as possible. If you have a live site, include a link. Be forthcoming if
community members might ask for more information. We can’t help you if you won’t give any details!

Keep it public

This is a public forum for the good of the Elgg project. Keep posts public. There’s no reason for anyone to ask you to
send a private message or email. Likewise, there’s no reason to ask anyone to send a private email to you. Post in the
public.

Guidelines

In addition to the site-wide Terms and Policies, following these guidelines keeps our community site useful and safe
for everyone.

Content

All content must be safe for work: PG in the US and UK. If your Elgg site has adult content and you have been asked
to post a link, please mark it NSFW (Not Safe For Work) so people know.

Excessive swearing in any language will not be tolerated.

Mood

Working with technical problems can be frustrating. Please keep the community site free of frustration. If you’re feeling
anxious, take a step away and do something else. Threatening or attacking community members, core developers, or
plugin developers will not help solve your problem and will likely get you banned.

58 Kapitel 3. Continue Reading

http://community.elgg.org/terms/

Elgg Documentation, Release master

Advertising

Advertising is not allowed. Posts with any sort of advertising will be moderated.

Asking for money / Offering to pay

Don’t ask for money on the community site. Likewise, don’t offer to pay for answers. If you are looking for custom
development, post to the Professional Services group. Posts asking for money or recommending a commercial plugin
may be moderated.

Links

If you’re having a problem with a live site, please provide a link to it.

That said, the community site is not a back linking service or SEO tool. Excessive linking will be moderated and your
account may be banned.

Signatures

There’s a reason Elgg doesn’t have an option for signatures: they cause clutter and distract from the conversation. Users
are discouraged from using signatures on the community site, and signatures with links or advertising will be removed.

Bumping, +1, me too

Don’t do it. If your question hasn’t been answered, see the top of this document for tips. These types of post add nothing
to the conversation and may be moderated.

Posting Code

Long bits of code are confusing to read through in a forums context. Please use http://elgg.pastebin.com to post long
bits of code and provide the Paste Bin link instead of directly posting the code.

Good Ideas

Not policies, but good ideas.

Say thanks

Did someone help you? Be sure to thank them! The community site is run by volunteers. No one has to help you with
your problem. Be sure to show your appreciation!

3.2. Administrator Guides 59

http://elgg.pastebin.com

Elgg Documentation, Release master

Give back

Have a tip for Elgg? See someone with a similar problem you had? You’ve been there and can help them out, so give
them a hand!

3.2.9 Security

As of Elgg 3.0 several hardening settings have been added to Elgg. You can enable/disable these settings as you like.

Contents

• Upgrade protection

• Cron protection

• Disable password autocomplete

• Email address change requires password

• Email address change requires confirmation

• Session bound icons

• Notification to site administrators

• Notifications to user

– Site administrator

– (Un)ban

• Minimal username length

• Minimal password requirements

• .htaccess file access hardening

Upgrade protection

The URL of http://your-elgg-site.com/upgrade.php can be protected by a unique token. This will prevent random users
from being able to run this file. The token is not needed for logged in site administrators.

Cron protection

The URLs of the cron can be protected by a unique token. This will prevent random users from being able to run the
cron. The token is not needed when running the cron from the commandline of the server.

60 Kapitel 3. Continue Reading

http://your-elgg-site.com/upgrade.php

Elgg Documentation, Release master

Disable password autocomplete

Data entered in these fields will be cached by the browser. An attacker who can access the victim’s browser could
steal this information. This is especially important if the application is commonly used in shared computers such as
cyber cafes or airport terminals. If you disable this, password management tools can no longer autofill these fields. The
support for the autocomplete attribute can be browser specific.

Email address change requires password

When a user wishes to change their email address associated with their account, they need to also supply their current
password.

Email address change requires confirmation

When a user wishes to change their email address associated with their account, they need to confirm the new email
address. This is done by sending an email to the new address with a validation link. After clicking this link the new
email address will be used.

Session bound icons

Entity icons can be session bound by default. This means the URLs generated also contain information about the current
session. Having icons session bound makes icon urls not shareable between sessions. The side effect is that caching of
these urls will only help the active session.

Notification to site administrators

When a new site administrator is added or when a site administrator is removed all the site administrators get a notifi-
cation about this action.

Notifications to user

Site administrator

When the site administrator role is added to or removed from the account, send a notification to the user whos account
this is affecting.

(Un)ban

When the account of a user gets banned or unbanned, let the affected user know about this action.

3.2. Administrator Guides 61

Elgg Documentation, Release master

Minimal username length

You can configure the minimal length the username should have upon registration of a user.

Minimal password requirements

You can configure several requirements for new passwords of the users

• length: the password should be at least x characters long

• lower case: minimal number of lower case (a-z) characters in the password

• upper case: minimal number of upper case (A-Z) characters in the password

• numbers: minimal number of numbers (0-9) characters in the password

• specials: minimal number of special (like !@#$%^&*(), etc.) characters in the password

.htaccess file access hardening

In the .htaccess file a set of file access hardening rules have been added to prevent direct access to files in certain folders.
Enabling these rules shouldn’t cause any issues when all the plugins you use follow the Elgg coding guidelines.

Examples of the rules are:

• the vendor folder. This folder only contains helper libraries that Elgg uses and there is no need for direct access
to this folder. All required dependecies are loaded from within Elgg

• the languages folder. This folder contains the main Elgg language files. These files are loaded from within Elgg

3.2.10 User validation

Plugins can influence how users are validated before they can use the website.

Contents

• Listing of unvalidated users

• Require admin validation

Listing of unvalidated users

In the Admin section of the website is a list of all unvalidated users. Some actions can be taken on the users, like delete
them from the system or validate them.

Plugins have the option to add additional features to this list.

Siehe auch:
An example of this is the User validation by e-mail plugin which doesn’t allow users onto the website until their e-mail
address is validated.

62 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Require admin validation

In the Site settings under the Users section there is a setting which can be enabled to require admin validation of a new
user account before the user can use their account. After registration the user gets notified that their account is awaiting
validation by an administrator.

Site administrators can receive an e-mail notification that there are users awaiting validation.

After validation the user is notified that they can use their account.

3.2.11 Spam

Keep spam under control.

Spam is a very common problem that admins need to deal with and which we aim to improve in core, but there are
some actions site admins can take to mitigate the problem.

Install an anti-spam plugin

There are several available on the community

http://community.elgg.org/plugins/search?f{[}c{]}{[}{]}=spam&sb=Search

Change the registration url

Some have said they have good success changing the registration URL, since the spammers are naive bots and can no
longer find where to create the fake accounts.

Disable open registration

If the flow of registrations is low enough, you can vet all users that come in to keep the quality of interaction high.

Contribute to anti-spam measures in core

https://github.com/Elgg/Elgg/issues?labels=spam&state=open

3.3 Developer Guides

Customize Elgg’s behavior with plugins.

3.3.1 Don’t Modify Core

Warnung: In general, you shouldn’t modify non-config files that come with third-party software like Elgg.

The best way to customize the behavior of Elgg is to install Elgg as a composer dependency and use a plugin to store
modifications specific to your application, and alter behavior through the rich Elgg plugin API.

If you’d like to share customizations between sites or even publish your changes as a reusable package for the commu-
nity, create a plugin using the same plugin APIs and file structure.

3.3. Developer Guides 63

http://community.elgg.org/plugins/search?f{[}c{]}{[}{]}=spam&sb=Search
https://github.com/Elgg/Elgg/issues?labels=spam&state=open

Elgg Documentation, Release master

It makes it hard to get help

When you don’t share the same codebase as everyone else, it’s impossible for others to know what is going on in your
system and whether your changes are to blame. This can frustrate those who offer help because it can add considerable
noise to the support process.

It makes upgrading tricky and potentially disastrous

You will certainly want or need to upgrade Elgg to take advantage of

• security patches

• new features

• new plugin APIs

• new stability improvements

• performance improvements

If you’ve modified core files, then you must be very careful when upgrading that your changes are not overwritten and
that they are compatible with the new Elgg code. If your changes are lost or incompatible, then the upgrade may remove
features you’ve added and even completely break your site.

This can also be a slippery slope. Lots of modifications can lead you to an upgrade process so complex that it’s practi-
cally impossible. There are lots of sites stuck running old versions software due to taking this path.

It may break plugins

You may not realize until much later that your „quick fix“ broke seemingly unrelated functionality that plugins depended
on.

Summary

• Resist the temptation
Editing existing files is quick and easy, but doing so heavily risks the maintainability, security, and stability
of your site.

• When receiving advice, consider if the person telling you to modify core will be around to rescue you if you run
into trouble later!

• Apply these principle to software in general.
If you can avoid it, don’t modify third party plugins either, for the same reasons: Plugin authors release new
versions, too, and you will want those updates.

3.3.2 Access Control Lists

An Access Control List (or ACL) can grant one or more users access to an entity or annotation in the database.

Contents

• Creating an ACL

• ACL subtypes

64 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• Adding users to an ACL

• Removing users from an ACL

• Retrieving an ACL

• Read access

• Ignoring access

Siehe auch:
Database Access Control

Creating an ACL

An access collection can be create by using the function elgg_create_access_collection().

$owner_guid = elgg_get_logged_in_user_guid();

$acl = elgg_create_access_collection("Sample name", $owner_guid, 'collection_subtype');

ACL subtypes

ACLs can have a subtype, this is to help differentiate between the usage of the ACL. It’s higly recommended to set a
subtype for an ACL.

Elgg core has three examples of subtype usage

• group_acl an ACL owned by an ElggGroup which grants group members access to content shared with the
group

• friends an ACL owned by an ElggUser which grant friends of a user access to content shared with friends

• friends_collection an ACL owned by an ElggUser which grant specific friends access to content shared
with the ACL

Adding users to an ACL

If you have an ACL you still need to add users to it in order to grant those users access to content with the access_id of
the ACLs id.

// creating an ACL
$owner_guid = elgg_get_logged_in_user_guid();

/* @var $acl ElggAccessCollection */
$acl = elgg_create_access_collection("Sample name", $owner_guid, 'collection_subtype');

// add user
$acl->addMember($some_other_user_guid);

3.3. Developer Guides 65

Elgg Documentation, Release master

Removing users from an ACL

If you no longer wish to allow access for a given user in an ACL you can easily remove that user from the list.

// remove a user from an ACL
/* @var $acl ElggAccessCollection */
$acl = elgg_get_access_collection($acl_id);

$acl->removeMember(user_guid_to_be_removed);

Retrieving an ACL

In order to manage an ACL, or add the ID of an ACL to an access list there are several functions available to retrieve
an ACL from the database.

// get ACL based on known id
$acl = elgg_get_access_collection($acl_id);

// get all ACLs of an owner (procedural style)
$acls = elgg_get_access_collections([

'owner_guid' => $some_owner_guid,
]);

// get all ACLs of an owner (object oriented style)
$acls = $some_owner_entity->getOwnedAccessCollections();

// add a filter for ACL subtype
// get all ACLs of an owner (procedural style)
$acls = elgg_get_access_collections([

'owner_guid' => $some_owner_guid,
'subtype' => 'some_subtype',

]);

// get all ACLs of an owner (object oriented style)
$acls = $some_owner_entity->getOwnedAccessCollections([

'subtype' => 'some_subtype',
]);

// get one ACL of an owner (object oriented style)
// for example the group_acl of an ElggGroup
// Returns the first ACL owned by the entity with a given subtype
$acl = $group_entity->getOwnedAccessCollection('group_acl');

66 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Read access

The access system of Elgg automaticly adds all the ACLs a user is a member of to the access checks. For example a
user is a member of a group and is friends with 3 other users, all the corresponding ACLs are added in order to check
access to entities when retrieving them (eg. listing all blogs).

Ignoring access

If for some case you need entities retrieved ignoring the access rules you can wrap your code in elgg_call. There are
different flags you can use.

• ELGG_IGNORE_ACCESS: no access rules are applied

• ELGG_ENFORCE_ACCESS: access rules are forced to be applied

• ELGG_SHOW_DISABLED_ENTITIES: will retrieve entities that are disabled

• ELGG_HIDE_DISABLED_ENTITIES: will never retrieve entities that are disabled

$options = [
'type' => 'user'

];

$entities = elgg_call(ELGG_IGNORE_ACCESS, function() use ($options) {
return elgg_get_entities($options);

});

You can also combine flags.

$entities = elgg_call(ELGG_IGNORE_ACCESS | ELGG_SHOW_DISABLED_ENTITIES, function() {
return elgg_get_entities([

'type' => 'user'
]);

});

3.3.3 Accessibility

This page aims to list and document accessibility rules and best practices, to help core and plugins developpers to make
Elgg the most accessible social engine framework that everyone dreams of.

Bemerkung: This is an ongoing work, please contribute on Github if you have some skills in this field!

Resources + references

• Official WCAG Accessibility Guidelines Overview

• Official WCAG Accessibility Guidelines

• Resources for planning and implementing for accessibility

• Practical tips from the W3C for improving accessibility

• Preliminary review of websites for accessibility

• Tools for checking the accessibility of websites

3.3. Developer Guides 67

https://github.com/Elgg/Elgg
https://www.w3.org/WAI/standards-guidelines/wcag/glance/
https://www.w3.org/TR/WCAG/
https://www.w3.org/WAI/planning/
https://www.w3.org/WAI/planning/interim-repairs/
https://www.w3.org/WAI/test-evaluate/preliminary/
https://www.w3.org/WAI/ER/tools/

Elgg Documentation, Release master

• List of practical techniques for implementing accessibility (It would be great if someone could go through this
and filter out all the ones that are relevant to Elgg)

Tips for implementing accessibility

• All accessibility-related tickets reported to trac should be tagged with „a11y“, short for „accessibility“

• Use core views such as output/*, and input/* to generate markup, since we can bake a11y concerns into these
views

• All images should have a descriptive alt attribute. Spacer or purely decorative graphics should have blank alt
attributes

• All <a> tags should have text or an accessible image inside. Otherwise screen readers will have to read the URL,
which is a poor experience <a> tags should contain descriptive text, if possible, as opposed to generic text like
„Click here“

• Markup should be valid

• Themes should not reset „outline“ to nothing. :focus deserves a special visual treatment so that handicapped
users can know where they are

Tips for testing accessibility

• Use the tools linked to from the resources section. Example report for community.elgg.org on June 16, 2012

• Try different font-size/zoom settings in your browser and make sure the theme remains usable

• Turn off css to make sure the sequential order of the page makes sense

Documentation objectives and principles

• Main accessibility rules

• collect and document best practices

• Provide code examples

• Keep the document simple and usable

• Make it usable for both beginner developpers and experts (from most common and easiest changes to elaborate
techniques)

3.3.4 Forms + Actions

Create, update, or delete content.

Elgg forms submit to actions. Actions define the behavior for form submission.

This guide assumes basic familiarity with:

• Plugins

• Views

• Internationalization

68 Kapitel 3. Continue Reading

https://www.w3.org/TR/WCAG20-TECHS/Overview.html#contents
http://try.powermapper.com/Reports/a6276098-0883-4d04-849e-8c05999812f2/report/map.htm

Elgg Documentation, Release master

Contents

• Registering actions

– Registering actions using plugin config file

– Permissions

– Writing action files

– Customizing actions

• Actions available in core

– entity/delete
• Forms

– Inputs

– Input types

• Files and images

• Sticky forms

– Helper functions

– Overview

– Example: User registration

– Example: Bookmarks

• Ajax

• Security

• Security Tokens

• Signed URLs

Registering actions

Actions must be registered before use.

There are two ways to register actions:

Using elgg_register_action()

elgg_register_action("example", __DIR__ . "/actions/example.php");

The mod/example/actions/example.php script will now be run whenever a form is submitted to http://
localhost/elgg/action/example.

Use elgg-plugin.php

return [
'actions' => [
// defaults to using an action file in /actions/myplugin/action_a.php
'myplugin/action_a' => [
'access' => 'public',

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 69

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

],

// define custom action path
'myplugin/action_b' => [
'access' => 'admin',
'filename' => __DIR__ . '/actions/action.php'

],

// define a controller
'myplugin/action_c' => [
'controller' => \MyPlugin\Actions\ActionC::class,

],
],

];

Warnung: A stumbling point for many new developers is the URL for actions. The URL always uses /action/
(singular) and never /actions/ (plural). However, action script files are usually saved under the directory /
actions/ (plural) and always have an extension. Use elgg_generate_action_url() to avoid confusion.

Registering actions using plugin config file

You can also register actions via the elgg-plugin config file. To do this you need to provide an action section in the
config file. The location of the action files are assumed to be in the plugin folder /actions.

<?php

return [
'actions' => [

'blog/save' => [], // all defaults
'blog/delete' => [// all custom

'access' => 'admin',
'filename' => __DIR__ . 'actions/blog/remove.php',

],
],

];

Permissions

By default, actions are only available to logged in users.

To make an action available to logged out users, pass "public" as the third parameter:

elgg_register_action("example", $filepath, "public");

To restrict an action to only administrators, pass "admin" for the last parameter:

elgg_register_action("example", $filepath, "admin");

To restrict an action to only logged out users, pass "logged_out" for the last parameter:

70 Kapitel 3. Continue Reading

Elgg Documentation, Release master

elgg_register_action("example", $filepath, "logged_out");

Writing action files

Use the get_input() function to get access to request parameters:

$field = get_input('input_field_name', 'default_value');

You can then use the Database api to load entities and perform actions on them accordingly.

To indicate a successful action, use elgg_ok_response(). This function accepts data that you want to make available
to the client for XHR calls (this data will be ignored for non-XHR calls)

$user = get_entity($guid);
// do something

$action_data = [
'entity' => $user,
'stats' => [

'friends_count' => $user->getEntitiesFromRelationship([
'type' => 'user',
'relationship' => 'friend',
'count' => true,

]);
],

];

return elgg_ok_response($action_data, 'Action was successful', 'url/to/forward/to');

To indicate an error, use elgg_error_response()

$user = elgg_get_logged_in_user_entity();
if (!$user) {
// show an error and forward the user to the referring page
// send 404 error code on AJAX calls
return elgg_error_response('User not found', REFERRER, ELGG_HTTP_NOT_FOUND);

}

if (!$user->canEdit()) {
// show an error and forward to user's profile
// send 403 error code on AJAX calls
return elgg_error_response('You are not allowed to perform this action', $user->

→˓getURL(), ELGG_HTTP_FORBIDDEN);
}

3.3. Developer Guides 71

Elgg Documentation, Release master

Customizing actions

Before executing any action, Elgg triggers an event:

$result = elgg_trigger_event_results('action:validate', $action, [], true);

Where $action is the action being called. If the event returns false then the action will not be executed. Don’t return
anything if your validation passes.

Example: Captcha

The captcha module uses this to intercept the register and user/requestnewpassword actions and redirect them
to a function which checks the captcha code. This check returns false if the captcha validation fails (which prevents
the associated action from executing).

This is done as follows:

elgg_register_event_handler("action:validate", "register", "captcha_verify_action_event
→˓");
elgg_register_event_handler("action:validate", "user/requestnewpassword", "captcha_
→˓verify_action_event");

...

function captcha_verify_action_event(\Elgg\Event $event) {
$token = get_input('captcha_token');
$input = get_input('captcha_input');

if (($token) && (captcha_verify_captcha($input, $token))) {
return;

}

elgg_register_error_message(elgg_echo('captcha:captchafail'));

return false;
}

This lets a plugin extend an existing action without the need to replace the whole action. In the case of the captcha
plugin it allows the plugin to provide captcha support in a very loosely coupled way.

Actions available in core

entity/delete

If your plugin does not implement any custom logic when deleting an entity, you can use bundled delete action

$guid = 123;
// You can provide optional forward path as a URL query parameter
$forward_url = 'path/to/forward/to';
echo elgg_view('output/url', array(
'text' => elgg_echo('delete'),
'href' => elgg_generate_action_url('entity/delete', [

(Fortsetzung auf der nächsten Seite)

72 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

'guid' => $guid,
'forward_url' => $forward_url,

]),
'confirm' => true,

));

You can customize the success message keys for your entity type and subtype, using
"entity:delete:$type:$subtype:success" and "entity:delete:$type:success" keys.

// to add a custom message when a blog post or file is deleted
// add the translations keys in your language files
return [
'entity:delete:object:blog:success' => 'Blog post has been deleted,
'entity:delete:object:file:success' => 'File titled %s has been deleted',

];

Forms

To output a form, use the elgg_view_form function like so:

echo elgg_view_form('example');

Doing this generates something like the following markup:

<form action="http://localhost/elgg/action/example">
<fieldset>
<input type="hidden" name="__elgg_ts" value="1234567890" />
<input type="hidden" name="__elgg_token" value="3874acfc283d90e34" />

</fieldset>
</form>

Elgg does some things automatically for you when you generate forms this way:

1. It sets the action to the appropriate URL based on the name of the action you pass to it

2. It adds some anti-csrf tokens (__elgg_ts and __elgg_token) to help keep your actions secure

3. It automatically looks for the body of the form in the forms/example view.

Put the content of your form in your plugin’s forms/example view:

// /mod/example/views/default/forms/example.php
echo elgg_view('input/text', array('name' => 'example'));

// defer form footer rendering
// this will allow other plugins to extend forms/example view
elgg_set_form_footer(elgg_view('input/submit'));

Now when you call elgg_view_form('example'), Elgg will produce:

<form action="http://localhost/elgg/action/example">
<fieldset>
<input type="hidden" name="__elgg_ts" value="...">
<input type="hidden" name="__elgg_token" value="...">

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 73

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

<input type="text" class="elgg-input-text" name="example">
<div class="elgg-foot elgg-form-footer">

<input type="submit" class="elgg-button elgg-button-submit" value="Submit">
</div>

</fieldset>
</form>

Inputs

To render a form input, use one of the bundled input views, which cover all standard HTML input elements. See
individual view files for a list of accepted parameters.

echo elgg_view('input/select', array(
'required' => true,
'name' => 'status',
'options_values' => [
'draft' => elgg_echo('status:draft'),
'published' => elgg_echo('status:published'),

],
// most input views will render additional parameters passed to the view
// as tag attributes
'data-rel' => 'blog',

));

The above example will render a dropdown select input:

<select required="required" name="status" data-rel="blog" class="elgg-input-select">
<option value="draft">Draft</option>
<option value="published">Published</option>

</select>

To ensure consistency in field markup, use elgg_view_field(), which accepts all the parameters of the input being
rendered, as well as #label and #help parameters (both of which are optional and accept HTML or text).

echo elgg_view_field([
'#type' => 'select',
'#label' => elgg_echo('blog:status:label'),
'#help' => elgg_view_icon('help') . elgg_echo('blog:status:help'),
'required' => true,
'name' => 'status',
'options_values' => [
'draft' => elgg_echo('status:draft'),
'published' => elgg_echo('status:published'),

],
'data-rel' => 'blog',

]);

The above will generate the following markup:

74 Kapitel 3. Continue Reading

Elgg Documentation, Release master

<div class="elgg-field elgg-field-required">
<label for="elgg-field-1" class="elgg-field-label">Blog status<span title="Required"␣

→˓class="elgg-required-indicator">*</label>
<div class="elgg-field-input">

<select required="required" name="status" data-rel="blog" id="elgg-field-1" class=
→˓"elgg-input-select">

<option value="draft">Draft</option>
<option value="published">Published</option>

</select>
</div>
<div class="elgg-field-help elgg-text-help">

This indicates whether or not the␣
→˓blog is visible in the feed

</div>
</div>

Input types

A list of bundled input types/views:

• input/text - renders a text input <input type="text">

• input/plaintext - renders a textarea <textarea></textarea>

• input/longtext - renders a WYSIWYG text input

• input/url - renders a url input <input type="url">

• input/email - renders an email input <input type="email">

• input/checkbox - renders a single checkbox <input type="checkbox">

• input/checkboxes - renders a set of checkboxes with the same name

• input/radio - renders one or more radio buttons <input type="radio">

• input/submit - renders a submit button <button type="submit">

• input/button - renders a button <button></button>

• input/file - renders a file input <input type="file">

• input/select - renders a select input <select></select>

• input/hidden - renders a hidden input <input type="hidden">

• input/password - renders a password input <input type="password">

• input/number - renders a number input <input type="number">

• input/date - renders a jQuery datepicker

Elgg offers some helper input types

• input/access - renders an Elgg access level select

• input/tags - renders an Elgg tags input

• input/autocomplete - renders an Elgg entity autocomplete

• input/captcha - placeholder view for plugins to extend

• input/friendspicker - renders an Elgg friend autocomplete

3.3. Developer Guides 75

Elgg Documentation, Release master

• input/userpicker - renders an Elgg user autocomplete

• input/grouppicker - renders an Elgg group autocomplete

• input/objectpicker - renders an Elgg object autocomplete

• input/location renders an Elgg location input

Files and images

Use the input/file view in your form’s content view.

// /mod/example/views/default/forms/example.php
echo elgg_view('input/file', ['name' => 'icon']);

If you wish to upload an icon for entity you can use the helper view entity/edit/icon. This view shows a file input
for uploading a new icon for the entity, an thumbnail of the current icon and the option to remove the current icon.

The view supports some variables to control the output

• entity - the entity to add/remove the icon for. If provided based on this entity the thumbnail and remove option
wil be shown

• entity_type - the entity type for which the icon will be uploaded. Plugins could find this useful, maybe to
validate icon sizes

• entity_subtype - the entity subtype for which the icon will be uploaded. Plugins could find this useful, maybe
to validate icon sizes

• icon_type - the type of the icon (default: icon)

• name - name of the input/file (default: icon)

• remove_name - name of the remove icon toggle (default: $vars[‚name‘] . ‚_remove‘)

• required - is icon upload required (default: false)

• cropper_enabled - is icon cropping allowed (default: true)

• show_remove - show the remove icon option (default: true)

• show_thumb - show the thumb of the entity if available (default: true)

• thumb_size - the icon size to use as the thumb (default: medium)

If using the helper view you can use the following code in you action to save the icon to the entity or remove the current
icon.

if (get_input('icon_remove')) {
$entity->deleteIcon();

} else {
$entity->saveIconFromUploadedFile('icon');

}

Set the enctype of the form to multipart/form-data:

echo elgg_view_form('example', array(
'enctype' => 'multipart/form-data'

));

76 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Bemerkung: The enctype of all forms that use the method POST defaults to multipart/form-data.

In your action file, use elgg_get_uploaded_file('your-input-name') to access the uploaded file:

$icon = elgg_get_uploaded_file('icon');

Sticky forms

Sticky forms are forms that retain user input if saving fails. They are „sticky“ because the user’s data „sticks“ in the form
after submitting, though it was never saved to the database. This greatly improves the user experience by minimizing
data loss. Elgg includes helper functions so you can make any form sticky.

Helper functions

Sticky forms are implemented in Elgg by the following functions:

• elgg_make_sticky_form($name) - Tells the engine to make all input on a form sticky.

• elgg_clear_sticky_form($name) - Tells the engine to discard all sticky input on a form.

• elgg_is_sticky_form($name) - Checks if $name is a valid sticky form.

• elgg_get_sticky_values($name) - Returns all sticky values saved for $name by
elgg_make_sticky_form($name).

Overview

The basic flow of using sticky forms is:

1. Call elgg_make_sticky_form($name) at the top of actions for forms you want to be sticky.

2. Use elgg_is_sticky_form($name) and elgg_get_sticky_values($name) to get sticky values when ren-
dering a form view.

3. Call elgg_clear_sticky_form($name) after the action has completed successfully or after data has been
loaded by elgg_get_sticky_values($name).

Bemerkung: As of Elgg 5.0 forms rendered with elgg_view_form() can set the
$form_vars['sticky_enabled'] = true flag to automatically get sticky form support. The submitted va-
lues to the action will automatically be filled in the $body_vars when an error occured in the action.

elgg_view_form() supports the following $form_vars to help with sticky form support:

• sticky_enabled: a bool to enable automatic sticky form support

• sticky_form_name: an optional string to set where the sticky form values are saved. This defaults to the
$action_name and should only be changed if the $action_name is different from the actual action

• sticky_ignored_fields: an array with the names fo the form fields that should be saved. For example pass-
word fields

3.3. Developer Guides 77

Elgg Documentation, Release master

Example: User registration

Simple sticky forms require little logic to determine the input values for the form. This logic is placed at the top of the
form body view itself.

The registration form view first sets default values for inputs, then checks if there are sticky values. If so, it loads the
sticky values before clearing the sticky form:

// views/default/forms/register.php
$password = $password2 = '';
$username = get_input('u');
$email = get_input('e');
$name = get_input('n');

if (elgg_is_sticky_form('register')) {
extract(elgg_get_sticky_values('register'));
elgg_clear_sticky_form('register');

}

The registration action sets creates the sticky form and clears it once the action is completed:

// actions/register.php
elgg_make_sticky_form('register', ['password', 'password2']);

elgg_register_user([
'username' => $username,
'password' => $password,
'name' => $name,
'email' => $email,

]);

elgg_clear_sticky_form('register');

Tipp: The function elgg_make_sticky_form() supports an optional second argument $ignored_field_names.
This needs to be an array of the field names you don’t wish to be made sticky. This is usefull for fields which contain
sensitive data, like passwords.

Example: Bookmarks

The bundled plugin Bookmarks‘ save form and action is an example of a complex sticky form.

The form view for the save bookmark action uses elgg_extract() to pull values from the $vars array:

// mod/bookmarks/views/default/forms/bookmarks/save.php
$title = elgg_extract('title', $vars, '');
$desc = elgg_extract('description', $vars, '');
$address = elgg_extract('address', $vars, '');
$tags = elgg_extract('tags', $vars, '');
$access_id = elgg_extract('access_id', $vars, ACCESS_DEFAULT);
$container_guid = elgg_extract('container_guid', $vars);
$guid = elgg_extract('guid', $vars, null);
$shares = elgg_extract('shares', $vars, array());

78 Kapitel 3. Continue Reading

Elgg Documentation, Release master

The page handler scripts enables sticky form support by passing the correct values to elgg_view_form():

// mod/bookmarks/pages/add.php
$content = elgg_view_form('bookmarks/save', ['sticky_enabled' => true]);

Similarly, mod/bookmarks/pages/edit.php uses the same sticky support, but passes the entity that is being edited:

$bookmark_guid = get_input('guid');
$bookmark = get_entity($bookmark_guid);

...

$content = elgg_view_form('bookmarks/save', ['sticky_enabled' => true], ['entity' =>
→˓$bookmark]);

The plugin has an event listener on the 'form:prepare:fields', 'bookmarks/save' event and the handler does
2 things:

1. Defines the input names and default values for form inputs.

2. Extracts the values from a bookmark object if it’s passed.

// mod/bookmarks/classes/Elgg/Bookmarks/Forms/PrepareFields.php
/**

* Prepare the fields for the bookmarks/save form
*
* @since 5.0
*/
class PrepareFields {

/**
* Prepare fields
*
* @param \Elgg\Event $event 'form:prepare:fields', 'bookmarks/save'
*
* @return array|null
*/
public function __invoke(\Elgg\Event $event): ?array {

$vars = $event->getValue();

// input names => defaults
$values = [

'title' => get_input('title', ''), // bookmarklet support
'address' => get_input('address', ''),
'description' => '',
'access_id' => ACCESS_DEFAULT,
'tags' => '',
'container_guid' => elgg_get_page_owner_guid(),
'guid' => null,

];

$bookmark = elgg_extract('entity', $vars);
if ($bookmark instanceof \ElggBookmark) {

// load current bookmark values
foreach (array_keys($values) as $field) {

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 79

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

if (isset($bookmark->$field)) {
$values[$field] = $bookmark->$field;

}
}

}

return array_merge($vars, $values);
}

}

The save action doesn’t need to do anything with sticky form support as this is all handled by the system.

Ajax

See the Ajax guide for instructions on calling actions from JavaScript.

Security

For enhanced security, all actions require an CSRF token. Calls to action URLs that do not include security tokens will
be ignored and a warning will be generated.

A few views and functions automatically generate security tokens:

elgg_view('output/url', array('is_action' => true));
elgg_view('input/securitytoken');
$url = elgg_add_action_tokens_to_url("http://localhost/elgg/action/example");
$url = elgg_generate_action_url('myplugin/myaction');

In rare cases, you may need to generate tokens manually:

$__elgg_ts = elgg()->csrf->getCurrentTime()->getTimestamp();
$__elgg_token = elgg()->csrf->generateActionToken($__elgg_ts);

You can also access the tokens from javascript:

elgg.security.token.__elgg_ts;
elgg.security.token.__elgg_token;

These are refreshed periodically so should always be up-to-date.

Security Tokens

On occasion we need to pass data through an untrusted party or generate an „unguessable token“ based on some data.
The industry-standard HMAC algorithm is the right tool for this. It allows us to verify that received data were generated
by our site, and were not tampered with. Note that even strong hash functions like SHA-2 should not be used without
HMAC for these tasks.

Elgg provides elgg_build_hmac() to generate and validate HMAC message authentication codes that are unguessa-
ble without the site’s private key.

80 Kapitel 3. Continue Reading

http://security.stackexchange.com/a/20301/4982

Elgg Documentation, Release master

// generate a querystring such that $a and $b can't be altered
$a = 1234;
$b = "hello";
$query = http_build_query([

'a' => $a,
'b' => $b,
'mac' => elgg_build_hmac([$a, $b])->getToken(),

]);
$url = "action/foo?$query";

// validate the querystring
$a = (int) get_input('a', '', false);
$b = (string) get_input('b', '', false);
$mac = get_input('mac', '', false);

if (elgg_build_hmac([$a, $b])->matchesToken($mac)) {
// $a and $b have not been altered

}

Note: If you use a non-string as HMAC data, you must use types consistently. Consider the following:

$mac = elgg_build_hmac([123, 456])->getToken();

// type of first array element differs
elgg_build_hmac(["123", 456])->matchesToken($mac); // false

// types identical to original
elgg_build_hmac([123, 456])->matchesToken($mac); // true

Signed URLs

Signed URLs offer a limited level of security for situations where action tokens are not suitable, for example when
sending a confirmation link via email. URL signatures verify that the URL has been generated by your Elgg installation
(using site secret) and that the URL query elements were not tampered with.

URLs a signed with an unguessable SHA-256 HMAC key. See Security Tokens for more details.

$url = elgg_http_add_url_query_element(elgg_normalize_url('confirm'), [
'user_guid' => $user_guid,

]);

$url = elgg_http_get_signed_url($url);

notify_user($user_guid, $site->guid, 'Confirm', "Please confirm by clicking this link:
→˓$url");

Warnung: Signed URLs do not offer CSRF protection and should not be used instead of action tokens.

3.3. Developer Guides 81

Elgg Documentation, Release master

3.3.5 Ajax

The elgg/Ajax module (introduced in Elgg 2.1) provides a set of methods for communicating with the server in a
concise and uniform way, which allows plugins to collaborate on the request data, the server response, and the returned
client-side data.

Contents

• Overview

– Performing actions

– Fetching data

– Fetching views

– Fetching forms

– Submitting forms

– Redirects

– Piggybacking on an Ajax request

– Piggybacking on an Ajax response

– Handling errors

– Requiring ES modules

Overview

All the ajax methods perform the following:

1. Client-side, the data option (if given as an object) is filtered by the hook ajax_request_data.

2. The request is made to the server, either rendering a view or a form, calling an action, or loading a path.

3. The method returns a jqXHR object, which can be used as a Promise.

4. Server-echoed content is turned into a response object (Elgg\Services\AjaxResponse) containing a string
(or a JSON-parsed value).

5. The response object is filtered by the event ajax_response.

6. The response object is used to create the HTTP response.

7. Client-side, the response data is filtered by the hook ajax_response_data.

8. The jqXHR promise is resolved and any success callbacks are called.

More notes:

• All hooks have a type depending on the method and first argument. See below.

• By default the elgg/spinner module is automatically used during requests.

• User messages generated by elgg_register_success_message() and elgg_register_error_message()
are collected and displayed on the client.

• Elgg gives you a default error handler that shows a generic message if output fails.

• PHP exceptions or denied resource return HTTP error codes, resulting in use of the client-side error handler.

82 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• The default HTTP method is POST for actions, otherwise GET. You can set it via options.method.

• If a non-empty options.data is given, the default method is always POST.

• For client caching, set options.method to "GET" and options.data.elgg_response_ttl to the max-age
you want in seconds.

• To save system messages for the next page load, set options.data.elgg_fetch_messages = 0. You may
want to do this if you intent to redirect the user based on the response.

• To stop client-side API from requiring modules required server-side with elgg_import_esm(), set options.
data.elgg_fetch_deps = 0.

• All methods accept a query string in the first argument. This is passed on to the fetch URL, but does not appear
in the hook types.

Performing actions

Consider this action:

// in myplugin/actions/do_math.php

elgg_ajax_gatekeeper();

$arg1 = (int)get_input('arg1');
$arg2 = (int)get_input('arg2');

// will be rendered client-side
elgg_register_success_message('We did it!');

echo json_encode([
'sum' => $arg1 + $arg2,
'product' => $arg1 * $arg2,

]);

To execute it, use ajax.action('<action_name>', options):

var Ajax = require('elgg/Ajax');
var ajax = new Ajax();

ajax.action('do_math', {
data: {

arg1: 1,
arg2: 2

},
}).done(function (output, statusText, jqXHR) {

alert(output.sum);
alert(output.product);

});

Notes for actions:

• All hooks have type action:<action_name>. So in this case, three hooks will be triggered:
– client-side "ajax_request_data", "action:do_math" to filter the request data (before it’s sent)

– server-side "ajax_response", "action:do_math" to filter the response (after the action runs)

3.3. Developer Guides 83

Elgg Documentation, Release master

– client-side "ajax_response_data", "action:do_math" to filter the response data (before the cal-
ling code receives it)

• CSRF tokens are added to the request data.

• The default method is POST.

• An absolute action URL can be given in place of the action name.

Bemerkung: When setting data, use ajax.objectify($form) instead of $form.serialize(). Doing so allows
the ajax_request_data plugin hook to fire and other plugins to alter/piggyback on the request.

Fetching data

Consider this PHP script that runs at http://example.org/myplugin_time.

// in myplugin/elgg-plugin.php
return [

'routes' => [
'default:myplugin:time' => [

'path' => '/myplugin_time',
'resource' => 'myplugin/time',

],
],

];

// in myplugin/views/default/resources/myplugin/time.php
elgg_ajax_gatekeeper();

echo json_encode([
'rfc2822' => date(DATE_RFC2822),
'day' => date('l'),

]);

return true;

To fetch its output, use ajax.path('<url_path>', options).

var Ajax = require('elgg/Ajax');
var ajax = new Ajax();

ajax.path('myplugin_time').done(function (output, statusText, jqXHR) {
alert(output.rfc2822);
alert(output.day);

});

Notes for paths:

• The 3 hooks (see Actions above) will have type path:<url_path>. In this case, „path:myplugin_time“.

• If the page handler echoes a regular web page, output will be a string containing the HTML.

• An absolute URL can be given in place of the path name.

84 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Fetching views

Consider this view:

// in myplugin/views/default/myplugin/get_link.php

if (empty($vars['entity']) || !$vars['entity'] instanceof ElggObject) {
return;

}

$object = $vars['entity'];
/* @var ElggObject $object */

echo elgg_view('output/url', [
'text' => $object->getDisplayName(),
'href' => $object->getUrl(),
'is_trusted' => true,

]);

Since it’s a PHP file, we must register it for Ajax first:

// in myplugin_init()
elgg_register_ajax_view('myplugin/get_link');

To fetch the view, use ajax.view('<view_name>', options):

var Ajax = require('elgg/Ajax');
var ajax = new Ajax();

ajax.view('myplugin/get_link', {
data: {

guid: 123 // querystring
},

}).done(function (output, statusText, jqXHR) {
$('.myplugin-link').html(output);

});

Notes for views:

• The 3 hooks (see Actions above) will have type view:<view_name>. In this case, „view:myplugin/get_link“.

• output will be a string with the rendered view.

• The request data are injected into $vars in the view.

• If the request data contains guid, the system sets $vars['entity'] to the corresponding entity or false if it
can’t be loaded.

Warnung: In ajax views and forms, note that $vars can be populated by client input. The data is filtered like
get_input(), but may not be the type you’re expecting or may have unexpected keys.

3.3. Developer Guides 85

Elgg Documentation, Release master

Fetching forms

Consider we have a form view. We register it for Ajax:

// in myplugin_init()
elgg_register_ajax_view('forms/myplugin/add');

To fetch this using ajax.form('<action_name>', options).

var Ajax = require('elgg/Ajax');
var ajax = new Ajax();

ajax.form('myplugin/add').done(function (output, statusText, jqXHR) {
$('.myplugin-form-container').html(output);

});

Notes for forms:

• The 3 hooks (see Actions above) will have type form:<action_name>. In this case, „form:myplugin/add“.

• output will be a string with the rendered view.

• The request data are injected into $vars in your form view.

• If the request data contains guid, the system sets $vars['entity'] to the corresponding entity or false if it
can’t be loaded.

Bemerkung: Only the request data are passed to the requested form view (i.e. as a third parameter accepted by
elgg_view_form()). If you need to pass attributes or parameters of the form element rendered by the input/form
view (i.e. normally passed as a second parameter to elgg_view_form()), use the server-side event view_vars,
input/form.

Warnung: In ajax views and forms, note that $vars can be populated by client input. The data is filtered like
get_input(), but may not be the type you’re expecting or may have unexpected keys.

Submitting forms

To submit a form using Ajax, simply pass ajax parameter with form variables:

echo elgg_view_form('login', ['ajax' => true]);

Redirects

Use ajax.forward() to start a spinner and redirect the user to a new destination.

var Ajax = require('elgg/Ajax');
var ajax = new Ajax();
ajax.forward('/activity');

86 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Piggybacking on an Ajax request

The client-side ajax_request_data hook can be used to append or filter data being sent by an elgg/Ajax request.

Let’s say when the view foo is fetched, we want to also send the server some data:

// in your boot module
var Ajax = require('elgg/Ajax');
var hooks = require('elgg/hooks');

var ajax = new Ajax();

hooks.register(Ajax.REQUEST_DATA_HOOK, 'view:foo', function (name, type, params, data) {
// send some data back
data.bar = 1;
return data;

});

This data can be read server-side via get_input('bar');.

Bemerkung: If data was given as a string (e.g. $form.serialize()), the request hooks are not triggered.

Bemerkung: The form will be objectified as FormData, and the request content type will be determined accordingly.

Piggybacking on an Ajax response

The server-side ajax_response event can be used to append or filter response data (or metadata).

Let’s say when the view foo is fetched, we want to also send the client some additional data:

use Elgg\Services\AjaxResponse;

function myplugin_append_ajax(\Elgg\Event $event) {

/* @var $response AjaxResponse */
$response = $event->getValue();

// alter the value being returned
$response->getData()->value .= " hello";

// send some metadata back. Only client-side "ajax_response" hooks can see this!
$response->getData()->myplugin_alert = 'Listen to me!';

return $response;
}

// in myplugin_init()
elgg_register_event_handler(AjaxResponse::RESPONSE_EVENT, 'view:foo', 'myplugin_append_
→˓ajax');

To capture the metadata send back to the client, we use the client-side ajax_response_data hook:

3.3. Developer Guides 87

Elgg Documentation, Release master

// in your boot module
var Ajax = require('elgg/Ajax');
var hooks = require('elgg/hooks');

hooks.register(Ajax.RESPONSE_DATA_HOOK, 'view:foo', function (name, type, params, data) {

// the return value is data.value

// the rest is metadata

alert(data.myplugin_alert);

return data;
});

Bemerkung: Only data.value is returned to the success function or available via the Deferred interface.

Bemerkung: Elgg uses these same hooks to deliver system messages over elgg/Ajax responses.

Handling errors

Responses basically fall into three categories:

1. HTTP success (200) with status 0. No elgg_register_error_message() calls were made on the server.

2. HTTP success (200) with status -1. elgg_register_error_message() was called.

3. HTTP error (4xx/5xx). E.g. calling an action with stale tokens, or a server exception. In this case the done
callbacks are not called.

The first and third case are the most common cases in the system. Use the done and fail callbacks to differentiate
behaviour on success and error.

ajax.action('entity/delete?guid=123').done(function (value, statusText, jqXHR) {
// remove element from the page

}).fail(function() {
// handle error condition if needed

});

Requiring ES modules

Each response from an Ajax service will contain a list of ES modules required server side with elgg_import_esm().
When response data is unwrapped, these modules will be loaded asynchronously - plugins should not expect these
modules to be loaded in their $.done() and $.then() handlers and must use import for any modules they depend on.
Additionally modules should not expect the DOM to have been altered by an Ajax request when they are loaded - DOM
events should be delegated and manipulations on DOM elements should be delayed until all Ajax requests have been
resolved.

88 Kapitel 3. Continue Reading

Elgg Documentation, Release master

3.3.6 Authentication

Elgg provides everything needed to authenticate users via username/email and password out of the box, including:

• remember-me cookies for persistent login

• password reset logic

• secure storage of passwords

• logout

• UIs for accomplishing all of the above

All that’s left for you to do as a developer is to use the built-in authentication functions to secure your pages and actions.

Working with the logged in user

Check whether the current user is logged in with elgg_is_logged_in():

if (elgg_is_logged_in()) {
// do something just for logged-in users

}

Check if the current user is an admin with elgg_is_admin_logged_in():

if (elgg_is_admin_logged_in()) {
// do something just for admins

}

Get the currently logged in user with elgg_get_logged_in_user_entity():

$user = elgg_get_logged_in_user_entity();

The returned object is an ElggUser so you can use all the methods and properties of that class to access information
about the user. If the user is not logged in, this will return null, so be sure to check for that first.

Gatekeepers

Gatekeeper functions allow you to manage how code gets executed by applying access control rules.

Forward a user to the front page if they are not logged in with elgg_gatekeeper():

elgg_gatekeeper();

echo "Information for logged-in users only";

Forward a user to the front page unless they are an admin with elgg_admin_gatekeeper():

elgg_admin_gatekeeper();

echo "Information for admins only";

3.3. Developer Guides 89

Elgg Documentation, Release master

Pluggable Authentication Modules

Elgg has support for Pluggable Authentication Modules (PAM), which enables you to write your own authenticati-
on handlers. Whenever a request needs to get authenticated the system will call elgg_pam_authenticate() which
probes the registered PAM handlers until one returns success.

The preferred approach is to create a separate Elgg plugin which will have one simple task: to process an authentication
request. This involves setting up an authentication handler in the plugin’s Bootstrap class, and to register it with the
PAM module so it will get processed whenever the system needs to authenticate a request.

The authentication handler is a function and takes a single parameter. Registering the handler is being done by
elgg_register_pam_handler() which takes the name of the authentication handler, the importance and the po-
licy as parameters. It is advised to register the handler in the plugin’s init function, for example:

// classes/Your/Plugin/Bootstrap.php

function init() {
// Register the authentication handler
elgg_register_pam_handler('your_plugin_auth_handler');

}

// your_plugin/lib/functions.php

function your_plugin_auth_handler($credentials) {
// do things ...

}

Importance

By default an authentication module is registered with an importance of sufficient.
In a list of authentication modules; if any one marked sufficient returns true, elgg_pam_authenticate() will also
return true. The exception to this is when an authentication module is registered with an importance of required.
All required modules must return true for elgg_pam_authenticate() to return true, regardless of whether all
sufficient modules return true.

Passed credentials

The format of the credentials passed to the handler can vary, depending on the originating request. For example, a
regular login via the login form will create a named array, with the keys username and password. If a request was
made for example via XML-RPC then the credentials will be set in the HTTP header, so in this case nothing will get
passed to the authentication handler and the handler will need to perform steps on its own to authenticate the request.

Return value

The authentication handle should return a boolean, indicating if the request could be authenticated or not. One caveat
is that in case of a regular user login where credentials are available as username and password the user will get logged
in. In case of the XML-RPC example the authentication handler will need to perform this step itself since the rest of
the system will not have any idea of either possible formats of credentials passed nor its contents. Logging in a user is
quite simple and is being done by elgg_login(), which expects an ElggUser object.

90 Kapitel 3. Continue Reading

Elgg Documentation, Release master

3.3.7 Capabilities

Contents

• Entity Capabilities

Entity Capabilities

Defining capabilities

There is no need to explicitly define or register a new capability to the system. For example the search plugin uses the
searchable capability.

Registering for capabilities

If an entity supports a certain capability (or feature) this should be registered in the system. This can be done by
registering the capability in the entities section of the elgg-plugin.php of the plugin.

'entities' => [
[

'type' => 'object',
'subtype' => 'blog',
'capabilities' => [

'searchable' => true,
],

],
],

There is also the option to enable (or disable) a capability for a certain entity type/subtype using one of the following
functions:

• elgg_entity_enable_capability($type, $subtype, $capability) use this for enabling a certain ca-
pability

• elgg_entity_disable_capability($type, $subtype, $capability) use this for disabling a certain
capability

Checking for capabilities

There are helper functions to check if a certain capability is supported in the system. You can check if an entity supports
a certain capability using the $entity->hasCapability($capability) function. Alternatively if you do not have an entity
at your disposal, you can use elgg_entity_has_capability($type, $subtype, $capability).

There is also a function available to get an array of all type/subtypes in the system that support a certain capability.

$types_subtypes = elgg_entity_types_with_capability('searchable');

// output
[

'object' => [
(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 91

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

'blog',
'page',

],
'group' => [

'group',
],

]

3.3.8 Context

Warnung: The contents of this page are outdated. While the functionality is still in place, using global context to
determine your business logic is bad practice, and will make your code less testable and succeptive to bugs.

Within the Elgg framework, context can be used by your plugin’s functions to determine if they should run or not. You
will be registering callbacks to be executed when particular events are triggered. Sometimes the events are generic and
you only want to run your callback when your plugin caused the event to be triggered. In that case, you can use the
page’s context.

You can explicitly set the context with set_context(). The context is a string and typically you set it to the
name of your plugin. You can retrieve the context with the function get_context(). It’s however better to use
elgg_push_context($string) to add a context to the stack. You can check if the context you want in in the current
stack by calling elgg_in_context($context). Don’t forget to pop (with elgg_pop_context()) the context after
you push one and don’t need it anymore.

If you don’t set it, Elgg tries to guess the context. If the page was called through the router, the context is set to the first
segment of the current route, e.g. profile in profile/username.

Sometimes a view will return different HTML depending on the context. A plugin can take advantage of that by setting
the context before calling elgg_view() on the view and then setting the context back. This is frequently done with the
search context.

3.3.9 Cron

If you setup cron correctly as described in Cron special events will be triggered so you can register for these events
from your own code.

The example below registers a function for the daily cron.

function my_plugin_init() {
elgg_register_event_handler('cron', 'daily', 'my_plugin_cron_handler');

}

If timing is important in your cron event be advised that the functions are executed in order of registration. This could
mean that your function may start (a lot) later then you may have expected. However the parameters provided in the
event contain the original starting time of the cron, so you can always use that information.

function my_plugin_cron_handler(\Elgg\Event $event) {
$start_time = $event->getParam('time');

}

92 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Custom intervals

Plugin developers can configure there own custom intervals.

Warnung: It’s NOT recommended to do this, as the users of your plugin may also need to configure your custom
interval. Try to work with the default intervals. If you only need to do a certain task at for example 16:30 you can
use the halfhour interval and check that date('G', $start_time) == 16 and date('i', $start_time)
== 30

elgg_register_event_handler('cron:intervals', 'system', 'my_custom_cron_interval');

function my_custom_cron_interval(\Elgg\Event $event) {
$cron_intervals = $event->getValue();

// add custom interval
$cron_intervals['my_custom_interval'] = '30 16 * * *'; // every day at 16:30␣

→˓hours

return $cron_intervals;
}

Siehe auch:
• Events has more information about events

• For more information about the supported cron interval definition see the PHP Scheduler documentation

3.3.10 Database

Persist user-generated content and settings with Elgg’s generic storage API.

Contents

• Entities

– Creating an object

– Loading an object

– Displaying entities

– Adding, reading and deleting annotations

– Extending ElggEntity

– Advanced features

• Custom database functionality

• Systemlog

– System log storage

– Creating your own system log

3.3. Developer Guides 93

https://github.com/peppeocchi/php-cron-scheduler#schedules-execution-time

Elgg Documentation, Release master

Entities

Creating an object

To create an object in your code, you need to instantiate an ElggObject. Setting data is simply a matter of adding
instance variables or properties. The built-in properties are:

• ``guid`` The entity’s GUID; set automatically

• ``owner_guid`` The owning user’s GUID

• ``subtype`` A single-word arbitrary string that defines what kind of object it is, for example blog

• ``access_id`` An integer representing the access level of the object

• ``title`` The title of the object

• ``description`` The description of the object

The object subtype is a special property. This is an arbitrary string that describes what the object is. For example, if
you were writing a blog plugin, your subtype string might be blog. It’s a good idea to make this unique, so that other
plugins don’t accidentally try and use the same subtype. For the purposes of this document, let’s assume we’re building
a simple forum. Therefore, the subtype will be forum:

$object = new ElggObject();
$object->setSubtype('forum');
$object->access_id = 2;
$object->save();

access_id is another important property. If you don’t set this, your object will be private, and only the creator user
will be able to see it. Elgg defines constants for the special values of access_id:

• ACCESS_PRIVATE Only the owner can see it

• ACCESS_LOGGED_IN Any logged in user can see it

• ACCESS_PUBLIC Even visitors not logged in can see it

Saving the object will automatically populate the $object->guid property if successful. If you change any more base
properties, you can call $object->save() again, and it will update the database for you.

You can set metadata on an object just like a standard property. Let’s say we want to set the SKU of a product:

$object->SKU = 62784;

If you assign an array, all the values will be set for that metadata. This is how, for example, you set tags.

Metadata cannot be persisted to the database until the entity has been saved, but for convenience, ElggEntity can cache
it internally and save it when saving the entity.

94 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Loading an object

By GUID

$entity = get_entity($guid);
if (!$entity) {

// The entity does not exist or you're not allowed to access it.
}

But what if you don’t know the GUID? There are several options.

By user, subtype or site

If you know the user ID you want to get objects for, or the subtype, you have several options. The easiest is probably to
call the procedural function elgg_get_entities:

$entities = elgg_get_entities(array(
'type' => $entity_type,
'subtype' => $subtype,
'owner_guid' => $owner_guid,

));

This will return an array of ElggEntity objects that you can iterate through. elgg_get_entities paginates by
default, with a limit of 10; and offset 0.

You can leave out owner_guid to get all objects and leave out subtype or type to get objects of all types/subtypes.

If you already have an ElggUser – e.g. elgg_get_logged_in_user_entity, which always has the current user’s
object when you’re logged in – you can simply use:

$objects = $user->getObjects($subtype, $limit, $offset)

But what about getting objects with a particular piece of metadata?

By properties

You can fetch entities by their properties using elgg_get_entities. Using specific parameters passed to $options
array, you can retrieve entities by their attributes, metadata, annotations and relationships.

Displaying entities

In order for entities to be displayed in listing functions you need to provide a view for the entity in the views system.

To display an entity, create a view EntityType/subtype where EntityType is one of the following:

object: for entities derived from ElggObject user: for entities derived from ElggUser site: for entities derived from
ElggSite group: for entities derived from ElggGroup

A default view for all entities has already been created, this is called EntityType/default.

3.3. Developer Guides 95

Elgg Documentation, Release master

Entity Icons

Entity icons can be saved from uploaded files, existing local files, or existing ElggFile objects. These methods save the
master size of the icon defined in the system. The other defined sizes will be generated when requested.

$object = new ElggObject();
$object->title = 'Example entity';
$object->description = 'An example object with an icon.';

// from an uploaded file
$object->saveIconFromUploadedFile('file_upload_input');

// from a local file
$object->saveIconFromLocalFile('/var/data/generic_icon.png');

// from a saved ElggFile object
$file = get_entity(123);
if ($file instanceof ElggFile) {

$object->saveIconFromElggFile($file);
}

$object->save();

The following sizes exist by default:
• master - 10240px at longer edge (not upscaled)

• large - 200px at longer edge (not upscaled)

• medium - 100px square

• small - 40px square

• tiny - 25px square

• topbar - 16px square

Use elgg_get_icon_sizes() to get all possible icon sizes for a specific entity type and subtype. The function triggers
the entity:icon:sizes event.

To check if an icon is set, use $object->hasIcon($size).

You can retrieve the URL of the generated icon with ElggEntity::getIconURL($params) method. This method
accepts a $params argument as an array that specifies the size, type, and provide additional context for the event to
determine the icon to serve. The method triggers the entity:icon:url event.

Use elgg_view_entity_icon($entity, $size, $vars) to render an icon. This will scan the following locations
for a view and include the first match to .

1. views/$viewtype/icon/$type/$subtype.php

2. views/$viewtype/icon/$type/default.php

3. views/$viewtype/icon/default.php

Where

$viewtype
Type of view, e.g. 'default' or 'json'.

$type
Type of entity, e.g. 'group' or 'user'.

96 Kapitel 3. Continue Reading

Elgg Documentation, Release master

$subtype
Entity subtype, e.g. 'blog' or 'page'.

You do not have to return a fallback icon from the event handler. If no uploaded icon is found, the view system will
scan the views (in this specific order):

1. views/$viewtype/$icon_type/$entity_type/$entity_subtype.svg

2. views/$viewtype/$icon_type/$entity_type/$entity_subtype/$size.gif

3. views/$viewtype/$icon_type/$entity_type/$entity_subtype/$size.png

4. views/$viewtype/$icon_type/$entity_type/$entity_subtype/$size.jpg

Where

$viewtype
Type of view, e.g. 'default' or 'json'.

$icon_type
Icon type, e.g. 'icon' or 'cover_image'.

$entity_type
Type of entity, e.g. 'group' or 'user'.

$entity_subtype
Entity subtype, e.g. 'blog' or 'page' (or 'default' if entity has not subtype).

$size
Icon size (note that we do not use the size with svg icons)

Icon methods support passing an icon type if an entity has more than one icon. For example, a user might have an avatar
and a cover photo icon. You would pass 'cover_photo' as the icon type:

$object->saveIconFromUploadedFile('uploaded_photo', 'cover_photo');

$object->getIconUrl([
'size' => 'medium',
'type' => 'cover_photo'

]);

Bemerkung: Custom icon types (e.g. cover photos) only have a preset for master size, to add custom sizes use
entity:<icon_type>:url event to configure them.

By default icons will be stored in /icons/<icon_type>/<size>.jpg relative to entity’s directory on filestore. To
provide an alternative location, use the entity:<icon_type>:file event.

Adding, reading and deleting annotations

Annotations could be used, for example, to track ratings. To annotate an entity you can use the object’s annotate()
method. For example, to give a blog post a rating of 5, you could use:

$blog_post->annotate('rating', 5);

To retrieve the ratings on the blog post, use $blogpost->getAnnotations('rating') and if you want to delete an
annotation, you can operate on the ElggAnnotation class, eg $annotation->delete().

3.3. Developer Guides 97

Elgg Documentation, Release master

Retrieving a single annotation can be done with get_annotation() if you have the annotation’s ID. If you delete an
ElggEntity of any kind, all its metadata, annotations, and relationships will be automatically deleted as well.

Extending ElggEntity

If you derive from one of the Elgg core classes, you’ll need to tell Elgg how to properly instantiate the new type of
object so that get_entity() et al. will return the appropriate PHP class. For example, if I customize ElggGroup in a class
called „Committee“, I need to make Elgg aware of the new mapping. Following is an example class extension:

// Class source
class Committee extends ElggGroup {

protected function initializeAttributes() {
parent::initializeAttributes();
$this->attributes['subtype'] = 'committee';

}

// more customizations here
}

In your plugins elgg-plugin.php file add the entities section.

<?php // mod/example/elgg-plugin.php
return [

// entities registration
'entities' => [

[
'type' => 'group',
'subtype' => 'committee',
'class' => 'Committee',
'capabilities' => [

'searchable' => true,
],

],
],

];

The entities will be registered upon activation of the plugin.

Now if you invoke get_entity() with the GUID of a committee object, you’ll get back an object of type Committee.

Advanced features

Entity URLs

Entity urls are provided by the getURL() interface and provide the Elgg framework with a common way of directing
users to the appropriate display handler for any given object.

For example, a profile page in the case of users.

The url is set using the elgg_register_entity_url_handler() function. The function you register must
return the appropriate url for the given type - this itself can be an address set up by a page handler.

The default handler is to use the default export interface.

98 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Entity loading performance

elgg_get_entities has a couple options that can sometimes be useful to improve performance.

• preload_owners: If the entities fetched will be displayed in a list with the owner information, you can set this
option to true to efficiently load the owner users of the fetched entities.

• preload_containers: If the entities fetched will be displayed in a list using info from their containers, you can
set this option to true to efficiently load them.

• distinct: When Elgg fetches entities using an SQL query, Elgg must be sure that each entity row appears only
once in the result set. By default it includes a DISTINCT modifier on the GUID column to enforce this, but some
queries naturally return unique entities. Setting the distinct option to false will remove this modifier, and rely
on the query to enforce its own uniqueness.

The internals of Elgg entity queries is a complex subject and it’s recommended to seek help on the Elgg Community
site before using the distinct option.

Custom database functionality

It is strongly recommended to use entities wherever possible. However, Elgg supports custom SQL queries using the
database API.

Systemlog

Bemerkung: This section need some attention and will contain outdated information

The default Elgg system log is a simple way of recording what happens within an Elgg system. It’s viewable and
searchable directly from the administration panel.

System log storage

A system log row is stored whenever an event concerning an object whose class implements the Loggable interface is
triggered. ElggEntity and ElggExtender implement Loggable, so a system log row is created whenever an event is
performed on all objects, users, groups, sites, metadata and annotations.

Common events include:

• create

• update

• delete

• login

3.3. Developer Guides 99

Elgg Documentation, Release master

Creating your own system log

There are some reasons why you might want to create your own system log. For example, you might need to store a full
copy of entities when they are updated or deleted, for auditing purposes. You might also need to notify an administrator
when certain types of events occur.

To do this, you can create a function that listens to all events for all types of object:

register_elgg_event_handler('all','all','your_function_name');

Your function can then be defined as:

function your_function_name($object, $event) {
if ($object instanceof Loggable) {

...
}

}

You can then use the extra methods defined by Loggable to extract the information you need.

3.3.11 Email

Elgg has the ability to send out emails. This can be done directly using functions like elgg_send_email() and
notify_user() or indirectly through the notifications system. Below an overview of the feature of the email sys-
tem.

Contents

• HTML Mail

• Attachments

• E-mail address formatting

HTML Mail

As an admin you can configure your site to have all outgoing emails to be HTML emails or just plain text emails. HTML
emails are enabled by default. When enabled the email contents will be wrapped in HTML elements and some CSS
will be applied. This allows theme developers to style the emails.

The appropriate views to format and style the emails can be found in views/default/email.

The CSS will be inlined automatically so it will work in most email clients. If your email contains images, those images
can be converted to inline base64 encoded images (default) or attachments. Converted images are the best way to have
images show consistently in various clients.

Instead of having the message converted automatically to a HTML, you can also provide your own html_message
in the params of a notification. The html_message can be either a Elgg\Email\HtmlPart or a string. If it is a
string Elgg will automatically try to inline provided CSS present in the css param. If you do not want to inline CSS
you will need to set the convert_css param to false. Below an example of a custom HTML part.

elgg_send_email(\Elgg\Email::factory([
'from' => 'from@elgg.org',

(Fortsetzung auf der nächsten Seite)

100 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

'to' => 'to@elgg.org',
'subject' => 'Test Email',
'body' => 'Welcome to the site',
'params' => [

'html_message' => '
<p>Welcome to the site</p>

',
'convert_css' => true,
'css' => 'p { padding: 10px;}'

],
]));

Attachments

notify_user() or enqueued notifications support attachments for e-mail notifications if provided in $params. To add
one or more attachments add a key attachments in $params which is an array of the attachments. An attachment
should be in one of the following formats:

• An ElggFile which points to an existing file

• An array with the file contents

• An array with a filepath

// this example is for notify_user()
$params['attachments'] = [];

// Example of an ElggFile attachment
$file = new \ElggFile();
$file->owner_guid = <some owner_guid>;
$file->setFilename('<some filename>');

$params['attachments'][] = $file;

// Example of array with content
$params['attachments'][] = [

'content' => 'The file content',
'filename' => 'test_file.txt',
'type' => 'text/plain',

];

// Example of array with filepath
// 'filename' can be provided, if not basename() of filepath will be used
// 'type' can be provided, if not will try a best guess
$params['attachments'][] = [

'filepath' => '<path to a valid file>',
];

notify_user($to_guid, $from_guid, $subject, $body, $params);

3.3. Developer Guides 101

Elgg Documentation, Release master

E-mail address formatting

Elgg has a helper class to aid in getting formatted e-mail addresses: \Elgg\Email\Address.

// the constructor takes two variables
// first is the email address, this is REQUIRED
// second is the name, this is optional
$address = new \Elgg\Email\Address('example@elgg.org', 'Example');

// this will result in 'Example <example@elgg.org>'
echo $address->toString();

// to change the name use:
$address->setName('New Example');

// to change the e-mail address use:
$address->setEmail('example2@elgg.org');

There are some helper functions available

• \Elgg\Email\Address::fromString($string) Will return an \Elgg\Email\Address class with e-mail
and name set, provided a formatted string (eg. Example <example@elgg.org>)

• \Elgg\Email\Address::fromEntity($entity) Will return an \Elgg\Email\Address class with e-mail
and name set based on the entity

• \Elgg\Email\Address::getFormattedEmailAddress($email, $name) Will return a formatted string
provided an e-mail address and optionaly a name

3.3.12 Error Handling

Under the hood, Elgg uses Monolog for logging errors to the server’s error log (and stdout for CLI commands).

Monolog comes with a number of tools that can help administrators keep track of errors and debugging information.

You can add custom handlers (see Monolog documentation for a full list of handlers):

// Add a new handler to notify a given email about a critical error
elgg()->logger->pushHandler(

new \Monolog\Handler\NativeMailerHandler(
'admin@example.com',
'Critical error',
'no-reply@mysite.com',
\Monolog\Level::Critical

)
);

102 Kapitel 3. Continue Reading

https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog

Elgg Documentation, Release master

3.3.13 List of events in core

For more information on how events work visit Events.

Contents

• System events

• User events

• Relationship events

• Entity events

• Metadata events

• Annotation events

• River events

• Access events

• Permission events

• Notifications events

• Emails

• File events

• Action events

• Ajax

• Routing

• Views

• Search

• Other

• Plugins

Bemerkung: Some events are marked with this means those events also have a :before and :after
event Also see Event sequence

Some events are marked with this means those events allow altering the output of an event

System events

activate, plugin
Return false to prevent activation of the plugin.

cache:clear, system
Clear internal and external caches, by default including system_cache, simplecache, and memcache. One might
use it to reset others such as APC, OPCache, or WinCache.

cache:generate, <view>

3.3. Developer Guides 103

Elgg Documentation, Release master

Filters the view output for a /cache URL when simplecache is disabled. Note this will be fired for every /cache
request–no Expires headers are used when simplecache is disabled.

cache:invalidate, system
Invalidate internal and external caches.

cache:purge, system
Purge internal and external caches. This is meant to remove old/stale content from the caches.

commands, cli
Allows plugins to register their own commands executable via elgg-cli binary. Handlers must return an array
of command class names. Commands must extend \Elgg\Cli\Command to be executable.

cron, <period>
Triggered by cron for each period.

The $params array will contain:

• time - the timestamp of when the cron command was started

• dt - the \DateTime object of when the cron command was started

• logger - instance of \Elgg\Logger\Cron to log any information to the cron log

cron:intervals, system
Allow the configuration of custom cron intervals

deactivate, plugin
Return false to prevent deactivation of the plugin.

diagnostics:report, system
Filter the output for the diagnostics report download.

elgg.data, page
Filters uncached, page-specific configuration data to pass to the client. More info

format, friendly:title
Formats the „friendly“ title for strings. This is used for generating URLs.

format, friendly:time
Formats the „friendly“ time for the timestamp $params['time'].

format, strip_tags
Filters a string to remove tags. The original string is passed as $params['original_string'] and an optional
set of allowed tags is passed as $params['allowed_tags'].

gc, system
Allows plugins to run garbage collection for $params['period'].

generate, password
Allows plugins to generate new random cleartext passwords.

init:cookie, <name>
Return false to override setting a cookie.

init, system
Plugins tend to use this event for initialization (extending views, registering callbacks, etc.)

104 Kapitel 3. Continue Reading

Elgg Documentation, Release master

languages, translations
Allows plugins to add/remove languages from the configurable languages in the system.

log, systemlog
Called for all triggered events by system_log plugin. Used internally by Elgg\SystemLog\Logger::log()
to populate the system_log table.

login_url, site
Filters site’s login URL. $params array contains an array of query elements added to the login URL by the
invoking script. The event must return an absolute URL of the login page.

output:before, page
In elgg_view_page(), this filters $vars before it’s passed to the page shell view (page/
<page_shell>). To stop sending the X-Frame-Options header, unregister the handler Elgg\Page\
SetXFrameOptionsHeaderHandler::class from this event.

output, page
In elgg_view_page(), this filters the output return value.

parameters, menu:<menu_name>
Triggered by elgg_view_menu(). Used to change menu variables (like sort order) before rendering.

The $params array will contain:

• name - name of the menu

• sort_by - preferring sorting parameter

• other parameters passed to elgg_view_menu()

plugins_load, system
Triggered before the plugins are loaded. Rarely used. init, system is used instead. Can be used to load additional
libraries.

plugins_boot, system
Triggered just after the plugins are loaded. Rarely used. init, system is used instead.

prepare, html
Triggered by elgg_format_html() and used to prepare untrusted HTML.

The $return value is an array:

• html - HTML string being prepared

• options - Preparation options

prepare, menu:<menu_name>
Filters the array of menu sections before they’re displayed. Each section is a string key mapping to an area of
menu items. This is a good event to sort, add, remove, and modify menu items. Triggered by elgg_view_menu()
and elgg()->menus->prepareMenu().

The $params array will contain:

• selected_item - ElggMenuItem selected in the menu, if any

The return value is an instance of \Elgg\Menu\PreparedMenu. The prepared menu is a collection of \Elgg\
Menu\MenuSection, which in turn are collections of \ElggMenuItem objects.

3.3. Developer Guides 105

Elgg Documentation, Release master

prepare, menu:<menu_name>:<type>:<subtype>
More granular version of the menu event triggered before the prepare, menu:<menu_name> event.

Only applied if menu params contain - params[‚entity‘] with an \ElggEntity (<type> is \ElggEntity::type
and <subtype> is \ElggEntity::subtype) or - params[‚annotation‘] with an \ElggAnnotation (<type>
is \ElggAnnotation::getType() and <subtype> is \ElggAnnotation::getSubtype()) or - pa-
rams[‚relationship‘] with an \ElggRelationship (<type> is \ElggRelationship::getType() and
<subtype> is \ElggRelationship::getSubtype())

ready, system
Triggered after the init, system event. All plugins are fully loaded and the engine is ready to serve pages.

regenerate_site_secret:before, system
Return false to cancel regenerating the site secret. You should also provide a message to the user.

regenerate_site_secret:after, system
Triggered after the site secret has been regenerated.

register, menu:<menu_name>
Filters the initial list of menu items pulled from configuration, before the menu has been split into sections.
Triggered by elgg_view_menu() and elgg()->menus->getMenu().

The $params array will contain parameters returned by parameters, menu:<menu_name> event.

The return value is an instance of \Elgg\Menu\MenuItems containing \ElggMenuItem objects.

Event handlers can add/remove items to the collection using the collection API, as well as array access operations.

register, menu:<menu_name>:<type>:<subtype>
More granular version of the menu event triggered before the register, menu:<menu_name> event.

Only applied if menu params contain - params[‚entity‘] with an \ElggEntity (<type> is \ElggEntity::type
and <subtype> is \ElggEntity::subtype) or - params[‚annotation‘] with an \ElggAnnotation (<type>
is \ElggAnnotation::getType() and <subtype> is \ElggAnnotation::getSubtype()) or - pa-
rams[‚relationship‘] with an \ElggRelationship (<type> is \ElggRelationship::getType() and
<subtype> is \ElggRelationship::getSubtype())

register, menu:filter:<filter_id>
Allows plugins to modify layout filter tabs on layouts that specify <filter_id> parameter. Parameters and return
values are same as in register, menu:<menu_name> event.

If filter_id is filter (the default) then the all, mine and friends tabs will be generated base on some
provided information or be tried for routes similar to the current route.

• params[‚all_link‘] will be used for the all tab

• params[‚mine_link‘] will be used for the mine tab

• params[‚friends_link‘] will be used for the friend tab

If the above are not provided than a route will be tried based on params['entity_type'] and
params['entity_subtype']. If not provided entity_type and entity_subtype will be based on rou-
te detection of the current route. For example if the current route is collection:object:blog:all
entity_type will be object and entity_subtype will be blog. - The all tab will be based on the
route collection:<entity_type>:<entity_subtype>:all - The mine tab will be based on the rou-
te collection:<entity_type>:<entity_subtype>:owner - The friend tab will be based on the route
collection:<entity_type>:<entity_subtype>:friends

If the routes aren’t registered the tabs will not appear.

106 Kapitel 3. Continue Reading

Elgg Documentation, Release master

registration_url, site
Filters site’s registration URL. Can be used by plugins to attach invitation codes, referrer codes etc. to the regis-
tration URL. $params array contains an array of query elements added to the registration URL by the invoking
script. The event must return an absolute URL to the registration page.

reload:after, translations
Triggered after the translations are (re)loaded.

sanitize, input
Filter GET and POST input. This is used by get_input() to sanitize user input.

seeds, database
Allows plugins to register their own database seeds. Seeds populate the database with fake entities for
testing purposes. Seeds must extend \Elgg\Database\Seeds\Seed class to be executable via elgg-cli
database:seed.

send:before, http_response
Triggered before an HTTP response is sent. Handlers will receive an instance of SymfonyComponentHttpFoun-
dationResponse that is to be sent to the requester. Handlers can terminate the event and prevent the response from
being sent by returning false.

send:after, http_response
Triggered after an HTTP response is sent. Handlers will receive an instance of SymfonyComponentHttpFounda-
tionResponse that was sent to the requester.

shutdown, system
Triggered after the page has been sent to the user. Expensive operations could be done here and not make the
user wait.

Bemerkung: Depending upon your server configuration the PHP output might not be shown until after the process is
completed. This means that any long-running processes will still delay the page load.

Bemerkung: This event is prefered above using register_shutdown_function as you may not have access to all
the Elgg services (eg. database) in the shutdown function but you will in the event.

Bemerkung: The Elgg session is already closed before this event. Manipulating session is not possible.

simplecache:generate, <view>
Filters the view output for a /cache URL when simplecache is enabled.

upgrade, system
Triggered after a system upgrade has finished. All upgrade scripts have run, but the caches are not cleared.

upgrade:execute, system
Triggered when executing an ElggUpgrade. The $object of the event is the ElggUpgrade.

3.3. Developer Guides 107

Elgg Documentation, Release master

User events

ban, user
Triggered before a user is banned. Return false to prevent.

change:email, user
Triggered before the user email is changed. Allows plugins to implement additional logic required to change
email, e.g. additional email validation. The event handler must return false to prevent the email from being
changed right away.

The $params array will contain:

• user - \ElggUser, whose settings are being saved

• email - Email address that passes sanity checks

• request - \Elgg\Request to the action controller

invalidate:after, user
Triggered when user’s account validation has been revoked.

login, user
Triggered when a user is being logged in.

login:forward, user
Filters the URL to which the user will be forwarded after login.

login:first, user
Triggered after a successful login. Only if there is no previous login.

logout:after, user
Triggered after the user logouts.

logout:before, user
Triggered during logout. Returning false should prevent the user from logging out.

make_admin, user
Triggered before a user is promoted to an admin. Return false to prevent.

profileiconupdate, user
User has changed profile icon

profileupdate, user
User has changed profile

register, user
Triggered by the register action after the user registers. Return false to delete the user. Note the function
register_user does not trigger this event. Event handlers can throw \Elgg\Exceptions\Configuration\
RegistrationException with an error message to be displayed to the user.

The $params array will contain:

• user - Newly registered user entity

• All parameters sent with the request to the action (incl. password, friend_guid, invitecode etc)

registeruser:validate:email, all
Return boolean for if the string in $params['email'] is valid for an email address. Event handler can throw
\Elgg\Exceptions\Configuration\RegistrationException with an error message to be shown to the
user.

108 Kapitel 3. Continue Reading

Elgg Documentation, Release master

registeruser:validate:password, all
Return boolean for if the string in $params['password'] is valid for a password. Event handler can throw
\Elgg\Exceptions\Configuration\RegistrationException with an error message to be shown to the
user.

registeruser:validate:username, all
Return boolean for if the string in $params['username'] is valid for a username. Event handler can throw
\Elgg\Exceptions\Configuration\RegistrationException with an error message to be shown to the
user.

remove_admin, user
Triggered before a user is demoted from an admin. Return false to prevent.

unban, user
Triggered before a user is unbanned. Return false to prevent.

username:character_blacklist, user
Filters the string of blacklisted characters used to validate username during registration. The return va-
lue should be a string consisting of the disallowed characters. The default string can be found from
$params['blacklist'].

usersettings:save, user
Triggered in the aggregate action to save user settings. The event handler must return false to prevent sticky
forms from being cleared (i.e. to indicate that some of the values were not saved). Do not return true from your
event handler, as you will override other events‘ output, instead return null to indicate successful operation.

The $params array will contain:

• user - \ElggUser, whose settings are being saved

• request - \Elgg\Request to the action controller

validate, user
When a user registers, the user’s account is disabled. This event is triggered to allow a plugin to determine how
the user should be validated (for example, through an email with a validation link).

validate:after, user
Triggered when user’s account has been validated.

Relationship events

create, relationship
Triggered after a relationship has been created. Returning false deletes the relationship that was just created.

delete, relationship
Triggered before a relationship is deleted. Return false to prevent it from being deleted.

join, group
Triggered after the user $params['user'] has joined the group $params['group'].

leave, group
Triggered before the user $params['user'] has left the group $params['group'].

3.3. Developer Guides 109

Elgg Documentation, Release master

Entity events

comments, <entity_type>
Triggered in elgg_view_comments(). If returning content, this overrides the page/elements/comments
view.

comments:count, <entity_type>
Return the number of comments on $params['entity'].

create, <entity type>
Triggered for user, group, object, and site entities after creation. Triggered just before the create:after event,
mostly for BC reasons. The use of the create:after event is preferred.

create:after, <entity type>
Triggered for user, group, object, and site entities after creation.

create:before, <entity type>
Triggered for user, group, object, and site entities before creation. Return false to prevent creating the entity.

delete, <entity type>
Triggered when an entity is permanently removed from the database. Also see Restore capability

disable, <entity type>
Triggered before the entity is disabled. Return false to prevent disabling.

disable:after, <entity type>
Triggered after the entity is disabled.

enable, <entity type>
Return false to prevent enabling.

enable:after, <entity type>
Triggered after the entity is enabled.

likes:count, <entity_type>
Return the number of likes for $params['entity'].

trash, <entity type>
Triggered when an entity is marked as deleted in the database. Also see Restore capability

update, <entity type>
Triggered before an update for the user, group, object, and site entities. Return false to prevent update. The entity
method getOriginalAttributes() can be used to identify which attributes have changed since the entity was
last saved.

update:after, <entity type>
Triggered after an update for the user, group, object, and site entities. The entity method
getOriginalAttributes() can be used to identify which attributes have changed since the entity was
last saved.

110 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Metadata events

create, metadata
Called after the metadata has been created. Return false to delete the metadata that was just created.

delete, metadata
Called before metadata is deleted. Return false to prevent deletion.

update, metadata
Called after the metadata has been updated. Return false to delete the metadata.

Annotation events

annotate, <entity type>
Called before the annotation has been created. Return false to prevent annotation of this entity.

create, annotation
Called after the annotation has been created. Return false to delete the annotation.

delete, annotation
Called before annotation is deleted. Return false to prevent deletion.

update, annotation
Called after the annotation has been updated. Return false to delete the annotation.

River events

create:after, river
Called after a river item is created.

create:before, river
Called before the river item is saved to the database. Return false to prevent the item from being created.

delete:after, river
Triggered after a river item was deleted.

delete:before, river
Triggered before a river item is deleted. Returning false cancels the deletion.

Access events

access_collection:url, access_collection
Can be used to filter the URL of the access collection.

The $params array will contain:

• access_collection - ElggAccessCollection

access_collection:name, access_collection
Can be used to filter the display name (readable access level) of the access collection.

The $params array will contain:

• access_collection - ElggAccessCollection

3.3. Developer Guides 111

Elgg Documentation, Release master

access:collections:read, user
Filters an array of access IDs that the user $params['user_id'] can see.

Warnung: The handler needs to either not use parts of the API that use the access system (triggering the
event again) or to ignore the second call. Otherwise, an infinite loop will be created.

access:collections:write, user
Filters an array of access IDs that the user $params['user_id'] can write to. In
elgg_get_write_access_array(), this event filters the return value, so it can be used to alter the
available options in the input/access view. For core plugins, the value „input_params“ has the keys „entity“
(ElggEntity|false), „entity_type“ (string), „entity_subtype“ (string), „container_guid“ (int) are provided. An
empty entity value generally means the form is to create a new object.

Warnung: The handler needs to either not use parts of the API that use the access system (triggering the
event again) or to ignore the second call. Otherwise, an infinite loop will be created.

access:collections:write:subtypes, user
Returns an array of access collection subtypes to be used when retrieving access collections owned by a user as
part of the elgg_get_write_access_array() function.

access:collections:add_user, collection
Triggered before adding user $params['user_id'] to collection $params['collection_id']. Return false
to prevent adding.

access:collections:remove_user, collection
Triggered before removing user $params['user_id'] to collection $params['collection_id']. Return
false to prevent removal.

create, access_collection
Triggered during the creation of an ElggAccessCollection.

delete, access_collection
Triggered during the deletion of an ElggAccessCollection.

get_sql, access
Filters SQL clauses restricting/allowing access to entities and annotations.

Bemerkung: The event is triggered regardless if the access is ignored. The handlers may need to check if
access is ignored and return early, if appended clauses should only apply to access controlled contexts.

$return value is a nested array of ands and ors.

$params includes:

• table_alias - alias of the main table used in select clause

• ignore_access - whether ignored access is enabled

• use_enabled_clause - whether disabled entities are shown/hidden

• access_column - column in the main table containing the access collection ID value

112 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• owner_guid_column - column in the main table referencing the GUID of the owner

• guid_column - column in the main table referencing the GUID of the entity

• enabled_column - column in the main table referencing the enabled status of the entity

• query_builder - an instance of the QueryBuilder

update, access_collection
Triggered during the update of an ElggAccessCollection.

Permission events

container_logic_check, <entity_type>
Triggered by ElggEntity:canWriteToContainer() before triggering permissions_check and
container_permissions_check events. Unlike permissions events, logic check can be used to prevent
certain entity types from being contained by other entity types, e.g. discussion replies should only be contained
by discussions. This event can also be used to apply status logic, e.g. do disallow new replies for closed
discussions.

The handler should return false to prevent an entity from containing another entity. The default value passed to
the event is null, so the handler can check if another event has modified the value by checking if return value is
set. Should this event return false, container_permissions_check and permissions_check events will
not be triggered.

The $params array will contain:

• container - An entity that will be used as a container

• user - User who will own the entity to be written to container

• subtype - Subtype of the entity to be written to container (entity type is assumed from event type)

container_permissions_check, <entity_type>
Return boolean for if the user $params['user'] can use the entity $params['container'] as a container for
an entity of <entity_type> and subtype $params['subtype'].

In the rare case where an entity is created with neither the container_guid nor the owner_guid matching the
logged in user, this event is called twice, and in the first call $params['container'] will be the owner, not the
entity’s real container.

The $params array will contain:

• container - An entity that will be used as a container

• user - User who will own the entity to be written to container

• subtype - Subtype of the entity to be written to container (entity type is assumed from event type)

permissions_check, <entity_type>
Return boolean for if the user $params['user'] can edit the entity $params['entity'].

permissions_check:delete, <entity_type>
Return boolean for if the user $params['user'] can delete the entity $params['entity']. Defaults to
$entity->canEdit().

permissions_check:delete, river
Return boolean for if the user $params['user'] can delete the river item $params['item']. Defaults to true
for admins and false for other users.

3.3. Developer Guides 113

Elgg Documentation, Release master

permissions_check:download, file
Return boolean for if the user $params['user'] can download the file in $params['entity'].

The $params array will contain:

• entity - Instance of ElggFile

• user - User who will download the file

permissions_check, widget_layout
Return boolean for if $params['user'] can edit the widgets in the context passed as $params['context']
and with a page owner of $params['page_owner'].

permissions_check:comment, <entity_type>
Return boolean for if the user $params['user'] can comment on the entity $params['entity'].

permissions_check:annotate:<annotation_name>, <entity_type>
Return boolean for if the user $params['user'] can create an annotation <annotation_name> on the entity
$params['entity']. If logged in, the default is true.

Bemerkung: This is called before the more general permissions_check:annotate event, and its return value
is that event’s initial value.

permissions_check:annotate, <entity_type>
Return boolean for if the user $params['user'] can create an annotation $params['annotation_name']
on the entity $params['entity']. if logged in, the default is true.

api_key, use
Triggered in the class \Elgg\WebServices\PAM\API\APIKey. Returning false prevents the key from being
authenticated.

gatekeeper, <entity_type>:<entity_subtype>
Filters the result of elgg_entity_gatekeeper() to prevent or allow access to an entity that user would
otherwise have or not have access to. A handler can return false or an instance of \Elgg\Exceptions\
HttpException to prevent access to an entity. A handler can return true to override the result of the gatekeeper.
Important that the entity received by this event is fetched with ignored access and including disabled entities,
so you have to be careful to not bypass the access system.

$params array includes:

• entity - Entity that is being accessed

• user - User accessing the entity (null implies logged in user)

Notifications events

dequeue, notifications
Called when an ElggData object is removed from the notifications queue to be processed

enqueue, notifications
Called when an ElggData object is being added to the notifications queue

The following events are listed chronologically in the lifetime of the notification event. Note that not all events apply
to instant notifications.

114 Kapitel 3. Continue Reading

Elgg Documentation, Release master

enqueue, notification
Can be used to prevent a notification event from sending subscription notifications. Event handler must return
false to prevent a subscription notification event from being enqueued.

$params array includes:

• object - object of the notification event

• action - action that triggered the notification event. E.g. corresponds to publish when
elgg_trigger_event('publish', 'object', $object) is called

get, subscriptions
Filters subscribers of the notification event. Applies to subscriptions and instant notifications. In case
of a subscription event, by default, the subscribers list consists of the users subscribed to the container
entity of the event object. In case of an instant notification event, the subscribers list consists of the
users passed as recipients to notify_user()

IMPORTANT Always validate the notification event, object and/or action types before adding any new recipients
to ensure that you do not accidentally dispatch notifications to unintended recipients. Consider a situation, where
a mentions plugin sends out an instant notification to a mentioned user - any event acting on a subject or an
object without validating an event or action type (e.g. including an owner of the original wire thread) might end
up sending notifications to wrong users.

$params array includes:

• event - \Elgg\Notifications\NotificationEvent instance that describes the notification
event

• origin - subscriptions_service or instant_notifications

• methods_override - delivery method preference for instant notifications

Handlers must return an array in the form:

array(
<user guid> => array('sms'),
<user_guid2> => array('email', 'sms', 'ajax')

);

send:before, notifications
Triggered before the notification event queue is processed. Can be used to terminate the notification event. Applies
to subscriptions and instant notifications.

$params array includes:

• event - \Elgg\Notifications\NotificationEvent instance that describes the notification event

• subscriptions - a list of subscriptions. See 'get', 'subscriptions' event for details

prepare, notification
A high level event that can be used to alter an instance of \Elgg\Notifications\Notification befo-
re it is sent to the user. Applies to subscriptions and instant notifications. This event is triggered before a
more granular 'prepare', 'notification:<action>:<entity_type>:<entity_subtype>' and after
'send:before', 'notifications. Event handler should return an altered notification object.

$params may vary based on the notification type and may include:

• event - \Elgg\Notifications\NotificationEvent instance that describes the notification event

• object - object of the notification event. Can be null for instant notifications

3.3. Developer Guides 115

Elgg Documentation, Release master

• action - action that triggered the notification event. May default to notify_user for instant notifications

• method - delivery method (e.g. email, site)

• sender - sender

• recipient - recipient

• language - language of the notification (recipient’s language)

• origin - subscriptions_service or instant_notifications

prepare, notification:<action>:<entity_type>:<entity_type>
A granular event that can be used to filter a notification \Elgg\Notifications\Notification before it is
sent to the user. Applies to subscriptions and instant notifications. In case of instant notifications that have not
received an object, the event will be called as 'prepare', 'notification:<action>'. In case of instant
notifications that have not received an action name, it will default to notify_user.

$params include:

• event - \Elgg\Notifications\NotificationEvent instance that describes the notification event

• object - object of the notification event. Can be null for instant notifications

• action - action that triggered the notification event. May default to notify_user for instant notifications

• method - delivery method (e.g. email, site)

• sender - sender

• recipient - recipient

• language - language of the notification (recipient’s language)

• origin - subscriptions_service or instant_notifications

format, notification:<method>
This event can be used to format a notification before it is passed to the 'send', 'notification:<method>'
event. Applies to subscriptions and instant notifications. The event handler should return an instance of \Elgg\
Notifications\Notification. The event does not receive any $params. Some of the use cases include:

• Strip tags from notification title and body for plaintext email notifications

• Inline HTML styles for HTML email notifications

• Wrap notification in a template, add signature etc.

send, notification:<method>
Delivers a notification. Applies to subscriptions and instant notifications. The handler must return true or
false indicating the success of the delivery.

$params array includes:

• notification - a notification object \Elgg\Notifications\Notification

send:after, notifications
Triggered after all notifications in the queue for the notifications event have been processed. Applies to subs-
criptions and instant notifications.

$params array includes:

• event - \Elgg\Notifications\NotificationEvent instance that describes the notification event

• subscriptions - a list of subscriptions. See 'get', 'subscriptions' event for details

116 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• deliveries - a matrix of delivery statuses by user for each delivery method

Emails

prepare, system:email
Triggered by elgg_send_email(). Applies to all outgoing system and notification emails. This event allows
you to alter an instance of \Elgg\Email before it is passed to the email transport. This event can be used to alter
the sender, recipient, subject, body, and/or headers of the email.

$params are empty. The $return value is an instance of \Elgg\Email.

transport, system:email
Triggered by elgg_send_email(). Applies to all outgoing system and notification emails. This event allows you
to implement a custom email transport, e.g. delivering emails via a third-party proxy service such as SendGrid
or Mailgun. The handler must return true to indicate that the email was transported.

$params contains:

• email - An instance of \Elgg\Email

validate, system:email
Triggered by elgg_send_email(). Applies to all outgoing system and notification emails. This event allows
you to suppress or whitelist outgoing emails, e.g. when the site is in a development mode. The handler must
return false to supress the email delivery.

$params contains:

• email - An instance of \Elgg\Email

zend:message, system:email
Triggered by the default email transport handler (Elgg uses laminas/laminas-mail). Applies to all outgoing
system and notification emails that were not transported using the transport, system:email event. This event
allows you to alter an instance of \Laminas\Mail\Message before it is passed to the Laminas email transport.

$params contains:

• email - An instance of \Elgg\Email

File events

download:url, file
Allows plugins to filter the download URL of the file.

By default, the download URL is generated by the file service.

$params array includes:

• entity - instance of ElggFile

• use_cookie - whether or not to use a cookie to secure download link

• expires - a string representation of when the download link should expire

inline:url, file
Allows plugins to filter the inline URL of the image file.

By default, the inline URL is generated by the file service.

3.3. Developer Guides 117

Elgg Documentation, Release master

$params array includes:

• entity - instance of ElggFile

• use_cookie - whether or not to use a cookie to secure download link

• expires - a string representation of when the download link should expire

mime_type, file
Return the mimetype for the filename $params['filename'] with original filename
$params['original_filename'] and with the default detected mimetype of $params['default'].

simple_type, file
The event provides $params['mime_type'] (e.g. application/pdf or image/jpeg) and determines an
overall category like document or image. The bundled file plugin and other-third party plugins usually store
simpletype metadata on file entities and make use of it when serving icons and constructing ege* filters and
menus.

upload, file
Allows plugins to implement custom logic for moving an uploaded file into an instance of ElggFile. The handler
must return true to indicate that the uploaded file was moved. The handler must return false to indicate that the
uploaded file could not be moved. Other returns will indicate that ElggFile::acceptUploadedFile should
proceed with the default upload logic.

$params array includes:

• file - instance of ElggFile to write to

• upload - instance of Symfony’s UploadedFile

upload:after, file
Called after an uploaded file has been written to filestore. Receives an instance of ElggFile the uploaded file
was written to. The ElggFile may or may not be an entity with a GUID.

Action events

action:validate, <action>
Trigger before action script/controller is executed. This event should be used to validate/alter user
input, before proceeding with the action. The event handler can throw an instance of \Elgg\
Exceptions\Http\ValidationException or return false to terminate further execution.

$params array includes:

• request - instance of \Elgg\Request

action_gatekeeper:permissions:check, all
Triggered after a CSRF token is validated. Return false to prevent validation.

forward, <reason>
Filter the URL to forward a user to when forward($url, $reason) is called. In certain cases, the params
array will contain an instance of \Elgg\Exceptions\HttpException that triggered the error.

response, action:<action>
Filter an instance of \Elgg\Http\ResponseBuilder before it is sent to the client. This event can be used to
modify response content, status code, forward URL, or set additional response headers. Note that the <action>
value is parsed from the request URL, therefore you may not be able to filter the responses of action() calls if
they are nested within the another action script file.

118 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Ajax

ajax_response, *
When the elgg/Ajax module is used, this event gives access to the response object (\Elgg\Services\
AjaxResponse) so it can be altered/extended. The event type depends on the method call:

elgg/Ajax method event type
action() action:<action_name>
path() path:<url_path>
view() view:<view_name>
form() form:<action_name>

ajax_response, action:<action_name>
Filters action/ responses before they’re sent back to the elgg/Ajax module.

ajax_response, path:<path>
Filters ajax responses before they’re sent back to the elgg/Ajax module. This event type will only be used if the
path did not start with „action/“ or „ajax/“.

ajax_response, view:<view>
Filters ajax/view/ responses before they’re sent back to the elgg/Ajax module.

ajax_response, form:<action_name>
Filters ajax/form/ responses before they’re sent back to the elgg/Ajax module.

Routing

response, path:<path>
Filter an instance of \Elgg\Http\ResponseBuilder before it is sent to the client. This event type will only be
used if the path did not start with „action/“ or „ajax/“. This event can be used to modify response content, status
code, forward URL, or set additional response headers. Note that the <path> value is parsed from the request
URL, therefore plugins using the route event should use the original <path> to filter the response, or switch to
using the route:rewrite event.

route:config, <route_name>
Allows altering the route configuration before it is registered. This event can be used to alter the path, default
values, requirements, as well as to set/remove middleware. Please note that the handler for this event should be
registered outside of the init event handler, as core routes are registered during plugins_boot event.

route:rewrite, <identifier>
Allows altering the site-relative URL path for an incoming request. See Routing for details. Please note that the
handler for this event should be registered outside of the init event handler, as route rewrites take place after
plugins_boot event has completed.

3.3. Developer Guides 119

Elgg Documentation, Release master

Views

attributes, htmlawed
Allows changes to individual attributes.

allowed_styles, htmlawed
Configure allowed styles for HTMLawed.

config, htmlawed
Filter the HTMLawed $config array.

form:prepare:fields, <form_name>
Prepare field values for use in the form. Eg. when editing a blog, fill this with the current values of the blog.
Sticky form values will automatically be added to the field values (when available).

head, page
In elgg_view_page(), filters $vars['head'] Return value contains an array with title, metas and links
keys, where metas is an array of elements to be formatted as <meta> head tags, and links is an array of
elements to be formatted as <link> head tags. Each meta and link element contains a set of key/value pairs that
are formatted into html tag attributes, e.g.

return [
'title' => 'Current page title',
'metas' => [
'viewport' => [
'name' => 'viewport',
'content' => 'width=device-width',

]
],
'links' => [
'rss' => [
'rel' => 'alternative',
'type' => 'application/rss+xml',
'title' => 'RSS',
'href' => elgg_format_url($url),

],
'icon-16' => [
'rel' => 'icon',
'sizes' => '16x16',
'type' => 'image/png',
'href' => elgg_get_simplecache_url('graphics/favicon-16.png'),

],
],

];

layout, page
In elgg_view_layout(), filters the layout name. $params array includes:

• identifier - ID of the page being rendered

• segments - URL segments of the page being rendered

• other $vars received by elgg_view_layout()

120 Kapitel 3. Continue Reading

Elgg Documentation, Release master

response, form:<form_name>
Filter an instance of \Elgg\Http\ResponseBuilder before it is sent to the client. Applies to request to /
ajax/form/<form_name>. This event can be used to modify response content, status code, forward URL, or
set additional response headers.

response, view:<view_name>
Filter an instance of \Elgg\Http\ResponseBuilder before it is sent to the client. Applies to request to /
ajax/view/<view_name>. This event can be used to modify response content, status code, forward URL, or
set additional response headers.

shell, page
In elgg_view_page(), filters the page shell name

spec, htmlawed
Filter the HTMLawed $spec string (default empty).

table_columns:call, <name>
When the method elgg()->table_columns->$name() is called, this event is called to allow plugins to over-
ride or provide an implementation. Handlers receive the method arguments via $params['arguments'] and
should return an instance of Elgg\Views\TableColumn if they wish to specify the column directly.

vars:compiler, css
Allows plugins to alter CSS variables passed to CssCrush during compilation. See CSS variables
<_guides/theming#css-vars>.

view, <view_name>
Filters the returned content of the view

view_vars, <view_name>
Filters the $vars array passed to the view

Search

search:config, search_types
Implemented in the search plugin. Filters an array of custom search types. This allows plugins to add custom
search types (e.g. tag or location search). Adding a custom search type will extend the search plugin user interface
with appropriate links and lists.

search:config, type_subtype_pairs
Implemented in the search plugin. Filters entity type/subtype pairs before entity search is performed. Allows
plugins to remove certain entity types/subtypes from search results, group multiple subtypes together, or to re-
order search sections.

search:fields, <entity_type>
Triggered by elgg_search(). Filters search fields before search clauses are prepared. $return value contains
an array of names for each entity property type, which should be matched against the search query. $params
array contains an array of search params passed to and filtered by elgg_search().

return [
'attributes' => [],
'metadata' => ['title', 'description'],

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 121

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

'annotations' => ['revision'],
];

search:fields, <entity_type>:<entity_subtype>
See search:fields, <entity_type>

search:fields, <search_type>
See search:fields, <entity_type>

search:format, entity
Implemented in the search plugin. Allows plugins to populate entity’s volatile data before it’s passed to search
view. This is used for highlighting search hit, extracting relevant substrings in long text fields etc.

search:options, <entity_type>
Triggered by elgg_search(). Prepares search clauses (options) to be passed to elgg_get_entities().

search:options, <entity_type>:<entity_subtype>
See search:options, <entity_type>

search:options, <search_type>
See search:options, <entity_type>

search:params, <search_type>
Triggered by elgg_search(). Filters search parameters (query, sorting, search fields etc) before search clauses
are prepared for a given search type. Elgg core only provides support for entities search type.

search:results, <search_type>
Triggered by elgg_search(). Receives normalized options suitable for elgg_get_entities() call and must
return an array of entities matching search options. This event is designed for use by plugins integrating third-
party indexing services, such as Solr and Elasticsearch.

Other

config, comments_per_page
Filters the number of comments displayed per page. Default is 25. $params['entity']will hold the containing
entity or null if not provided. Use elgg_comments_per_page() to get the value.

config, comments_latest_first
Filters the order of comments. Default is true for latest first. $params['entity'] will hold the containing
entity or null if not provided.

default, access
In elgg_get_default_access(), this event filters the return value, so it can be used to alter the default value in
the input/access view. For core plugins, the value „input_params“ has the keys „entity“ (ElggEntity|false), „enti-
ty_type“ (string), „entity_subtype“ (string), „container_guid“ (int) are provided. An empty entity value generally
means the form is to create a new object.

classes, icon
Can be used to filter CSS classes applied to icon glyphs. By default, Elgg uses FontAwesome. Plugins can use
this event to switch to a different font family and remap icon classes.

122 Kapitel 3. Continue Reading

Elgg Documentation, Release master

entity:icon:sizes, <entity_type>
Triggered by elgg_get_icon_sizes() and sets entity type/subtype specific icon sizes. entity_subtype will
be passed with the $params array to the callback.

entity:<icon_type>:sizes, <entity_type>
Allows filtering sizes for custom icon types, see entity:icon:sizes, <entity_type>.

The event must return an associative array where keys are the names of the icon sizes (e.g. „large“),
and the values are arrays with the following keys:

• w - Width of the image in pixels

• h - Height of the image in pixels

• square - Should the aspect ratio be a square (true/false)

• upscale - Should the image be upscaled in case it is smaller than the given width and height (true/false)

• crop - Is cropping allowed on this image size (true/false, default: true)

If the configuration array for an image size is empty, the image will be saved as an exact copy of
the source without resizing or cropping.

Example:

return [
'small' => [

'w' => 60,
'h' => 60,
'square' => true,
'upscale' => true,

],
'large' => [

'w' => 600,
'h' => 600,
'upscale' => false,

],
'original' => [],

];

entity:icon:url, <entity_type>
Triggered when entity icon URL is requested, see entity icons. Callback should return URL for the icon of
size $params['size'] for the entity $params['entity']. Following parameters are available through the
$params array:

entity
Entity for which icon url is requested.

viewtype
The type of view e.g. 'default' or 'json'.

size
Size requested, see entity icons for possible values.

Example on how one could default to a Gravatar icon for users that have not yet uploaded an avatar:

// Priority 600 so that handler is triggered after avatar handler
elgg_register_event_handler('entity:icon:url', 'user', 'gravatar_icon_handler', 600);

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 123

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

/**
* Default to icon from gravatar for users without avatar.
*
* @param \Elgg\Event $event 'entity:icon:url', 'user'
*
* @return string|null
*/
function gravatar_icon_handler(\Elgg\Event $event): ?string {

$entity = $event->getEntityParam();
$size = $event->getParam('size');

// Allow users to upload avatars
if ($entity->hasIcon($size)) {

return null;
}

// Generate gravatar hash for user email
$hash = md5(strtolower(trim($entity->email)));

// Default icon size
$size = '150x150';

// Use configured size if possible
$config = elgg_get_icon_sizes('user');
$key = $event->getParam('size');
if (isset($config[$key])) {

$size = $config[$key]['w'] . 'x' . $config[$key]['h'];
}

// Produce URL used to retrieve icon
return "https://www.gravatar.com/avatar/{$hash}?s={$size}";

}

entity:<icon_type>:url, <entity_type>
Allows filtering URLs for custom icon types, see entity:icon:url, <entity_type>

entity:icon:file, <entity_type>
Triggered by ElggEntity::getIcon() and allows plugins to provide an alternative ElggIcon object that
points to a custom location of the icon on filestore. The handler must return an instance of ElggIcon or an
exception will be thrown.

entity:<icon_type>:file, <entity_type>
Allows filtering icon file object for custom icon types, see entity:icon:file, <entity_type>

entity:<icon_type>:prepare, <entity_type>
Triggered by ElggEntity::saveIcon*() methods and can be used to prepare an image from uploaded/linked
file. This event can be used to e.g. rotate the image before it is resized/cropped, or it can be used to extract an image
frame if the uploaded file is a video. The handler must return an instance of ElggFile with a simpletype that
resolves to image. The $return value passed to the event is an instance of ElggFile that points to a temporary
copy of the uploaded/linked file.

The $params array contains:

124 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• entity - entity that owns the icons

• file - original input file before it has been modified by other events

entity:<icon_type>:save, <entity_type>
Triggered by ElggEntity::saveIcon*() methods and can be used to apply custom image manipulation logic
to resizing/cropping icons. The handler must return true to prevent the core APIs from resizing/cropping icons.
The $params array contains:

• entity - entity that owns the icons

• file - ElggFile object that points to the image file to be used as source for icons

• x1, y1, x2, y2 - cropping coordinates

entity:<icon_type>:saved, <entity_type>
Triggered by ElggEntity::saveIcon*() methods once icons have been created. This event can be used by
plugins to create river items, update cropping coordinates for custom icon types etc. The handler can access the
created icons using ElggEntity::getIcon(). The $params array contains:

• entity - entity that owns the icons

• x1, y1, x2, y2 - cropping coordinates

entity:<icon_type>:delete, <entity_type>
Triggered by ElggEntity::deleteIcon() method and can be used for clean up operations. This event is
triggered before the icons are deleted. The handler can return false to prevent icons from being deleted. The
$params array contains:

• entity - entity that owns the icons

entity:url, <entity_type>:<entity_subtype>
Return the URL for the entity $params['entity']. Note: Generally it is better to override the getUrl()
method of ElggEntity. This event should be used when it’s not possible to subclass (like if you want to extend a
bundled plugin without overriding many views).

entity:url, <entity_type>
Return the URL for the entity $params['entity']. Note: Generally it is better to override the getUrl()
method of ElggEntity. This event should be used when it’s not possible to subclass (like if you want to extend a
bundled plugin without overriding many views).

extender:url, <annotation|metadata>
Return the URL for the annotation or metadata $params['extender'].

fields, <entity_type>:<entity_subtype>
Return an array of fields usable for elgg_view_field(). The result should be returned as an array of fields. It
is required to provide name and #type for each field.

$result = [];

$result[] = [
'#type' => 'longtext',
'name' => 'description',

];

return $result;

3.3. Developer Guides 125

Elgg Documentation, Release master

get_list, default_widgets
Filters a list of default widgets to add for newly registered users. The list is an array of arrays in the format:

array(
'name' => elgg_echo('name'),
'widget_columns' => 3,
'widget_context' => $widget_context,

'event_name' => $event_name,
'event_type' => $event_type,

'entity_type' => $entity_type,
'entity_subtype' => $entity_subtype,

)

handlers, widgets
Triggered when a list of available widgets is needed. Plugins can conditionally add or remove widgets from this
list or modify attributes of existing widgets like context or multiple.

maintenance:allow, url
Return boolean if the URL $params['current_url'] and the path $params['current_path']

is allowed during maintenance mode.

plugin_setting, <entity type>
Can be used to change the value of the setting being saved

Params contains: - entity - The ElggEntity where the plugin setting is being saved - plugin_id - The ID
of the plugin for which the setting is being saved - name - The name of the setting being saved - value - The
original value of the setting being saved

Return value should be a scalar in order to be able to save it to the database. An error will be logged if this is not
the case.

public_pages, walled_garden
Filters a list of URLs (paths) that can be seen by logged out users in a walled garden mode. Handlers must return
an array of regex strings that will allow access if matched. Please note that system public routes are passed as the
default value to the event, and plugins must take care to not accidentally override these values.

The $params array contains:

• url - URL of the page being tested for public accessibility

relationship:url, <relationship_name>
Filter the URL for the relationship object $params['relationship'].

robots.txt, site
Filter the robots.txt values for $params['site'].

setting, plugin
Filter plugin settings. $params contains:

• plugin - An ElggPlugin instance

• plugin_id - The plugin ID

• name - The name of the setting

126 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• value - The value to set

to:object, <entity_type|metadata|annotation|relationship|river_item>
Converts the entity $params['entity'] to a StdClass object. This is used mostly for exporting entity properties
for portable data formats like JSON and XML.

Plugins

Groups

tool_options, group
Filters a collection of tools available within a specific group:

The $return is \Elgg\Collections\Collection<\Elgg\Groups\Tool>, a collection of group tools.

The $params array contains:

• entity - \ElggGroup

Web Services

register, api_methods``
Triggered when the ApiRegistrationService is constructed which allows to add/remove/edit webservice configu-
rations

rest, init
Triggered by the web services rest handler. Plugins can set up their own authentication handlers, then return true
to prevent the default handlers from being registered.

rest:output, <method_name>
Filter the result (and subsequently the output) of the API method

3.3.14 File System

Contents

• Filestore

• File Objects

• Temporary files

3.3. Developer Guides 127

Elgg Documentation, Release master

Filestore

Location

Elgg’s filestore is located in the site’s dataroot that is configured during installation, and can be modified via site
settings in Admin interface.

Directory Structure

The structure of the filestore is tied to file ownership by Elgg entities. Whenever the first file owned by an entity is
written to the filestore, a directory corresponding to the entity GUID will be created within a parent bucket directory
(buckets are bound to 5000 guids). E.g. files owned by user with guid 7777 will be located in 5000/7777/.

When files are created, filenames can contain subdirectory names (often referred to as $prefix throughout the code).
For instance, avatars of the above user, can be found under 5000/7777/profile/.

File Objects

Writing Files

To write a file to the filestore, you would use an instance of ElggFile. Even though ElggFile extends ElggObject
and can be stored as an actual Elgg entity, that is not always necessary (e.g. when writing thumbs of an image).

$file = new ElggFile();
$file->owner_guid = 7777;
$file->setFilename('portfolio/files/sample.txt');
$file->open('write');
$file->write('Contents of the file');
$file->close();

// to uprade this file to an entity
$file->save();

Reading Files

You can read file contents using instanceof of ElggFile.

// from an Elgg entity
$file = get_entity($file_guid);
readfile($file->getFilenameOnFilestore());

// arbitrary file on the filestore
$file = new ElggFile();
$file->owner_guid = 7777;
$file->setFilename('portfolio/files/sample.txt');

// option 1
$file->open('read');
$contents = $file->grabFile();
$file->close();

(Fortsetzung auf der nächsten Seite)

128 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

// option 2
$contents = file_get_contents($file->getFilenameOnFilestore());

Serving Files

You can serve files from filestore using elgg_get_inline_url() and elgg_get_download_url(). Both functions
accept 3 arguments:

• ``file`` An instance of ElggFile to be served

• ``use_cookie`` If set to true, validity of the URL will be limited to current session

• ``expires`` Expiration time of the URL

You can use use_cookie and expires arguments as means of access control. For example, users avatars in most cases
have a long expiration time and do not need to be restricted by current session - this will allows browsers to cache the
images and file service will send appropriate Not Modified headers on consecutive requests.

The default behaviour of use_cookie can be controlled on the admin security settings page.

For entities that are under Elgg’s access control, you may want to use cookies to ensure that access settings are respected
and users do not share download URLs with somebody else.

You can also invalidated all previously generated URLs by updating file’s modified time, e.g. by using touch().

Embedding Files

Please note that due to their nature inline and download URLs are not suitable for embedding. Embed URLs must be
permanent, whereas inline and download URLs are volatile (bound to user session and file modification time).

To embed an entity icon, use elgg_get_embed_url().

Handling File Uploads

In order to implement an action that saves a single file uploaded by a user, you can use the following approach:

// in your form
echo elgg_view('input/file', [

'name' => 'upload',
'label' => 'Select an image to upload',
'help' => 'Only jpeg, gif and png images are supported',

]);

// in your action
$uploaded_file = elgg_get_uploaded_file('upload');
if (!$uploaded_file) {

return elgg_error_response("No file was uploaded");
}

$supported_mimes = [
'image/jpeg',

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 129

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

'image/png',
'image/gif',

];

$mime_type = elgg()->mimetype->getMimeType($uploaded_file->getPathname());
if (!in_array($mime_type, $supported_mimes)) {

return elgg_error_response("{$mime_type} is not supported");
}

$file = new ElggFile();
$file->owner_guid = elgg_get_logged_in_user_guid();
if ($file->acceptUploadedFile($uploaded_file)) {

$file->save();
}

If your file input supports multiple files, you can iterate through them in your action:

// in your form
echo elgg_view('input/file', [

'name' => 'upload[]',
'multiple' => true,
'label' => 'Select images to upload',

]);

// in your action
foreach (elgg_get_uploaded_files('upload') as $upload) {

$file = new ElggFile();
$file->owner_guid = elgg_get_logged_in_user_guid();
if ($file->acceptUploadedFile($upload)) {

$file->save();
}

}

Bemerkung: If images are uploaded their is an automatic attempt to fix the orientation of the image.

Temporary files

If you ever need a temporary file you can use elgg_get_temp_file(). You’ll get an instance of an ElggTempFile
which has all the file functions of an ElggFile, but writes it’s data to the systems temp folder.

Warnung: It’s not possible to save the ElggTempFile to the database. You’ll get an Elgg\Exceptions\
Filesystem\IOException if you try.

130 Kapitel 3. Continue Reading

Elgg Documentation, Release master

3.3.15 Group Tools

Elgg groups allow group administrators to enable/disable various tools available within a group. These tools are pro-
vided by other plugins like blog or file.

Plugins can access group tool register via elgg()->group_tools.

elgg()->group_tools->register('my-tool', [
'default_on' => false, // default is true
'label' => elgg_echo('my-tool:checkbox:label'),
'priority' => 300, // display this earlier than other modules/tools

]);

A registered tool will have an option to be toggled on the group edit form, and can have a profile view module associated
with it. To add a profile module, simply add a corresponding view as groups/profile/module/<tool_name>. This
view will only be called if the tool is enabled.

If you simply wish to list some content in the group you can use the groups/profile/module view with some
additional parameters.

• entity_type: in combination with the entity_subtype it can generate everything the module needs

• entity_subtype: in combination with the entity_type it can generate everything the module needs

• no_results: custom no results found text

The following will be automaticly generated:

• title: based on the language key collection:<entity_type>:<entity_subtype>:group

• content: elgg_list_entities() based on given type/subtype

• all_link: based on the route name collection:<entity_type>:<entity_subtype>:group

• add_link: based on the route name add:<entity_type>:<entity_subtype>:group and with a permissions
check to the given type/subtype

// file: groups/profile/module/my-tool.php

// if you wish to list some content (eg. files) in the group
// you can use the following
$params = [

'entity_type' => 'object',
'entity_subtype' => 'file',
'no_results' => elgg_echo('file:none'),

];
$params = $params + $vars;

echo elgg_view('groups/profile/module', $params);

Alternatively you can generate your own title and content

// file: groups/profile/module/my-tool.php

echo elgg_view('groups/profile/module', [
'title' => elgg_echo('my-tool'),
'content' => 'Hello, world!',

]);

You can programmically enable and disable tools for a given group:

3.3. Developer Guides 131

Elgg Documentation, Release master

$group = get_entity($group_guid);

// enables the file tool for the group
$group->enableTool('file');

// disables the file tool for the group
$group->disableTool('file');

If you want to allow a certain feature in a group only if the group tool option is enabled, you can check this using
\ElggGroup::isToolEnabled($tool_option).

It is also a possibility to use a gatekeeper function to prevent access to a group page based on an enabled tool.

elgg_group_tool_gatekeeper('file', $group);

Siehe auch:
Read more about gatekeepers here: Gatekeepers

If you need the configured group tool options for a specific group you can use the
elgg()->group_tools->group($group) function.

3.3.16 Plugin coding guidelines

In addition to the Elgg Coding Standards, these are guidelines for creating plugins. Core plugins are being updated to
this format and all plugin authors should follow these guidelines in their own plugins.

Siehe auch:
Be sure to follow the Plugin skeleton for your plugin’s layout.

Warnung: Don’t Modify Core

Contents

• Use standardized routing with page handlers

• Use standardized page handlers and scripts

• The object/<subtype> view

• Actions

• Directly calling a file

• Recommended

132 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Use standardized routing with page handlers

• Example: Bookmarks plugin

• Page handlers should accept the following standard URLs:

Purpose URL
All page_handler/all
User page_handler/owner/<username>
User friends‘ page_handler/friends/<username>
Single entity page_handler/view/<guid>/<title>
Add page_handler/add/<container_guid>
Edit page_handler/edit/<guid>
Group list page_handler/group/<guid>/owner

• Include page handler scripts from the page handler. Almost every page handler should have a page handler script.
(Example: bookmarks/all => mod/bookmarks/views/default/resources/bookmarks/all.php)

• Pass arguments like entity guids to the resource view via $vars in elgg_view_resource().

• Call elgg_gatekeeper() and elgg_admin_gatekeeper() in the page handler function if required.

• The group URL should use views like resources/groups/*.php to render pages.

• Page handlers should not contain HTML.

Use standardized page handlers and scripts

• Example: Bookmarks plugin

• Store page functionality in mod/<plugin>/views/default/resources/<page_handler>/<page_name>.
php

• Use elgg_view_resource('<page_handler>/<page_name>') to render that.

• Use the default page layout in page handler scripts: $content = elgg_view_layout('default',
$options);

• Page handler scripts should not contain HTML

• Call elgg_push_entity_breadcrumbs() or elgg_push_collection_breadcrumbs() in the page handler
scripts.

• No need to worry about setting the page owner if the URLs are in the standardized format

• For group content, check the container_guid by using elgg_get_page_owner_entity()

The object/<subtype> view

• Example: Bookmarks plugin

• Make sure there are views for $vars['full_view'] == true and $vars['full_view'] == false

• Check for the object in $vars['entity'] . Use elgg_instance_of() to make sure it’s the type entity you
want. Return true to short circuit the view if the entity is missing or wrong.

• Use the new list body and list metadata views to help format. You should use almost no markup in these views.

• Update action structure - Example: Bookmarks plugin.

3.3. Developer Guides 133

Elgg Documentation, Release master

• Namespace action files and action names (example: mod/blog/actions/blog/save.php => action/blog/
save)

• Use the following action URLs:

Purpose URL
Add action/plugin/save
Edit action/plugin/save
Delete action/plugin/delete

• Make the delete action accept action/<handler>/delete?guid=<guid> so the metadata entity menu has the
correct URL by default

Actions

Actions are transient states to perform an action such as updating the database or sending a notification to a user. Used
correctly, actions provide a level of access control and prevent against CSRF attacks.

Actions require action (CSRF) tokens to be submitted via GET/POST, but these are added automatically by
elgg_view_form() and by using the is_action argument of the output/url view.

Action best practices

Action files are included within Elgg’s action system; like views, they are not regular scripts executable by users. Do
not boot the Elgg core in your file and direct users to load it directly.

Because actions are time-sensitive they are not suitable for links in emails or other delayed notifications. An example
of this would be invitations to join a group. The clean way to create an invitation link is to create a page handler for
invitations and email that link to the user. It is then the page handler’s responsibility to create the action links for a user
to join or ignore the invitation request.

Consider that actions may be submitted via XHR requests, not just links or form submissions.

Directly calling a file

This is an easy one: Don’t do it. With the exception of 3rd party application integration, there is not a reason to directly
call a file in mods directory.

Recommended

These points are good ideas, but are not yet in the official guidelines. Following these suggestions will help to keep
your plugin consistent with Elgg core.

• Update the widget views (see the blog or file widgets)

• Update the group profile ‚widget‘ using blog or file plugins as example

• Update the forms
– Move form bodies to /forms/<handler>/<action> to use Evan’s new elgg_view_form()

– Use input views in form bodies rather than html

– Add a function that prepares the form (see mod/file/lib/file.php for example)

– Integrate sticky forms (see the file plugin’s upload action and form prepare function)

134 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• Clean up CSS/HTML
– Should be able to remove almost all CSS (look for patterns that can be moved into core if you need

CSS)

• Use hyphens rather than underscores in classes/ids

• Do not use the bundled category with your plugins. That is for plugins distributed with Elgg

• Don’t use register_shutdown_function as you may not have access to certain Elgg parts anymore (eg data-
base). Instead use the shutdown system event

3.3.17 Helper functions

Contents

• Input and output

• Entity methods

• Entity and context retrieval

• Plugins

• Interface and annotations

• Messages

Input and output

• get_input($name) Grabs information from a form field (or any variable passed using GET or POST). Also
sanitises input, stripping Javascript etc.

• set_input($name, $value) Forces a value to a particular variable for subsequent retrieval by get_input()

Entity methods

• $entity->getURL() Returns the URL of any entity in the system

• $entity->getGUID() Returns the GUID of any entity in the system

• $entity->canEdit() Returns whether or not the current user can edit the entity

• $entity->getOwnerEntity() Returns the ElggUser owner of a particular entity

Entity and context retrieval

• elgg_get_logged_in_user_entity() Returns the ElggUser for the current user

• elgg_get_logged_in_user_guid() Returns the GUID of the current user

• elgg_is_logged_in() Is the viewer logged in

• elgg_is_admin_logged_in() Is the view an admin and logged in

• elgg_gatekeeper() Shorthand for checking if a user is logged in. Forwards user to front page if not

3.3. Developer Guides 135

Elgg Documentation, Release master

• elgg_admin_gatekeeper() Shorthand for checking the user is logged in and is an admin. Forwards user to
front page if not

• get_user($user_guid) Given a GUID, returns a full ElggUser entity

• elgg_get_page_owner_guid() Returns the GUID of the current page owner, if there is one

• elgg_get_page_owner_entity() Like elgg_get_page_owner_guid() but returns the full entity

• elgg_get_context() Returns the current page’s context - eg „blog“ for the blog plugin, „thewire“ for the wire,
etc. Returns „main“ as default

• elgg_set_context($context) Forces the context to be a particular value

• elgg_push_context($context) Adds a context to the stack

• elgg_pop_context() Removes the top context from the stack

• elgg_in_context($context) Checks if you’re in a context (this checks the complete stack, eg. ‚widget‘ in
‚groups‘)

Plugins

• elgg_is_active_plugin($plugin_id) Check if a plugin is installed and enabled

Interface and annotations

• elgg_view_image_block($icon, $info) Return the result in a formatted list

• elgg_view_comments($entity) Returns any comments associated with the given entity

• elgg_get_friendly_time($unix_timestamp) Returns a date formatted in a friendlier way - „18 minutes
ago“, „2 days ago“, etc.

Messages

• elgg_register_success_message($message) Registers a success message

• elgg_register_error_message($message) Registers an error message

• elgg_view_message($type, $message) Outputs a message

3.3.18 Internationalization

Make your UI translatable into many different languages.

If you’d like to contribute translations to Elgg, see the contributors‘ guide.

The default language is en for English. Elgg uses a fallback system for languages:

1. The language of the user

2. The site language

3. English

136 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Overview

Translations are stored in PHP files in the /languages directory of your plugin. Each file corresponds to a language.
The format is /languages/{language-code}.php where {language-code} is the ISO 639-1 short code for the
language. For example:

<?php // mod/example/languages/en.php

return [
'example:text' => 'Some example text',

];

To override an existing translation, include it in your plugin’s language file, and make sure your plugin is ordered later
on the Admin > Plugins page:

<?php // mod/better_example/languages/en.php

return [
'example:text' => 'Some better text!',

];

Bemerkung: Unless you are overriding core’s or another plugin’s language strings, it is good practice for the language
keys to start with your plugin name. For example: yourplugin:success, yourplugin:title, etc. This helps avoid
conflicts with other language keys.

Server-side API

elgg_echo($key, $args, $language)

Output the translation of the key in the current language.

Example:

echo elgg_echo('example:text');

It also supports variable replacement using vsprintf syntax:

// 'welcome' => 'Welcome to %s, %s!'
echo elgg_echo('welcome', [

elgg_get_config('sitename'),
elgg_get_logged_in_user_entity()->getDisplayName(),

]);

To force which language should be used for translation, set the third parameter:

echo elgg_echo('welcome', [], $user->language);

To first test whether elgg_echo() can find a translation:

$key = 'key:that:might:not:exist';
if (!elgg_language_key_exists($key)) {

$key = 'fallback:key';
}

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 137

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

echo elgg_echo($key);

Bemerkung: Some APIs allow creating translations for new keys. Translators should always include an Eng-
lish translation as a fallback. This makes elgg_language_key_exists($key) a reliable way to predict whether
elgg_echo($key) will succeed.

Javascript API

i18n.echo(key, args)

This function is like elgg_echo in PHP.

Client-side translations are loaded asynchronously. Ensure translations are available by requiring the „elgg/i18n“ mo-
dule:

import i18n from 'elgg/i18n';

alert(i18n.echo('my_key'));

3.3.19 JavaScript

Contents

• JavaScript Modules

– Executing a module in the current page

– Defining the Module

– Passing settings to modules

– Setting the URL of a module

• Modules provided with Elgg

– Module elgg

– Module elgg/Ajax

– Module elgg/hooks

– Module elgg/i18n

– Module elgg/system_messages

– Module elgg/security

– Module elgg/spinner

– Module elgg/popup

– Module elgg/widgets

– Module elgg/lightbox

138 Kapitel 3. Continue Reading

Elgg Documentation, Release master

– Module elgg/ckeditor

– Inline tabs component

• Traditional scripts

• Hooks

– Registering hook handlers

– The handler function

– Triggering custom hooks

– Available hooks

• Third-party assets

JavaScript Modules

Developers should use the browser native ECMAScript modules for writing JavaScript code in Elgg.

Here we’ll describe making and importing these modules in Elgg.

Executing a module in the current page

Telling Elgg to load an existing module in the current page is easy:

<?php
elgg_import_esm('myplugin/say_hello');

On the client-side, this will asynchronously load the module, load any dependencies, and execute the module’s code,
if it has any.

Defining the Module

Files with the extension „.mjs“ are automatically added to an importmap so they can be imported based on their view
name.

For example if we have a file in „views/default/myplugin/say_hello.mjs“ we can import from php with
elgg_import_esm('myplugin/say_hello') or from javascript using the import statement import 'myplugin/
say_hello'; or on demand with the import() function.

If your modules do not have an „.mjs“ extension, for example when they come from a dependency, you might need to
register it to the importmap. After registration they can be imported under their registered name.

<?php
elgg_register_esm('myplugin/say_hello', elgg_get_simplecache_url('external/dependency/
→˓modulename.js'));

3.3. Developer Guides 139

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

Elgg Documentation, Release master

Passing settings to modules

The elgg.data events

The elgg module provides an object elgg.data which is populated from two server side events:

• elgg.data, page: This filters an associative array of data passed to the client.

Let’s pass some data to a module:

<?php

function myplugin_config_page(\Elgg\Event $event) {
$value = $event->getValue();
$value['myplugin']['api'] = elgg_get_site_url() . 'myplugin-api';
$value['myplugin']['key'] = 'none';

$user = elgg_get_logged_in_user_entity();
if ($user) {

$value['myplugin']['key'] = $user->myplugin_api_key;
}

return $value;
}

elgg_register_event_handler('elgg.data', 'page', 'myplugin_config_page');

define(['elgg'], function(elgg) {
var api = elgg.data.myplugin.api;
var key = elgg.data.myplugin.key; // "none" or a user's key

// ...
});

Setting the URL of a module

You may have an AMD script outside your views you wish to make available as a module.

The best way to accomplish this is by configuring the path to the file using the views section of the elgg-plugin.php
file in the root of your plugin:

<?php // elgg-plugin.php
return [

'views' => [
'default' => [

'underscore.js' => 'vendor/npm-asset/underscore/underscore.min.js',
],

],
];

If you’ve copied the script directly into your plugin instead of managing it with Composer, you can use something like
this instead:

140 Kapitel 3. Continue Reading

Elgg Documentation, Release master

<?php // elgg-plugin.php
return [

'views' => [
'default' => [

'underscore.js' => __DIR__ . '/node_modules/underscore/underscore.min.js
→˓',

],
],

];

That’s it! Elgg will now load this file whenever the „underscore“ module is requested.

Modules provided with Elgg

Module elgg

elgg.normalize_url()

Normalize a URL relative to the elgg root:

// "http://localhost/elgg/blog"
elgg.normalize_url('/blog');

elgg.forward()

Redirect to a new page.

elgg.forward('/blog');

This function automatically normalizes the URL.

elgg.parse_url()

Parse a URL into its component parts:

// returns {
// fragment: "fragment",
// host: "community.elgg.org",
// path: "/file.php",
// query: "arg=val"
// }
elgg.parse_url('http://community.elgg.org/file.php?arg=val#fragment');

elgg.get_logged_in_user_guid()

Returns the logged in user’s guid.

elgg.is_logged_in()

True if the user is logged in.

elgg.is_admin_logged_in()

True if the user is logged in and is an admin.

There are a number of configuration values set in the elgg object:

3.3. Developer Guides 141

Elgg Documentation, Release master

// The root of the website.
elgg.config.wwwroot;
// The default site language.
elgg.config.language;
// The Elgg release (X.Y.Z).
elgg.config.release;

Module elgg/Ajax

See the Ajax page for details.

Module elgg/hooks

The elgg/hooks module can be used to have plugins interact with eachother.

Translate interface text

define(['elgg/hooks'], function (hooks) {
hooks.register('my_plugin:filter', 'value', handler, priority);

var result = hooks.trigger('my_plugin:filter', 'value', {}, 'default');

Module elgg/i18n

The elgg/i18n module can be used to use translations.

Translate interface text

define(['elgg/i18n'], function (i18n) {
i18n.echo('example:text', ['arg1']);

});

Module elgg/system_messages

The elgg/system_messages module can be used to show system messages to the user.

define(['elgg/system_messages'], function (system_messages) {
system_messages.success('Your success message');

system_messages.error('Your error message');

system_messages.clear();
});

142 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Module elgg/security

The elgg/security module can be used to add a security token to an object, URL, or query string:

define(['elgg/security'], function (security) {
// returns {

// __elgg_token: "1468dc44c5b437f34423e2d55acfdd87",
// __elgg_ts: 1328143779,
// other: "data"
// }
security.addToken({'other': 'data'});

// returns: "action/add?__elgg_ts=1328144079&__elgg_
→˓token=55fd9c2d7f5075d11e722358afd5fde2"

security.addToken("action/add");

// returns "?arg=val&__elgg_ts=1328144079&__elgg_
→˓token=55fd9c2d7f5075d11e722358afd5fde2"

security.addToken("?arg=val");
});

Module elgg/spinner

The elgg/spinner module can be used to create an loading indicator fixed to the top of the window. This can be used
to give users feedback that the system is performing a longer running task. Using ajax features from elgg/Ajax will
do this by default. You can also use it in your own code.

define(['elgg/spinner'], function (spinner) {
spinner.start();
// your code
spinner.stop();

});

Module elgg/popup

The elgg/popup module can be used to display an overlay positioned relatively to its anchor (trigger).

The elgg/popup module is automatically loaded for content drawn using output/url with the
class='elgg-popup' attribute and defining target module with a href (or data-href) attribute. Popup mo-
dule positioning can be defined with data-position attribute of the trigger element.

echo elgg_format_element('div', [
'class' => 'elgg-module-popup hidden',
'id' => 'popup-module',

], 'Popup module content');

// Simple anchor
echo elgg_view('output/url', [
'href' => '#popup-module',
'text' => 'Show popup',
'class' => 'elgg-popup',

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 143

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

]);

// Button with custom positioning of the popup
elgg_import_esm('elgg/popup');
echo elgg_format_element('button', [
'class' => 'elgg-button elgg-button-submit elgg-popup',
'text' => 'Show popup',
'data-href' => '#popup-module',
'data-position' => json_encode([
'my' => 'center bottom',
'at' => 'center top',

]),
]);

The elgg/popup module allows you to build out more complex UI/UX elements. You can open and close popup
modules programmatically:

define(['jquery', 'elgg/popup'], function($, popup) {
$(document).on('click', '.elgg-button-popup', function(e) {

e.preventDefault();

var $trigger = $(this);
var $target = $('#my-target');
var $close = $target.find('.close');

popup.open($trigger, $target, {
'collision': 'fit none'

});

$close.on('click', popup.close);
});

});

You can use getOptions, ui.popup plugin hook to manipulate the position of the popup before it has been opened.
You can use jQuery open and close events to manipulate popup module after it has been opened or closed.

define(['jquery', 'elgg/Ajax'], function($, Ajax) {

$('#my-target').on('open', function() {
var $module = $(this);
var $trigger = $module.data('trigger');
var ajax = new Ajax();

ajax.view('my_module', {
beforeSend: function() {

$trigger.hide();
$module.html('').addClass('elgg-ajax-loader');

},
success: function(output) {

$module.removeClass('elgg-ajax-loader').html(output);
}

(Fortsetzung auf der nächsten Seite)

144 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

});
}).on('close', function() {
var $trigger = $(this).data('trigger');
$trigger.show();

});
});

Open popup modules will always contain the following data that can be accessed via $.data():

• trigger - jQuery element used to trigger the popup module to open

• position - An object defining popup module position that was passed to $.position()

By default, target element will be appended to $('body') thus altering DOM hierarchy. If you need to preserve the
DOM position of the popup module, you can add .elgg-popup-inline class to your trigger.

Module elgg/widgets

Plugins that load a widget layout via Ajax should initialize via this module:

import('elgg/widgets').then((widgets) => {
widgets.default.init();

});

Module elgg/lightbox

Elgg is distributed with the Colorbox jQuery library. Please go to http://www.jacklmoore.com/colorbox for more in-
formation on the options of this lightbox.

Use the following classes to bind your anchor elements to a lightbox:

• elgg-lightbox - loads an HTML resource

• elgg-lightbox-photo - loads an image resource (should be used to avoid displaying raw image bytes instead
of an img tag)

• elgg-lightbox-inline - displays an inline HTML element in a lightbox

• elgg-lightbox-iframe - loads a resource in an iframe

You may apply colorbox options to an individual elgg-lightbox element by setting the attribute
data-colorbox-opts to a JSON settings object.

echo elgg_view('output/url', [
'text' => 'Open lightbox',
'href' => 'ajax/view/my_view',
'class' => 'elgg-lightbox',
'data-colorbox-opts' => json_encode([
'width' => '300px',

])
]);

Use "getOptions", "ui.lightbox" plugin hook to filter options passed to $.colorbox() whenever a lightbox is
opened.

elgg/lightbox AMD module should be used to open and close the lightbox programmatically:

3.3. Developer Guides 145

http://www.jacklmoore.com/colorbox

Elgg Documentation, Release master

define(['elgg/lightbox', 'elgg/spinner'], function(lightbox, spinner) {
lightbox.open({

html: '<p>Hello world!</p>',
onClosed: function() {

lightbox.open({
onLoad: spinner.start,
onComplete: spinner.stop,
photo: true,
href: 'https://elgg.org/cache/1457904417/default/community_theme/graphics/

→˓logo.png',
});

}
});

});

To support gallery sets (via rel attribute), you need to bind colorbox directly to a specific selector (note that this will
ignore data-colorbox-opts on all elements in a set):

import('elgg/lightbox').then((lightbox) => {
var options = {

photo: true,
width: 500

};
lightbox.default.bind('a[rel="my-gallery"]', options, false); // 3rd attribute␣

→˓ensures binding is done without proxies
});

You can also resize the lightbox programmatically if needed:

define(['elgg/lightbox'], function(lightbox) {
lightbox.resize({

width: '300px'
});

});

If you wish your content to be loaded by the elgg/Ajax AMD module, which automaticly loads the JS dependencies,
you can pass the option ajaxLoadWithDependencies

define(['elgg/lightbox'], function(lightbox) {
lightbox.open({

href: 'some/view/with/js/dependencies',
ajaxLoadWithDependencies: true

});
});

146 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Module elgg/ckeditor

This module can be used to add WYSIWYG editor to a textarea (requires ckeditor plugin to be enabled). Note that
WYSIWYG will be automatically attached to all instances of .elgg-input-longtext.

import('elgg/ckeditor').then((elggCKEditor) => {
elggCKEditor.default.bind('#my-text-area');

// Toggle CKEditor
elggCKEditor.default.toggle('#my-text-area');

// Focus on CKEditor input
elggCKEditor.default.focus('#my-text-area');
// or
$('#my-text-area').trigger('focus');

// Reset CKEditor input
elggCKEditor.default.reset('#my-text-area');
// or
$('#my-text-area').trigger('reset');

});

Inline tabs component

Inline tabs component fires an open event whenever a tabs is open and, in case of ajax tabs, finished loading:

// Add custom animation to tab content
$(document).on('open', '.theme-sandbox-tab-callback', function() {

$(this).find('a').text('Clicked!');
$(this).data('target').hide().show('slide', {

duration: 2000,
direction: 'right',
complete: function() {

alert('Thank you for clicking. We hope you enjoyed the show!');
$(this).css('display', ''); // .show() adds display property

}
});

});

Traditional scripts

Although we highly recommend using AMD modules, and there is no Elgg API for loading the scripts, you can register
scripts in a event handler to add elements to the head links;

elgg_register_event_handler('head', 'page', $callback);

3.3. Developer Guides 147

Elgg Documentation, Release master

Hooks

The JS engine has a hooks system similar to the PHP engine’s events: hooks are triggered and plugins can register
functions to react or alter information.

Registering hook handlers

Handler functions are registered using hooks.register(). Multiple handlers can be registered for the same hook.

define(['elgg/hooks'], function(hooks) {
hooks.register('name', 'type', {handler}, {priority});

});

The handler function

The handler will receive 4 arguments:

• hook - The hook name

• type - The hook type

• params - An object or set of parameters specific to the hook

• value - The current value

The value will be passed through each hook. Depending on the hook, callbacks can simply react or alter data.

Triggering custom hooks

Plugins can trigger their own hooks:

define(['elgg/hooks'], function(hooks) {
hooks.trigger('name', 'type', {params}, "value");

});

Available hooks

init, system
Plugins should register their init functions for this hook. It is fired after Elgg’s JS is loaded and all plugin boot
modules have been initialized.

getOptions, ui.popup
This hook is fired for pop up displays ("rel"="popup") and allows for customized placement options.

getOptions, ui.lightbox
This hook can be used to filter options passed to $.colorbox()

config, ckeditor
This filters the CKEditor config object. Register for this hook in a plugin boot module. The defaults can be seen
in the module elgg/ckeditor/config.

prepare, ckeditor
This hook can be used to decorate CKEDITOR global. You can use this hook to register new CKEditor plugins
and add event bindings.

148 Kapitel 3. Continue Reading

Elgg Documentation, Release master

ajax_request_data, *
This filters request data sent by the elgg/Ajax module. See Ajax for details. The hook must check if the data is
a plain object or an instanceof FormData to piggyback the values using correct API.

ajax_response_data, *
This filters the response data returned to users of the elgg/Ajax module. See Ajax for details.

Third-party assets

We recommend managing third-party scripts and styles with Composer. Elgg’s composer.json is configured to install
dependencies from the NPM or Yarn package repositories using Composer command-line tool. Core configuration
installs the assets from Asset Packagist (a repository managed by the Yii community).

Alternatively, you can install fxp/composer-asset-plugin globally to achieve the same results, but the installation
and update takes much longer.

For example, to include jQuery, you could run the following Composer commands:

composer require npm-asset/jquery:~2.0

If you are using a starter-project, or pulling in Elgg as a composer dependency via a custom composer project, update
your composer.json with the following configuration:

{
"repositories": [

{
"type": "composer",
"url": "https://asset-packagist.org"

}
],

"config": {
"fxp-asset": {

"enabled": false
}

},
}

You can find additional information at Asset Packagist website.

3.3.20 Menus

Elgg contains helper code to build menus throughout the site.

Every single menu requires a name, as does every single menu item. These are required in order to allow easy overriding
and manipulation, as well as to provide events for theming.

Contents

• Basic usage

• Admin menu

• Advanced usage

• Creating a new menu

3.3. Developer Guides 149

https://asset-packagist.org
https://asset-packagist.org

Elgg Documentation, Release master

• Child Dropdown Menus

• Theming

• Toggling Menu Items

• JavaScript

Basic usage

Basic functionalities can be achieved through these two functions:

• elgg_register_menu_item() to add an item to a menu

• elgg_unregister_menu_item() to remove an item from a menu

You normally want to call them from your plugin’s init function.

Examples

// Add a new menu item to the site main menu
elgg_register_menu_item('site', array(

'name' => 'itemname',
'text' => 'This is text of the item',
'href' => '/item/url',

));

// Remove the "Elgg" logo from the topbar menu
elgg_unregister_menu_item('topbar', 'elgg_logo');

Admin menu

You can also register page menu items to the admin backend menu. When registering for the admin menu you can set
the context of the menu items to admin so the menu items only show in the admin context. There are 3 default sections
to add your menu items to.

• administer for daily tasks, user management and other actionable tasks

• configure for settings, configuration and utilities that configure stuff

• information for statistics, overview of information or status

Advanced usage

Headers

For accessibility reasons each menu will get an aria-label which defaults to the menu name, but can be translated
by making sure the language key menu:<menu name>:header is available.

It’s also possible to show menu section headers by setting show_section_headers to true in elgg_view_menu()

150 Kapitel 3. Continue Reading

Elgg Documentation, Release master

echo elgg_view_menu('my_menu', [
'show_section_headers' => true,

]);

The headers have a magic language key available menu:<menu name>:header:<section name> in order to be able
to translate the headers.

Events

You can get more control over menus by using events and the public methods provided by the ElggMenuItem class.

There are three events that can be used to modify a menu:
• 'parameters', 'menu:<menu name>' to add or modify parameters use for the menu building (eg. sor-

ting)

• 'register', 'menu:<menu name>' to add or modify items (especially in dynamic menus)

• 'prepare', 'menu:<menu name>' to modify the structure of the menu before it is displayed

When you register an event handler, replace the <menu name> part with the internal name of the menu.

The third parameter passed into a menu handler contains all the menu items that have been registered so far by Elgg
core and other enabled plugins. In the handler we can loop through the menu items and use the class methods to interact
with the properties of the menu item.

In some cases a more granular version of the register and prepare menu events exist with menu:<menu
name>:<type>:<subtype>, this applies when the menu gets provided an \ElggEntity in $params['entity'] or
an \ElggAnnotation in $params['annotation'] or an \ElggRelationship in $params['relationship'].

Examples

Example 1: Change the URL for menu item called „albums“ in the owner_block menu:

/**
* Initialize the plugin
*/
function my_plugin_init() {

// Register an event handler for the owner_block menu
elgg_register_event_handler('register', 'menu:owner_block', 'my_owner_block_menu_

→˓handler');
}

/**
* Change the URL of the "Albums" menu item in the owner_block menu
*/
function my_owner_block_menu_handler(\Elgg\Event $event) {

$owner = $event->getEntityParam();

// Owner can be either user or a group, so we
// need to take both URLs into consideration:
switch ($owner->getType()) {

case 'user':
$url = "album/owner/{$owner->guid}";

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 151

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

break;
case 'group':

$url = "album/group/{$owner->guid}";
break;

}

$items = $event->getValue();
if ($items->has('albums')) {

$items->get('albums')->setURL($url);
}

return $items;
}

Example 2: Modify the entity menu for the ElggBlog objects
• Remove the thumb icon

• Change the „Edit“ text into a custom icon

/**
* Initialize the plugin
*/
function my_plugin_init() {

// Register an event handler for the entity menu
elgg_register_event_handler('register', 'menu:entity', 'my_entity_menu_handler');

}

/**
* Customize the entity menu for ElggBlog objects
*/
function my_entity_menu_handler(\Elgg\Event $event) {

// The entity can be found from the $params parameter
$entity = $event->getEntityParam();

// We want to modify only the ElggBlog objects, so we
// return immediately if the entity is something else
if (!$entity instanceof ElggBlog) {

return;
}

$items = $event->getValue();

$items->remove('likes');

if ($items->has('edit')) {
$items->get('edit')->setText('Modify');
$items->get('edit')->icon = 'pencil';

}

return $items;
}

152 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Creating a new menu

Elgg provides multiple different menus by default. Sometimes you may however need some menu items that don’t fit
in any of the existing menus. If this is the case, you can create your very own menu with the elgg_view_menu()
function. You must call the function from the view, where you want to menu to be displayed.

Example: Display a menu called „my_menu“ that displays it’s menu items in alphapetical order:

// in a resource view
echo elgg_view_menu('my_menu', array('sort_by' => 'text'));

You can now add new items to the menu like this:

// in plugin init
elgg_register_menu_item('my_menu', array(

'name' => 'my_page',
'href' => 'path/to/my_page',
'text' => elgg_echo('my_plugin:my_page'),

));

Furthermore it is now possible to modify the menu using the events 'register', 'menu:my_menu' and 'prepare',
'menu:my_menu'.

Child Dropdown Menus

Child menus can be configured using child_menu factory option on the parent item.

child_menu options array accepts display parameter, which can be used to set the child menu to open as dropdown
or be displayed via toggle. All other key value pairs will be passed as attributes to the ul element.

// Register a parent menu item that has a dropdown submenu
elgg_register_menu_item('my_menu', array(

'name' => 'parent_item',
'href' => '#',
'text' => 'Show dropdown menu',
'child_menu' => [

'display' => 'dropdown',
'class' => 'elgg-additional-child-menu-class',
'data-position' => json_encode([

'at' => 'right bottom',
'my' => 'right top',
'collision' => 'fit fit',

]),
'data-foo' => 'bar',
'id' => 'dropdown-menu-id',

],
));

// Register a parent menu item that has a hidden submenu toggled when item is clicked
elgg_register_menu_item('my_menu', array(

'name' => 'parent_item',
'href' => '#',
'text' => 'Show submenu',
'child_menu' => [

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 153

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

'display' => 'dropdown',
'class' => 'elgg-additional-submenu-class',
'data-toggle-duration' => 'medium',
'data-foo' => 'bar2',
'id' => 'submenu-id',

],
));

Theming

The menu name, section names, and item names are all embedded into the HTML as CSS classes (normalized to contain
only hyphens, rather that underscores or colons). This increases the size of the markup slightly but provides themers
with a high degree of control and flexibility when styling the site.

Example: The following would be the output of the foo menu with sections alt and default containing items baz
and bar respectively.

<ul class="elgg-menu elgg-menu-foo elgg-menu-foo-alt">
<li class="elgg-menu-item elgg-menu-item-baz">

<ul class="elgg-menu elgg-menu-foo elgg-menu-foo-default">

<li class="elgg-menu-item elgg-menu-item-bar">

Toggling Menu Items

There are situations where you wish to toggle menu items that are actions that are the opposite of each other and
ajaxify them. E.g. like/unlike, friend/unfriend, ban/unban, etc. Elgg has built-in support for this kind of actions. When
you register a menu item you can provide a name of the menu item (in the same menu) that should be toggled. An ajax
call will be made using the href of the menu item.

elgg_register_menu_item('my_menu', [
'name' => 'like',
'data-toggle' => 'unlike',
'href' => 'action/like',
'text' => elgg_echo('like'),

]);

elgg_register_menu_item('my_menu', [
'name' => 'unlike',
'data-toggle' => 'like',
'href' => 'action/unlike',
'text' => elgg_echo('unlike'),

]);

Bemerkung: The menu items are optimistically toggled. This means the menu items are toggled before the actions
finish. If the actions fail, the menu items will be toggled back.

154 Kapitel 3. Continue Reading

Elgg Documentation, Release master

JavaScript

It is common that menu items rely on JavaScript. You can bind client-side events to menu items by placing your
JavaScript into a module and defining the requirement during the registration.

elgg_register_menu_item('my_menu', array(
'name' => 'hide_on_click',
'href' => '#',
'text' => elgg_echo('hide:on:click'),
'item_class' => '.hide-on-click',
'deps' => ['navigation/menu/item/hide_on_click'],

));

// in navigation/menu/item/hide_on_click.mjs
import 'jquery';

$(document).on('click', '.hide-on-click', function(e) {
e.preventDefault();
$(this).hide();

});

3.3.21 Notifications

There are two ways to send notifications in Elgg:
• Instant notifications

• Event-based notifications send using a notifications queue

Contents

• Instant notifications

• Enqueued notifications

• Notification salutation and sign-off

• Notification methods

• Registering a new notification method

• Sending the notifications using your own method

• Subscriptions

• Muted notifications

• Temporarily disable notifications

• Notification settings

• Notification management

3.3. Developer Guides 155

Elgg Documentation, Release master

Instant notifications

The generic method to send a notification to a user is via the function notify_user(). It is normally used when we want
to notify only a single user. Notification like this might for example inform that someone has liked or commented the
user’s post.

The function usually gets called in an action file.

Example:

In this example a user ($user) is triggering an action to rate a post created by another user ($owner). After saving the
rating (ElggAnnotation $rating) to database, we could use the following code to send a notification about the new
rating to the owner.

// Subject of the notification
$subject = elgg_echo('ratings:notification:subject', array(), $owner->language);

// Summary of the notification
$summary = elgg_echo('ratings:notification:summary', array($user->getDisplayName()),
→˓$owner->language);

// Body of the notification message
$body = elgg_echo('ratings:notification:body', array(

$user->getDisplayName(),
$owner->getDisplayName(),
$rating->getValue() // A value between 1-5

), $owner->language);

$params = array(
'object' => $rating,
'action' => 'create',
'summary' => $summary

);

// Send the notification
notify_user($owner->guid, $user->guid, $subject, $body, $params);

Bemerkung: The language used by the recipient isn’t necessarily the same as the language of the person who trig-
gers the notification. Therefore you must always remember to pass the recipient’s language as the third parameter to
elgg_echo().

Bemerkung: The 'summary' parameter is meant for notification plugins that only want to display a short message
instead of both the subject and the body. Therefore the summary should be terse but still contain all necessary infor-
mation.

156 Kapitel 3. Continue Reading

http://reference.elgg.org/notification_8php.html#a9d8de7faa63baf2dcd5d42eb8f76eaa1

Elgg Documentation, Release master

Enqueued notifications

On large sites there may be many users who have subscribed to receive notifications about a particular event. Sending
notifications immediately when a user triggers such an event might remarkably slow down page loading speed. This is
why sending of such notifications shoud be left for Elgg’s notification queue.

New notification events can be registered with the elgg_register_notification_event() function or in the elgg-
plugin configuration. Notifications about registered events will be sent automatically to all subscribed users.

This is the workflow of the notifications system:

1. Someone does an action that triggers an event within Elgg
• The action can be create, update or delete

• The target of the action can be any instance of the ElggEntity class (e.g. a Blog post)

2. The notifications system saves this event into a notifications queue in the database

3. When the event handler for the one-minute interval gets triggered, the event is taken from the queue and it gets
processed

4. Subscriptions are fetched for the user who triggered the event
• By default this includes all the users who have enabled any notification method for the user at www.
site.com/notifications/personal/<username>

5. Plugins are allowed to alter the subscriptions using the [get, subscriptions] event

6. Plugins are allowed to terminate notifications queue processing with the [send:before, notifications]
event

7. Plugins are allowed to alter the notification parameters with the [prepare, notification] event

8. Plugins are allowed to alter the notification subject/message/summary with the [prepare,
notification:<action>:<type>:<subtype>] event

9. Plugins are allowed to format notification subject/message/summary for individual delivery methods with
[format, notification:<method>] event

10. Notifications are sent to each subscriber using the methods they have chosen
• Plugins can take over or prevent sending of each individual notification with the [send,
notification:<method>] event

11. The [send:after, notifications] event is triggered for the event after all notifications have been sent

Notification event registration example

Tell Elgg to send notifications when a new object of subtype „photo“ is created:

/**
* Initialize the photos plugin
*/
function photos_init() {

elgg_register_notification_event('object', 'photo', array('create'));
}

Or in the elgg-plugin.php:

3.3. Developer Guides 157

Elgg Documentation, Release master

'notifications' => [
'object' => [

'photo' => [
'create' => true,

],
],

],

Bemerkung: In order to send the event-based notifications you must have the one-minute CRON interval configured.

Contents of the notification message can be defined with the 'prepare',
'notification:[action]:[type]:[subtype]' event.

Custom notification event registration example

Tell Elgg to send notifications when a new object of the subtype „album“ is created:

// in the elgg-plugin.php
'notifications' => [

'object' => [
'photo' => [

'create' => PhotoAlbumCreateNotificationHandler::class, // this␣
→˓needs to be an extension of the \Elgg\Notifications\NotificationEventHandler class

],
],

],

//PhotoAlbumCreateNotificationHandler.php

class PhotoAlbumCreateNotificationHandler extends \Elgg\Notifications\
→˓NotificationEventHandler {

/**
* Overrule this function if you wish to modify the subscribers of this␣

→˓notification
*
* This will influence which subscribers are available in the 'get', 'subscribers'␣

→˓event
*/
public function getSubscriptions(): array {
}

/**
* Overrule this function if you wish to modify the subject of the notification
*
* A magic language key is checked for a default notification:
* 'notification:<action>:<type>:<subtype>:subject'
*/
protected function getNotificationSubject(\ElggUser $recipient, string $method):␣

→˓string {
(Fortsetzung auf der nächsten Seite)

158 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

}

/**
* Overrule this function if you wish to modify the body of the notification
*
* A magic language key is checked for a default notification:
* 'notification:<action>:<type>:<subtype>:body'
*/
protected function getNotificationBody(\ElggUser $recipient, string $method):␣

→˓string {
}

/**
* Overrule this function if you wish to modify the summary of the notification
*
* default: ''
*/
protected function getNotificationSummary(\ElggUser $recipient, string $method):␣

→˓string {
}

/**
* Overrule this function if you wish to modify the target url of the␣

→˓notification
*
* default: $event->object->getURL()
*/
protected function getNotificationURL(\ElggUser $recipient, string $method):␣

→˓string {
}

/**
* Overrule this function if you don't wish to allow the notification event to be␣

→˓configurable on the user notification settings page
*
* default: true
*/
public static function isConfigurableByUser(): bool {
}

}

Bemerkung: Make sure the notification will be in the correct language by passing the reciepient’s language into the
elgg_echo() function.

3.3. Developer Guides 159

Elgg Documentation, Release master

Custom notification content example

Tell Elgg to use the function photos_prepare_notification() to format the contents of the notification when a
new objects of subtype ‚photo‘ is created:

/**
* Initialize the photos plugin
*/
function photos_init() {

elgg_register_notification_event('object', 'photo', array('create'));
elgg_register_event_handler('prepare', 'notification:create:object:photo', 'photos_

→˓prepare_notification');
}

/**
* Prepare a notification message about a new photo
*
* @param \Elgg\Event $event 'prepare', 'notification:create:object:photo'

* @return \Elgg\Notification\Notification
*/
function photos_prepare_notification(\Elgg\Event $event) {

$notification_event = $event->getParam('event');

$entity = $notification_event->getObject();
$owner = $notification_event->getActor();
$recipient = $event->getParam('recipient');
$language = $event->getParam('language');
$method = $event->getParam('method');

/* @var $notification \Elgg\Notification\Notification */
$notification = $event->getValue();

// Title for the notification
$notification->subject = elgg_echo('photos:notify:subject', [$entity->

→˓getDisplayName()], $language);

// Message body for the notification
$notification->body = elgg_echo('photos:notify:body', array(

$owner->getDisplayName(),
$entity->getDisplayName(),
$entity->getExcerpt(),
$entity->getURL()

), $language);

// Short summary about the notification
$notification->summary = elgg_echo('photos:notify:summary', [$entity->

→˓getDisplayName()], $language);

return $notification;
}

Bemerkung: Make sure the notification will be in the correct language by passing the recipient’s language into the

160 Kapitel 3. Continue Reading

Elgg Documentation, Release master

elgg_echo() function.

Notification salutation and sign-off

Elgg will by default prepend a salutation to all outgoing notification body text. Also a sign-off will be appended. This
means you will not need to add text like Hi Admin, or Kind regards, your friendly site administrator
to your notifications body. If for some reason you do not need this magic to happen, you can prevent it by setting the
notification parameter add_salutation to false. You can do this as part of the parameters in notify_user() or in
the prepare, notifications event. You can change the salutation and sign-off texts in the translations.

You can also customize the salutation by overruling the view notifications/elements/salutation the sign-off
can be customized by overruling the view notifications/elements/sign-off.

Notification methods

By default Elgg has three notification methods: email, delayed_email and the bundled site_notifications plugin.

Email

Will send an email notification to to the recipient.

Delayed email

Will save the notifications and deliver them in one bundled email at the interval the recipient has configured (daily or
weekly).

The availability of this delivery method can be configured by the site administrator in the Site settings section.

The layout of the bundled email can be customized by overruling the view email/delayed_email/plain_text for
the plain text part of the email and email/delayed_email/html for the HTML part of the email.

Site notification

Will show the notification on the site.

Registering a new notification method

You can register a new notification method with the elgg_register_notification_method() function.

Example:

Register a handler that will send the notifications via SMS.

/**
* Initialize the plugin
*/
function sms_notifications_init() {

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 161

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

elgg_register_notification_method('sms');
}

After registering the new method, it will appear on the notification settings page at www.example.com/
notifications/personal/[username].

Sending the notifications using your own method

Besides registering the notification method, you also need to register a handler that takes care of actually sending the
SMS notifications. This happens with the 'send', 'notification:[method]' event.

Example:

/**
* Initialize the plugin
*/
function sms_notifications_init () {

elgg_register_notification_method('sms');
elgg_register_event_handler('send', 'notification:sms', 'sms_notifications_send

→˓');
}

/**
* Send an SMS notification
*
* @param \Elgg\Event $event 'send', 'notification:sms'
*
* @return bool
* @internal
*/
function sms_notifications_send(\Elgg\Event $event) {

/* @var \Elgg\Notifications\Notification $message */
$message = $event->getParam('notification');

$recipient = $message->getRecipient();

if (!$recipient || !$recipient->mobile) {
return false;

}

// (A pseudo SMS API class)
$sms = new SmsApi();

return $sms->send($recipient->mobile, $message->body);
}

162 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Subscriptions

In most cases Elgg core takes care of handling the subscriptions, so notification plugins don’t usually have to alter them.

Subscriptions can however be:
• Added using the \ElggEntity::addSubscription() function

• Removed using the \ElggEntity::removeSubscription() function

It’s possible to modify the recipients of a notification dynamically with the 'get', 'subscriptions' event.

Example:

/**
* Initialize the plugin
*/
function discussion_init() {

elgg_register_event_handler('get', 'subscriptions', 'discussion_get_subscriptions
→˓');
}

/**
* Get subscriptions for group notifications
*
* @param \Elgg\Event $event 'get', 'subscriptions'
*
* @return void|array
*/
function discussion_get_subscriptions(\Elgg\Event $event) {

$reply = $event->getParam('event')->getObject();

if (!$reply instanceof \ElggDiscussionReply) {
return;

}

$subscriptions = $event->getValue();

$group_guid = $reply->getContainerEntity()->container_guid;
$group_subscribers = elgg_get_subscriptions_for_container($group_guid);

return ($subscriptions + $group_subscribers);
}

3.3. Developer Guides 163

Elgg Documentation, Release master

Muted notifications

Notifications can be muted in order to no longer receive notifications, for example no longer receive notifications about
new comments on a discussion.

In order to mute notifications call \ElggEntity::muteNotifications($user_guid) the $user_guid is defaulted
to the current logged in user. This will cause all subscriptions on the entity to be removed and a special flag will be set
to know that notifications are muted.

The muting rules are applied after the subscribers of a notification event are requested and are applied for the following
entities of the notification event: - the event actor \Elgg\Notifications\NotificationEvent::getActor() - the
event object entity \Elgg\Notifications\NotificationEvent::getObject() - the event object container en-
tity \Elgg\Notifications\NotificationEvent::getObject()::getContainerEntity() - the event object
owner entity \Elgg\Notifications\NotificationEvent::getObject()::getOwnerEntity()

To unmute the notifications call \ElggEntity::unmuteNotifications($user_guid) the $user_guid is defaul-
ted to the current logged in user.

To check if a user has the notifications muted call \ElggEntity::hasMutedNotifications($user_guid) the
$user_guid is defaulted to the current logged in user.

Helper page

A helper page has been added which can be linked (for example in an email footer) to manage muting based on a
notification.

The page is required to be signed and use the route notifications:mute which needs: - entity_guid the entity the
notification is about - recipient_guid the recipient of the notification

Temporarily disable notifications

Users can temporarily disable all notifications by going to the Notification settings and set a start and end date for the
period they don’t wish to receive any notifications.

Notification settings

You can store and retreive notification settings of users with \ElggUser::setNotificationSetting() and \
ElggUser::getNotificationSettings().

// Setting a notification preference
// notification method: mail
// notification is enabled
// for the purpose 'group_join' (when omitted this is 'default')
$user->setNotificationSetting('mail', true, 'group_join');

// retrieving the preference
$settings = $user->getNotificationSettings('group_join');
// this wil result in an array with all the current notification methods and their state␣
→˓like:
// [
// 'mail' => true,
// 'site' => false,
// 'sms' => false,
//]

164 Kapitel 3. Continue Reading

Elgg Documentation, Release master

When a user has no setting yet for a non default purpose the system will fallback to the ‚default‘ notification setting.

Notification management

A generic menu event handler is provided to manage notification subscription and muting. If you
wish to make it easy for users to subscribe to your entities register a menu event on register
menu:<menu name>:<entity type>:<entity subtype> with the callback Elgg\Notifications\
RegisterSubscriptionMenuItemsHandler make sure an \ElggEntity in $params['entity'] is provided.
This will work for most elgg_view_menu() calls.

3.3.22 Page ownership

One recurring task of any plugin will be to determine the page ownership in order to decide which actions
are allowed or not. Elgg has a number of functions related to page ownership and also offers plugin devel-
opers flexibility by letting the plugin handle page ownership requests as well. Determining the owner of a pa-
ge can be determined with elgg_get_page_owner_guid(), which will return the GUID of the owner. Alterna-
tively, elgg_get_page_owner_entity() will retrieve the whole page owner entity. If the page already knows
who the page owner is, but the system doesn’t, the page can set the page owner by passing the GUID to
elgg_set_page_owner_guid($guid).

Bemerkung: The page owner entity can be any ElggEntity. If you wish to only apply some setting in case of a user
or a group make sure you check that you have the correct entity.

Page owner detection

Based on the route definition:

• If the name starts with view or edit the parameters username and guid are checked

• If the name starts with add or collection the parameters username, guid and container_guid are checked

• If in the route definition the value detect_page_owner is set to true the parameters username, guid and
container_guid are checked

3.3.23 Permissions Check

Warnung: As stated in the page, this method works only for granting write access to entities. You cannot use this
method to retrieve or view entities for which the user does not have read access.

Elgg provides a mechanism of overriding write permissions check through the permissions_check event . This is useful
for allowing plugin write to all accessible entities regardless of access settings. Entities that are hidden, however, will
still be unavailable to the plugin.

3.3. Developer Guides 165

Elgg Documentation, Release master

Extending permissions_check

In your plugin, you must register the event for permissions_check.

elgg_register_event_handler('permissions_check', 'all', 'myplugin_permissions_check');

The override function

Now create the function that will be called by the permissions check event. In this function we determine if the entity
(in parameters) has write access. Since it is important to keep Elgg secure, write access should be given only after
checking a variety of situations including page context, logged in user, etc. Note that this function can return 3 values:
true if the entity has write access, false if the entity does not, and null if this plugin doesn’t care and the security system
should consult other plugins.

function myplugin_permissions_check(\Elgg\Event $event) {
$has_access = determine_access_somehow();

if ($has_access === true) {
return true;

} else if ($has_access === false) {
return false;

}

return null;
}

Full Example

This is a full example using the context to determine if the entity has write access.

<?php

function myaccess_init() {
// override permissions for the myaccess context
elgg_register_event_handler('permissions_check', 'all', 'myaccess_permissions_check');

// Register cron event
elgg_register_event_handler('cron', elgg_get_plugin_setting('period', 'myaccess',

→˓'fiveminute'), 'myaccess_cron');
}

/**
* Event for cron event.
*/
function myaccess_cron(\Elgg\Event $event) {

elgg_push_context('myaccess_cron');

// returns all entities regardless of access permissions.
// will NOT return hidden entities.
$entities = get_entities();

(Fortsetzung auf der nächsten Seite)

166 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

elgg_pop_context();
}

/**
* Overrides default permissions for the myaccess context
*/
function myaccess_permissions_check(\Elgg\Event $event) {
if (elgg_in_context('myaccess_cron')) {
return true;

}

return null;
}

// Initialise plugin
register_elgg_event_handler('init', 'system', 'myaccess_init');

3.3.24 Plugins

Plugins must provide a composer.json file in the plugin root in order to be recognized by Elgg.

Contents

• elgg-plugin.php

• Bootstrap class

• elgg-services.php

• composer.json

• Tests

• Related

elgg-plugin.php

elgg-plugin.php is a static plugin configuration file. It is read by Elgg to configure various services, and must return
an array if present. It should not be included by plugins and is not guaranteed to run at any particular time. Besides
magic constants like __DIR__, its return value should not change. The currently supported sections are:

• plugin - defines plugin information and dependencies

• bootstrap - defines a class used to bootstrap the plugin

• entities - defines entity types and classes, and optionally registers them for search

• actions - eliminates the need for calling elgg_register_action()

• routes - eliminates the need for calling elgg_register_route()

• settings - eliminates the need for setting default values on each call to elgg_get_plugin_setting()

3.3. Developer Guides 167

Elgg Documentation, Release master

• user_settings - eliminates the need for setting default values on each call to
elgg_get_plugin_user_setting()

• views - allows plugins to alias vendor assets to a path within the Elgg’s view system

• widgets - eliminates the need for calling elgg_register_widget_type()

• events - eliminates the need for calling elgg_register_event_handler()

• cli_commands - an array of Elgg/Cli/Command classes to extend the feature of elgg-cli

• view_extensions - eliminates the need for calling elgg_extend_view() or elgg_unextend_view()

• theme - an array of theme variables

• group_tools - an array of available group tool options

• view_options - an array of views with extra options

• notifications - an array of notification events

• web_services - an array of exposed web service (used by the Web Services plugin)

return [
'plugin' => [

'name' => 'Plugin Name', // readable plugin name
'activate_on_install' => true, // only used on a fresh install
'version' => '1.3.1', // version of the plugin
'dependencies' => [

// optional list op plugin dependencies
'blog' => [],
'activity' => [

'position' => 'after',
'must_be_active' => false,

],
'file' => [

'position' => 'before',
'version' => '>2', // composer notation of required␣

→˓version constraint
],

],
],

// Bootstrap must implement \Elgg\PluginBootstrapInterface
'bootstrap' => MyPluginBootstrap::class,

'entities' => [
[

// Register a new object subtype and tell Elgg to use a specific␣
→˓class to instantiate it

'type' => 'object',
'subtype' => 'my_object_subtype',
'class' => MyObjectClass::class,

'capabilities' => [
// Register this subtype for search
'searchable' => true,

(Fortsetzung auf der nächsten Seite)

168 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

'likable' => true,
],

],
],

'actions' => [
// Registers an action
// By default, action is registered with 'logged_in' access
// By default, Elgg will look for file in plugin's actions/ directory:␣

→˓actions/my_plugin/action.php
'my_plugin/action/default' => [],

'my_plugin/action/custom_access' => [
'access' => 'public', // supports 'public', 'logged_in', 'logged_out

→˓', 'admin'
],

// you can use action controllers instead of action files by setting the␣
→˓controller parameters

// controller must be a callable that receives \Elgg\Request as the␣
→˓first and only argument

// in example below, MyActionController::__invoke(\Elgg\Request
→˓$request) will be called

'my_plugin/action/controller' => [
'controller' => MyActionController::class,

],
],

'routes' => [
// routes can be associated with resource views or controllers
'collection:object:my_object_subtype:all' => [

'path' => '/my_stuff/all',
'resource' => 'my_stuff/all', // view file is in resources/my_

→˓stuff/all
],

// similar to actions, routes can be associated with a callable␣
→˓controller that receives an instance of \Elgg\Request

'collection:object:my_object_subtype:json' => [
'path' => '/my_stuff/json',
'controller' => JsonDumpController::class,

],

// route definitions support other parameters, such as 'middleware',
→˓'requirements', 'defaults'

// see elgg_register_route() for all options
],

'widgets' => [
// register a new widget
// corresponds to a view in widgets/my_stuff/content
'my_stuff' => [

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 169

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

'description' => elgg_echo('widgets:my_stuff'),
'context' => ['profile', 'dashboard'],

],
],

'settings' => [
'plugin_setting_name' => 'plugin_setting_value',

],

'user_settings' => [
'user_setting_name' => 'user_setting_value',

],

'views' => [
'default' => [

'cool_lib/' => __DIR__ . '/vendors/cool_lib/dist/',
],

],

'events' => [
'delete' => [

'object' => [
'file_handle_object_delete' => [

'priority' => 999,
],

],
],
'create' => [

'relationship' => [
'_elgg_send_friend_notification' => [],

],
],
'log' => [

'systemlog' => [
'Elgg\SystemLog\Logger::log' => ['unregister' => true],

],
],
'register' => [

'menu:owner_block' => [
'blog_owner_block_menu' => [

'priority' => 700,
],

],
],
'usersettings:save' => [

'user' => [
'_elgg_save_notification_user_settings' => ['unregister'␣

→˓=> true],
],

],
],

(Fortsetzung auf der nächsten Seite)

170 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

'cli_commands' => [
\My\Plugin\CliCommand::class,
'\My\Plugin\OtherCliCommand',

],

'view_extensions' => [
'page/components/list' => [

'list/extension' => [
'priority' => 600,

],
],
'forms/usersettings/save' => [

'core/settings/account/password' => [
'unextend' => true,

],
],

],

'theme' => [
'body-background-color' => '#000',

],

'group_tools' => [
'activity' => [], // just use default behaviour
'blog' => [

'default_on' => false,
],
'forum' => [

'unregister' => true, // unregisters the group tool option
],

],

'view_options' => [
'likes/popup' => [

'ajax' => true, // registers the view available via ajax
],
'likes/popup' => [

'ajax' => false, // unregisters the view available via ajax
],
'manifest.json' => [

'simplecache' => true, // register view as usable in the␣
→˓simplecache

],
],
'notifications' => [

'object' => [
'blog' => [

'publish' => true, // registers the event to be notified
],
'thewire' => [

'create' => false, // unregisters the event to be␣
→˓notified

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 171

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

],
'page' => [

'create' => MyPluginPageCreateEventHandler::class, // a␣
→˓custom event handler, needs to be an extension of a NotificationEventHandler

],
],

],
'web_services' => [

'test.echo' => [
'GET' => [// the HTTP call method (GET|POST)

'callback' => 'my_echo', // required
'description' => 'A testing method which echos back a␣

→˓string', // optional, the description of the API method, a magic translation key is␣
→˓tried if not provided 'web_services:api_methods:<method>:<http call method>:description'

'params' => [// optional, input parameters for the API␣
→˓method

'string' => [
'type' => 'string', // type of the␣

→˓parameter (int|integer|bool|string|float|array)
'default' => 'some value', // default␣

→˓value if not provided in the request
'required' => true|false, // required in␣

→˓the request
],

],
'require_api_auth' => false, // optional, requires API␣

→˓authentication (default: false)
'require_user_auth' => false, // optional, requires User␣

→˓authentication (default: false)
'associative' => false, // optional, provide the input␣

→˓params as an array to the callback function (default: false)
],

],
],

];

Bootstrap class

As of Elgg 3.0 the recommended way to bootstrap you plugin is to use a bootstrap class. This class must implement
the \Elgg\PluginBootstrapInterface interface. You can register you bootstrap class in the elgg-plugin.php.

The bootstrap interface defines several function to be implemented which are called during different events in the system
booting process.

Siehe auch:
For more information about the different functions defined in the \Elgg\PluginBootstrapInterface please read
Plugin bootstrap

172 Kapitel 3. Continue Reading

Elgg Documentation, Release master

elgg-services.php

Plugins can attach their services to Elgg’s public DI container by providing PHP-DI definitions in elgg-services.
php in the root of the plugin directory.

This file must return an array of PHP-DI definitions. Services will by available via elgg().

return [
PluginService::class => \DI\object()->constructor(\DI\get(DependencyService::class)),

];

Plugins can then use PHP-DI API to autowire and call the service:

$service = elgg()->get(PluginService::class);

See PHP-DI documentation for a comprehensive list of definition and invocation possibilities.

composer.json

Since Elgg supports being installed as a Composer dependency, having your plugins also support Composer makes for
easier installation by site administrators. In order to make your plugin compatible with Composer you need to at least
have a composer.json file in the root of your plugin.

Here is an example of a composer.json file:

{
"name": "company/example_plugin",
"description": "Some description of the plugin",
"type": "elgg-plugin",
"keywords": ["elgg", "plugin"],
"license": "GPL-2.0-only",
"support": {

"source": "URL to your code repository",
"issues": "URL to your issue tracker"

},
"conflict": {

"elgg/elgg": "<3.0"
}

}

Read more about the composer.json format on the Composer website.

Important parts in the composer.json file are:

• name: the name of your plugin, keep this inline with the name of your plugin folder to ensure correct installation

• type: this will tell Composer where to install your plugin, ALWAYS keep this as elgg-plugin

As a suggestion, include a conflict rule with any Elgg version below your minimal required version, this will help
prevent the accidental installation of your plugin on an incompatible Elgg version.

After adding a composer.json file to your plugin project, you need to register your project on Packagist in order for
other people to be able to install your plugin.

3.3. Developer Guides 173

http://php-di.org
https://getcomposer.org/
https://getcomposer.org/
https://packagist.org/

Elgg Documentation, Release master

Tests

It’s encouraged to create PHPUnit test for your plugin. All tests should be located in tests/phpunit/unit for unit
tests and tests/phpunit/integration for integration tests.

Unit tests should extend the Elgg\UnitTestCase class. Integration tests should extend the Elgg\Plugins\
IntegrationTestCase.

There are a set of global plugin integration tests that run on all active plugins. These tests are:

• Elgg\Plugins\ActionRegistrationIntegrationTest will test all registered actions of the plugin without
supplying data

• Elgg\Plugins\ComposerIntegrationTest will test if the composer.json is considered valid

• Elgg\Plugins\StaticConfigIntegrationTest will test the sections of the elgg-plugin.php and check
for the correct format

• Elgg\Plugins\TranslationsIntegrationTest will test all language files for the correct format and enco-
ding

• Elgg\Plugins\ViewStackIntegrationTest will test all views of the plugin if there are any PHP parsing
errors

Siehe auch:
Writing tests

Related

Plugin skeleton

The following is the standard for plugin structure in Elgg as of Elgg 2.0.

Example Structure

The following is an example of a plugin with standard structure. For further explanation of this structure, see the details
in the following sections. Your plugin may not need all the files listed

The following files for plugin example would go in /mod/example/

actions/
example/

action.php
other_action.php

classes/
VendorNamespace/

PluginNamespace/
ExampleClass.php

languages/
en.php

vendors/
example_3rd_party_lib/

views/
default/

example/
(Fortsetzung auf der nächsten Seite)

174 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

component.css
component.js
component.png

forms/
example/

action.php
other_action.php

object/
example.php
example/

context1.php
context2.php

plugins/
example/

settings.php
usersettings.php

resources/
example/

all.css
all.js
all.php
owner.css
owner.js
owner.php

widgets/
example_widget/

content.php
edit.php

elgg-plugin.php
CHANGES.txt
COPYRIGHT.txt
INSTALL.txt
LICENSE.txt
README.txt
composer.json

Required Files

Plugins must provide a composer.json file in the plugin root in order to be recognized by Elgg.

Therefore the following is the minimally compliant structure:

mod/example/
composer.json

3.3. Developer Guides 175

Elgg Documentation, Release master

Actions

Plugins should place scripts for actions an actions/ directory, and furthermore should use the name of the action to
determine the location within that directory.

For example, the action my/example/action would go in my_plugin/actions/my/example/action.php. This
makes it very obvious which script is associated with which action.

Similarly, the body of the form that submits to this action should be located in forms/my/example/action.php. Not
only does this make the connection b/w action handler, form code, and action name obvious, but it allows you to use
the elgg_view_form() function easily.

Text Files

Plugins may provide various *.txt as additional documentation for the plugin. These files must be in Markdown syntax
and will generate links on the plugin management sections.

README.txt
should provide additional information about the plugin of an unspecified nature

COPYRIGHT.txt
If included, must provide an explanation of the plugin’s copyright.

LICENSE.txt
If included, must provide the text of the license that the plugin is released under.

INSTALL.txt
If included, must provide additional instructions for installing the plugin if the process is sufficiently complicated
(e.g. if it requires installing third party libraries on the host machine, or requires acquiring an API key from a
third party).

CHANGES.txt
If included, must provide a list of changes for their plugin, grouped by version number, with the most recent
version at the top.

Plugins may include additional *.txt files besides these, but no interface is given for reading them.

Pages

To render full pages, plugins should use resource views (which have names beginning with resources/). This allows
other plugins to easily replace functionality via the view system.

Bemerkung: The reason we encourage this structure is

• To form a logical relationship between urls and scripts, so that people examining the code can have an idea of
what it does just by examining the structure.

• To clean up the root plugin directory, which historically has quickly gotten cluttered with the page handling
scripts.

176 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Classes

Elgg provides PSR-0 autoloading out of every active plugin’s classes/ directory.

You’re encouraged to follow the PHP-FIG standards when writing your classes.

Bemerkung: Files with a „.class.php“ extension will not be recognized by Elgg.

When organizing you classes Elgg does not require a specific structure. Use what works best for your plugin but keep
in mind that it should be easy to read, funtionality should be easy to find and having seperated functions into different
classes will improve maintainability and testability.

Vendors

Included third-party libraries of any kind should be included in the vendors/ folder in the plugin root. Though this
folder has no special significance to the Elgg engine, this has historically been the location where Elgg core stores its
third-party libraries, so we encourage the same format for the sake of consistency and familiarity.

Views

In order to override core views, a plugin’s views can be placed in views/, or an elgg-plugin.php config file can be
used for more detailed file/path mapping. See Views.

Javascript and CSS will live in the views system. See JavaScript.

Plugin Dependencies

In Elgg the plugin dependencies system is there to prevent plugins from being used on incompatible systems.

Contents

• Overview

• PHP version or extension

• Require an Elgg plugin

• Conflicts

Overview

The dependencies system is controlled through a plugin’s elgg-plugin.php file or composer.json. Plugin authors
can specify that a plugin:

• Requires certain Elgg plugins, PHP version or PHP extensions.

• Conflicts with certain Elgg versions or plugins.

3.3. Developer Guides 177

http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/

Elgg Documentation, Release master

PHP version or extension

Add a section in your composer.json as described in de Composer JSON reference

{
"require": {

"php": ">8.1",
"ext-json": "*"

}
}

Require an Elgg plugin

Add a section to the elgg-plugin.php, also see Plugins

return [
'plugin' => [

'dependencies' => [
// optional list op plugin dependencies
'blog' => [], // blog needs to be active
'activity' => [

'position' => 'after', // in the plugin order this␣
→˓plugin must be after the activity plugin

'must_be_active' => false, // but the plugin isn't␣
→˓required to be active, but if active order will be checked

],
'file' => [

'position' => 'before', // file must be active and this␣
→˓plugin needs to be before the file plugin in the plugin order

'version' => '>2', // composer notation of required␣
→˓version constraint

],
],

],
];

Conflicts

Add a section in your composer.json as described in de Composer JSON reference

{
"conflict": {

"elgg/elgg": "<4.0",
"elgg/dataviews": "<1.0 || >= 1.5"

}
}

178 Kapitel 3. Continue Reading

https://getcomposer.org/doc/04-schema.md#package-links
https://getcomposer.org/doc/04-schema.md#package-links

Elgg Documentation, Release master

Plugin bootstrap

In order to bootstrap your plugin as of Elgg 3.0 you can use a bootstrap class. This class must implement the \Elgg\
PluginBootstrapInterface interface, but it’s recommended you extend the \Elgg\PluginBootstrap abstract
class as some preparations have already been done.

If you only need a limited subset of the bootstrap functions your class can also extend the \Elgg\
DefaultPluginBootstrap class, this class already has all the functions of \Elgg\PluginBootstrapInterface
implemented. So you can overload only the functions you need.

Contents

• Registering the bootstrap class

• Available functions

– ->load()

– ->boot()

– ->init()

– ->ready()

– ->shutdown()

– ->activate()

– ->deactivate()

– ->upgrade()

• Available helper functions

– ->elgg()

– ->plugin()

Registering the bootstrap class

You must register your bootstrap class in the elgg-plugin.php file.

return [
// Bootstrap must implement \Elgg\PluginBootstrapInterface
'bootstrap' => MyPluginBootstrap::class,

];

3.3. Developer Guides 179

Elgg Documentation, Release master

Available functions

->load()

Executed during plugins_load, system event

Allows the plugin to require additional files, as well as configure services prior to booting the plugin.

->boot()

Executed during plugins_boot:before, system event

Allows the plugin to register handlers for plugins_boot, system and init, system events, as well as implement
boot time logic.

->init()

Executed during init, system event

Allows the plugin to implement business logic and register all other handlers.

->ready()

Executed during ready, system event

Allows the plugin to implement logic after all plugins are initialized.

->shutdown()

Executed during shutdown, system event

Allows the plugin to implement logic during shutdown.

->activate()

Executed when plugin is activated, after activate, plugin event.

->deactivate()

Executed when plugin is deactivated, after deactivate, plugin event.

180 Kapitel 3. Continue Reading

Elgg Documentation, Release master

->upgrade()

Registered as handler for upgrade, system event

Allows the plugin to implement logic during system upgrade.

Available helper functions

This assumes your bootstrap class extends the \Elgg\PluginBootstrap abstract class or the \Elgg\
DefaultPluginBootstrap class.

->elgg()

Returns Elgg’s public DI container. This can be helpfull if you wish to register event listeners.

$events = $this->elgg()->events;
$events->registerHandler('create:after', 'object', MyCustomObjectHandler::class);

->plugin()

Returns plugin entity this bootstrap is related to. This makes it easier to get plugin settings.

$plugin = $this->plugin();
$my_setting = $plugin->getSetting('my_setting');

3.3.25 Restore capability

Contents

• Site setting

• Registration

• Entity menu

• View deleted items

– Custom views

• Restore a deleted item

• Events

• ElggEntity functions

– Function: delete

– Function: persistentDelete

– Function: trash

– Function: isDeleted

• Show deleted items

3.3. Developer Guides 181

Elgg Documentation, Release master

• Cleanup of deleted entities

• More information

As of Elgg 6.0 it’s possible to set the restorable capability on an ElggEntity. Enabling this capability will mark an
entity as deleted in the database when the ElggEntity::delete() function is called. The entity will then no longer
show up in listings or work when viewing it directly.

Site setting

A site administrator has the option to enable/disable all restore features. By default this feature is disabled. This means
that even if an entity has the capability restorable it will always be permanently removed from the database.

Registration

Just like any other entity capability you can enable the restorable capability in the elgg-plugin.php

'entities' => [
[

'type' => 'object',
'subtype' => 'my_custom_subtype',
'capabilities' => [

'restorable' => true,
],

],
]

Entity menu

By default a menu item is added to the entity menu which allows a user to delete the entity when the user has the rights
to do so.

If an entity has the restorable capability this menu item will be replaced with a menu item which will mark the entity
as deleted.

Bemerkung: When the site administrator hasn’t enabled the feature no menu items will be replaced.

Bemerkung: There are 2 generic actions to help developers in case they need to add a delete link somewhere.

• entity/delete: this will permanently delete the entity from the database, requires a guid to be submitted to
the action

• entity/trash: this will mark the entity as deleted in the database, requires a guid to be submitted to the action

182 Kapitel 3. Continue Reading

Elgg Documentation, Release master

View deleted items

Once an entity has been marked as deleted it’ll no longer show up in the normal functionality of your Elgg website.

In order for a user to see the entities that have been deleted there is a link in the user settings to a list of all deleted items
that are owned by the given user.

Group owners also have the ability to see the deleted content from their group. This is accessible from the group profile
page. The list will show all deleted content contained by their group.

Bemerkung: The list will only show the deleted entities with the restorable capability. For example when a blog
has been deleted which also has comments only the blog will show up in the deleted list of the owner (and in the deleted
list of the group if the blog was posted in a group).

The comments will not show up in any list of deleted items.

Custom views

When a developer needs to have a custom view of a deleted item a view trash/<entity_type>/<entity_subtype>
can be made which will get provided the deleted entity in $vars['entity']. As a fallback trash/<entity_type>/
default will be tried and ultimately trash/entity/default which is provided by Elgg core.

Different sub-elements can be found in the views trash/elements/*.

Bemerkung: When making a custom view for an entity make sure it doesn’t include links to the deleted entity as that
link will not work. Also keep in mind other links to entities that could have been deleted.

Restore a deleted item

From the deleted list the user (or group owner) has the ability to restore the deleted item to it’s original state. If the
entity was contained in a group which was removed, the user has the option to restore the entity to a different container.

Events

When an entity is being marked as deleted there is an event sequence 'trash', '<entity_type>' with which a
developer can program additional action or logic.

ElggEntity functions

There are 3 functions in an ElggEntity related to the deletion of that entity:

• public function delete(bool $recursive = true, bool $persistent = null): bool

• protected function persistentDelete(bool $recursive = true): bool

• protected function trash(bool $recursive = true): bool

• public function isDeleted(): bool

3.3. Developer Guides 183

Elgg Documentation, Release master

Function: delete

This is the only public function to delete an entity. The $recursive parameter will determine whether or not other
entities which have this entity as it’s owner or container will also be deleted (default true).

The $persistent parameter can force a persistent removal from the database or it being marked as deleted. The default
value is null which means the restorable capability will be checked.

Warnung: It’s not recommended that a developer overrules this function as the developer will have to handle part
of the logic of determining the correct value of the $persistent parameter.

Function: persistentDelete

This function is called when the $persistent parameter is true in the delete() function. This function must handle
cases where the entity is permanently removed from the database. An example of when a developer would overrule
this function is an ElggFile where the physical file on disk needs to be removed when the entity is removed from
the database, but the physical file shouldn’t be removed from the disk when the entity is only marked as deleted in the
database.

This will trigger the 'delete', '<entity_type>' event sequence.

Function: trash

This function is called when the $persistent parameter is false in the delete() function. This function must
handle cases where the entity is marked as deleted in the database.

This will trigger the 'trash', '<entity_type>' event sequence.

Function: isDeleted

To check if an entity is marked as deleted.

Show deleted items

When a developer needs to be sure to include deleted entities when fetching/listing entities the code needs to be wrapped
in an elgg_call() with the flag ELGG_SHOW_DELETED_ENTITIES.

The same applies when the developer needs to be sure to exclude all deleted items set the flag
ELGG_HIDE_DELETED_ENTITIES.

Cleanup of deleted entities

In order to cleanup the database of the deleted entities a cron job runs every hour. It’ll cleanup all the deleted entities
that have been removed when a retention period has passed. A site administrator can set this retention period (default:
30 days).

In order to not put too much stress on the system the cron job will only run for a maximum of 5 minutes per hour.
Entities that couldn’t be removed in that period will be removed in the next period. The oldest deleted entity (by when
the entity was deleted) will be removed first.

184 Kapitel 3. Continue Reading

Elgg Documentation, Release master

More information

Siehe auch:
Check out the Capabilities documentation

3.3.26 River

Elgg natively supports the „river“, an activity stream containing descriptions of activities performed by site members.
This page gives an overview of adding events to the river in an Elgg plugin.

Pushing river items

Items are pushed to the activity river through a function call, which you must include in your plugins for the items to
appear.

Here we add a river item telling that a user has created a new blog post:

<?php

elgg_create_river_item([
'view' => 'river/object/blog/create',
'action_type' => 'create',
'subject_guid' => $blog->owner_guid,
'object_guid' => $blog->getGUID(),

]);

All available parameters:

• view => STR The view that will handle the river item (must exist)

• action_type => STR An arbitrary string to define the action (e.g. ‚create‘, ‚update‘, ‚vote‘, ‚review‘, etc)

• subject_guid => INT The GUID of the entity doing the action (default: the logged in user guid)

• object_guid => INT The GUID of the entity being acted upon

• target_guid => INT The GUID of the object entity’s container (optional)

• access_id => INT The access ID of the river item (default: same as the object)

• posted => INT The UNIX epoch timestamp of the river item (default: now)

• annotation_id => INT The annotation ID associated with this river entry (optional)

When an item is deleted or changed, the river item will be updated automatically.

River views

As of Elgg 3.0 the view parameter is no longer required. A fallback logic has been created to check a series of views
for you:

1. /river/{$type}/{$subtype}/{$action_type}: eg. river/object/blog/create only the create acti-
on will come to this view

2. river/{$type}/{$subtype}/default: eg. river/object/blog/default all river activity for object
blog will come here

3.3. Developer Guides 185

Elgg Documentation, Release master

3. river/{$type}/{$action_type}: eg. river/object/create all create actions for object will come
here

4. river/{$type}/default: eg. river/object/default all actions for all object will come here

5. river/elements/layout: ultimate fall back view, this should always be called in any of the river views to
make a consistent layout

Both type and subtype are based on the type and subtype of the object_guid for which the river item was created.

Summary

If no summary parameter is provided to the river/elements/layout the view will try to create it for you. The basic
result will be a text with the text Somebody did something on Object, where Somebody is based on subject_guid and
Object is based on object_guid. For both Somebody and Object links will be created. These links are passed to a
series of language keys so you can create a meaningfull summary.

The language keys are:

1. river:{$type}:{$subtype}:{$action_type}: eg. river:object:blog:create

2. river:{$type}:{$subtype}:default: eg. river:object:blog:default

3. river:{$type}:{$action_type}: eg. river:object:create

4. river:{$type}:default: eg. river:object:default

Custom river view

If you wish to add some more information to the river view, like an attachment (image, YouTube embed, etc), you must
specify the view when creating the river item. This view MUST exist.

We recommend /river/{type}/{subtype}/{action}, where:

• {type} is the entity type of the content we’re interested in (object for objects, user for users, etc)

• {subtype} is the entity subtype of the content we’re interested in (blog for blogs, photo_album for albums,
etc)

• {action} is the action that took place (create, update, etc)

River item information will be passed in an object called $vars['item'], which contains the following important
parameters:

• $vars['item']->subject_guid The GUID of the user performing the action

• $vars['item']->object_guid The GUID of the entity being acted upon

Timestamps etc will be generated for you.

For example, the blog plugin uses the following code for its river view:

$item = elgg_extract('item', $vars);
if (!$item instanceof ElggRiverItem) {

return;
}

$blog = $item->getObjectEntity();
if (!$blog instanceof ElggBlog) {

return;
(Fortsetzung auf der nächsten Seite)

186 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

}

$vars['message'] = $blog->getExcerpt();

echo elgg_view('river/elements/layout', $vars);

3.3.27 Routing

Elgg has two mechanisms to respond to HTTP requests that don’t already go through the Actions and Simplecache
systems.

URL Identifier and Segments

After removing the site URL, Elgg splits the URL path by / into an array. The first element, the identifier, is shifted off,
and the remaining elements are called the segments. For example, if the site URL is http://example.com/elgg/,
the URL http://example.com/elgg/blog/owner/jane?foo=123 produces:

Identifier: 'blog'. Segments: ['owner', 'jane']. (the query string parameters are available via get_input())

The site URL (home page) is a special case that produces an empty string identifier and an empty segments array.

Warnung: URL identifier/segments should be considered potentially dangerous user input. Elgg uses
htmlspecialchars to escapes HTML entities in them.

Page Handling

Elgg offers a facility to manage your plugin pages via custom routes, enabling URLs like http://yoursite/
my_plugin/section. You can register a new route using elgg_register_route(), or via routes config in
elgg-plugin.php. Routes map to resource views, where you can render page contents.

// in your 'init', 'system' handler
elgg_register_route('my_plugin:section' [

'path' => '/my_plugin/section/{guid}/{subsection?}',
'resource' => 'my_plugin/section',
'requirements' => [

'guid' => '\d+',
'subsection' => '\w+',

],
]);

// in my_plugin/views/default/resources/my_plugin/section.php
$guid = elgg_extract('guid', $vars);
$subsection = elgg_extract('subsection', $vars);

// render content

In the example above, we have registered a new route that is accessible via http://yoursite/my_plugin/section/
<guid>/<subsection>. Whenever that route is accessed with a required guid segment and an optional subsection
segment, the router will render the specified my_plugin/section resource view and pass the parameters extracted
from the URL to your resource view with $vars.

3.3. Developer Guides 187

Elgg Documentation, Release master

Routes names

Route names can then be used to generate a URL:

$url = elgg_generate_url('my_plugin:section', [
'guid' => $entity->guid,
'subsection' => 'assets',

]);

The route names are unique across all plugins and core, so another plugin can override the route by registering different
parameters to the same route name.

Route names follow a certain convention and in certain cases will be used to automatically resolve URLs, e.g. to display
an entity.

The following conventions are used in core and recommended for plugins:

view:<entity_type>:<entity_subtype>
Maps to the entity profile page, e.g. view:user:user or view:object:blog The path must contain a guid,
or username for users

edit:<entity_type>:<entity_subtype>
Maps to the form to edit the entity, e.g. edit:user:user or edit:object:blog The path must contain a guid,
or username for users If you need to add subresources, use suffixes, e.g. edit:object:blog:images, keeping
at least one subresource as a default without suffix.

add:<entity_type>:<entity_subtype>
Maps to the form to add a new entity of a given type, e.g. add:object:blog The path, as a rule, contains
container_guid parameter

collection:<entity_type>:<entity_subtype>:<collection_type>
Maps to listing pages. Common route names used in core are, as follows:

• collection:object:blog:all: list all blogs

• collection:object:blog:owner: list blogs owned by a user with a given username

• collection:object:blog:friends: list blogs owned by friends of the logged in user (or user with a
given username)

• collection:object:blog:group: list blogs in a group

default:<entity_type>:<entity_subtype>
Maps to the default page for a resource, e.g. the path /blog. Elgg happens to use the „all“ collection for these
routes.

• default:object:blog: handle the generic path /blog.

<entity_subtype> can be omitted from route names to register global routes applicable to all entities of a given
type. URL generator will first try to generate a URL using the subtype, and will then fallback to a route name without
a subtype. For example, user profiles are routed to the same resource view regardless of user subtype.

elgg_register_route('view:object:attachments', [
'path' => '/attachments/{guid}',
'resource' => 'attachments',

]);

elgg_register_route('view:object:blog:attachments', [
'path' => '/blog/view/{guid}/attachments',
'resource' => 'blog/attachments',

(Fortsetzung auf der nächsten Seite)

188 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

]);

$blog = get_entity($blog_guid);
$url = elgg_generate_entity_url($blog, 'view', 'attachments'); // /blog/view/$blog_guid/
→˓attachments

$other = get_entity($other_guid);
$url = elgg_generate_entity_url($other, 'view', 'attachments'); // /attachments/$other_
→˓guid

Route configuration

Segments can be defined using wildcards, e.g. profile/{username}, which will match all URLs that contain
profile/ followed by and arbitrary username.

To make a segment optional you can add a ? (question mark) to the wildcard name, e.g. profile/{username}/
{section?}. In this case the URL will be matched even if the section segment is not provided.

You can further constrain segments using regex requirements:

// elgg-plugin.php
return [

'routes' => [
'profile' => [

'path' => '/profile/{username}/{section?}',
'resource' => 'profile',
'requirements' => [

'username' => '[\p{L}\p{Nd}._-]+', // only allow valid␣
→˓usernames

'section' => '\w+', // can only contain alphanumeric␣
→˓characters

],
'defaults' => [

'section' => 'index',
],

],
]

];

By default, Elgg will set the following requirements for named URL segments:

$patterns = [
'guid' => '\d+', // only digits
'group_guid' => '\d+', // only digits
'container_guid' => '\d+', // only digits
'owner_guid' => '\d+', // only digits
'username' => '[\p{L}\p{Nd}._-]+', // letters, digits, underscores, dashes

];

3.3. Developer Guides 189

Elgg Documentation, Release master

Plugin dependent routes

If a route requires a specific plugin to be active this can be configured in the route configuration.

// elgg-plugin.php
return [

'routes' => [
'collection:object:blog:friends' => [

'path' => '/blog/friends/{username?}/{lower?}/{upper?}',
'resource' => 'blog/friends',
'required_plugins' => [

'friends', // route only allowed when friends plugin is␣
→˓active

],
],

]
];

Route middleware

Route middleware can be used to prevent access to a certain route, or to perform some business logic before the route
is rendered. Middleware can be used, e.g. to implement a paywall, or to log analytics, or to set open graph metatags.

Elgg core implements several middleware handlers. The following middleware can be found in the namespace \Elgg\
Router\Middleware:

Gatekeeper

This gatekeeper will prevent access by non-authenticated users.

AdminGatekeeper

This gatekeeper will prevent access by non-admin users.

LoggedOutGatekeeper

This gatekeeper will prevent access by authenticated users.

AjaxGatekeeper

This gatekeeper will prevent access with non-xhr requests.

190 Kapitel 3. Continue Reading

Elgg Documentation, Release master

PageOwnerGatekeeper

This gatekeeper will prevent access if there is no pageowner entity.

GroupPageOwnerGatekeeper

This gatekeeper extends the PageOwnerGatekeeper but also requires the pageowner to be a ElggGroup entity.

UserPageOwnerGatekeeper

This gatekeeper extends the PageOwnerGatekeeper but also requires the pageowner to be an ElggUser entity.

PageOwnerCanEditGatekeeper

This gatekeeper will prevent access if there is no pageowner detected and the pageowner can’t be editted.

GroupPageOwnerCanEditGatekeeper

This gatekeeper extends the PageOwnerCanEditGatekeeper but also requires the pageowner to be a ElggGroup
entity.

UserPageOwnerCanEditGatekeeper

This gatekeeper extends the PageOwnerCanEditGatekeeper but also requires the pageowner to be an ElggUser
entity.

CsrfFirewall

This middleware will prevent access without the correct CSRF tokens. This middleware will automatically be applied
to actions.

ActionMiddleware

This middleware will provide action related logic. This middleware will automatically be applied to actions.

SignedRequestGatekeeper

This gatekeeper will prevent access if the url has been tampered with. A secure URL can be generated using the
elgg_http_get_signed_url function.

3.3. Developer Guides 191

Elgg Documentation, Release master

UpgradeGatekeeper

This gatekeeper will prevent access if the upgrade URL is secured and the URL is invalid.

WalledGarden

This middleware will prevent access to a route if the site is configured for authenticated users only and there is no
authenticated user logged in. This middleware is automatically enabled for all routes. You can disable the walled garden
gatekeeper with a route config option.

Custom Middleware

Middleware handlers can be set to any callable that receives an instance of \Elgg\Request: The handler should throw
an instance of \Elgg\Exceptions\HttpException to prevent route access. The handler can return an instance of
\Elgg\Http\ResponseBuilder to prevent further implementation of the routing sequence (a redirect response can
be returned to re-route the request).

class MyMiddleware {

public function __invoke(\Elgg\Request $request) {
$entity = $request->getEntityParam();
if ($entity) {

// do stuff
} else {

throw new EntityNotFoundException();
}

}
}

elgg_register_route('myroute', [
'path' => '/myroute/{guid?}',
'resource' => 'myroute',
'middleware' => [

\Elgg\Router\Middleware\Gatekeeper::class,
MyMiddleware::class,

]
]);

Route controllers

In certain cases, using resource views is not appropriate. In these cases you can use a controller - any callable that
receives an instance of \Elgg\Request:

class MyController {

public function handleFoo(\Elgg\Request $request) {
elgg_set_http_header('Content-Type: application/json');
$data = [

'entity' => $request->getEntityParam(),
];

(Fortsetzung auf der nächsten Seite)

192 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

return elgg_ok_response($data);
}

}

elgg_register_route('myroute', [
'path' => '/myroute/{guid?}',
'controller' => [MyController::class, 'handleFoo'],

]);

The route:rewrite event

For URL rewriting, the route:rewrite event (with similar arguments as route) is triggered very early, and allows
modifying the request URL path (relative to the Elgg site).

Here we rewrite requests for news/* to blog/*:

function myplugin_rewrite_handler(\Elgg\Event $event) {
$value = $event->getValue();

$value['identifier'] = 'blog';

return $value;
}

elgg_register_event_handler('route:rewrite', 'news', 'myplugin_rewrite_handler');

Warnung: The event must be registered directly in your plugin Bootstrap boot function. The init function is too
late.

Routing overview

For regular pages, Elgg’s program flow is something like this:

1. A user requests http://example.com/news/owner/jane.

2. Plugins are initialized.

3. Elgg parses the URL to identifier news and segments ['owner', 'jane'].

4. Elgg triggers the event route:rewrite, news (see above).

5. Elgg finds a registered route that matches the final route path, and renders a resource view associated with it. It
calls elgg_view_resource('blog/owner', $vars) where $vars contains the username.

6. The resources/blog/owner view gets the username via $vars['username'], and uses many other views
and formatting functions like elgg_view_layout() and elgg_view_page() to create the entire HTML page.

7. PHP invokes Elgg’s shutdown sequence.

8. The user receives a fully rendered page.

Elgg’s coding standards suggest a particular URL layout, but there is no syntax enforced.

3.3. Developer Guides 193

Elgg Documentation, Release master

3.3.28 Search

Contents

• Entity search

• Search fields

• Searchable types

• Custom search types

• Autocomplete and livesearch endpoint

Entity search

Elgg core provides flexible elgg_search(), which prepares custom search clauses and utilizes
elgg_get_entities() to fetch the results.

In addition to all parameters accepted by elgg_get_entities(), elgg_search() accepts the following:

• query Search query

• fields An array of names by property type to search in (see example below)

• sort_by An array containing sorting options, including property, property_type and direction

• type Entity type to search

• subtype Optional entity subtype to search

• search_type Custom search type (required if no type is provided)

• partial_match Allow partial matches
By default partial matches are allowed, meaning that elgg will be matched when searching for el Exact
matches may be helpful when you want to match tag values, e.g. when you want to find all objects that are
red and not darkred

• tokenize Break down search query into tokens
By default search queries are tokenized, meaning that we will match elgg has been released when
searching for elgg released

// List all users who list United States as their address or mention it in their␣
→˓description
$options = [

'type' => 'user',
'query' => 'us',
'fields' => [

'metadata' => ['description'],
'annotations' => ['location'],

],
'sort_by' => [

'property' => 'zipcode',
'property_type' => 'annotation',
'direction' => 'asc',

],
];

(Fortsetzung auf der nächsten Seite)

194 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

echo elgg_list_entities($options, 'elgg_search');

Search fields

You can customize search fields for each entity type/subtype, using search:fields event:

// Let's remove search in location and add address field instead
elgg_register_event_handler('search:fields', 'user', 'my_plugin_search_user_fields');

function my_plugin_search_user_fields(\Elgg\Event $event) {
$fields = $event->getValue();
$location_key = array_search('location', $fields['annotations']);
if ($location_key) {

unset($fields[$location_key]['annotations']);
}

$fields['metadata'][] = 'address';

return $fields;
}

Searchable types

To register an entity type for search, use elgg_entity_enable_capability($type, $subtype,
'searchable'), or do so when defining an entity type in elgg-plugin.php.

Bemerkung: The search plugin uses the entity capability searchable. This capability defines if an entity is searchable.

To combine search results or filter how search results are presented in the search plugin, use 'search:config',
'type_subtype_pairs' event.

// Let's add places and place reviews as public facing entities
elgg_entity_enable_capability('object', 'place', 'searchable');
elgg_entity_enable_capability('object', 'place_review', 'searchable');

// Now let's include place reviews in the search results for places
elgg_register_event_handler('search:options', 'object:place', 'my_plugin_place_search_
→˓options');
elgg_register_event_handler('search:config', 'type_subtype_pairs', 'my_plugin_place_
→˓search_config');

// Add place review to search options as a subtype
function my_plugin_place_search_options(\Elgg\Event $event) {

$params = $event->getParams();
if (isset($params['subtypes'])) {

$subtypes = (array) $params['subtypes'];
} else {

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 195

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

$subtypes = (array) elgg_extract('subtype', $params);
}

if (!in_array('place', $subtypes)) {
return;

}

unset($params["subtype"]);

$subtypes[] = 'place_review';
$params['subtypes'] = $subtypes;

return $params;
}

// Remove place reviews as a separate entry in search sections
function my_plugin_place_search_config(\Elgg\Event $event) {

$types = $event->getValue();

if (empty($types['object'])) {
return;

}

foreach ($types['object'] as $key => $subtype) {
if ($subtype == 'place_review') {

unset($types['object'][$key]);
}

}

return $types;
}

Custom search types

Elgg core only supports entity search. You can implement custom searches, e.g. using search query as a location and
listing entities by proximity to that location.

// Let's added proximity search type
elgg_register_event_handler('search:config', 'search_types', function (\Elgg\Event
→˓$event) {

$search_types = $event->getValue();
$search_types[] = 'promimity';

return $search_types;
});

// Let's add search options that will look for entities that have geo coordinates and␣
→˓order them by proximity to the query location
elgg_register_event_handler('search:options', 'proximity', function (\Elgg\Event $event)
→˓{

(Fortsetzung auf der nächsten Seite)

196 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

$query = $event->getParam('query');
$options = $event->getValue();

// Let's presume we have a geocoding API
$coords = geocode($query);

// We are not using standard 'selects' options here, because counting queries do not␣
→˓use custom selects

$options['wheres']['proximity'] = function (QueryBuilder $qb, $alias) use ($lat,
→˓$long) {

$dblat = $qb->joinMetadataTable($alias, 'guid', 'geo:lat');
$dblong = $qb->joinMetadataTable($alias, 'guid', 'geo:long');

$qb->addSelect("(((acos(sin(($lat*pi()/180))
*sin(($dblat.value*pi()/180)) + cos(($lat*pi()/180))
*cos(($dblat.value*pi()/180))
*cos((($long-$dblong.value)*pi()/180)))))*180/pi())
*60*1.1515*1.60934
AS proximity");

$qb->orderBy('proximity', 'asc');

return $qb->merge([
$qb->compare("$dblat.value", 'is not null'),
$qb->compare("$dblong.value", 'is not null'),

]);
};

return $options;
});

Autocomplete and livesearch endpoint

Core provides a JSON endpoint for searching users and groups. These endpoints are used by input/autocomplete
and input/entitypicker views.

// Get JSON results of a group search for 'class'
$json = file_get_contents('http://example.com/livesearch/groups?view=json&q=class');

You can add custom search types, by adding a corresponding resource view:

// Let's add an endpoint that will search for users that are not members of a group
// and render a userpicker for our invite form
echo elgg_view('input/userpicker', [

'handler' => 'livesearch/non_members',
'options' => [

// this will be sent as URL query elements
'group_guid' => $group_guid,

],
]);

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 197

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

// To enable /livesearch/non_members endpoint, we need to add a view
// in /views/json/resources/livesearch/non_members.php

$limit = get_input('limit', elgg_get_config('default_limit'));
$query = get_input('term', get_input('q'));
$input_name = get_input('name');

// We have passed this value to our input view, and we want to make sure
// external scripts are not using it to mine data on group members
// so let's validate the HMAC that was generated by the userpicker input
$group_guid = (int) get_input('group_guid');

$data = [
'group_guid' => $group_guid,

];

// let's sort by key, in case we have more elements
ksort($data);

$hmac = elgg_build_hmac($data);
if (!$hmac->matchesToken(get_input('mac'))) {

// request does not originate from our input view
throw new \Elgg\Exceptions\Http\EntityPermissionsException();

}

elgg_set_http_header("Content-Type: application/json;charset=utf-8");

$options = [
'query' => $query,
'type' => 'user',
'limit' => $limit,
'sort' => 'name',
'order' => 'ASC',
'fields' => [

'metadata' => ['name', 'username'],
],
'item_view' => 'search/entity',
'input_name' => $input_name,
'wheres' => function (QueryBuilder $qb) use ($group_guid) {

$subquery = $qb->subquery('entity_relationships', 'er');
$subquery->select('1')

->where($qb->compare('er.guid_one', '=', 'e.guid'))
->andWhere($qb->compare('er.relationship', '=', 'member', ELGG_VALUE_STRING))
->andWhere($qb->compare('er.guid_two', '=', $group_guid, ELGG_VALUE_

→˓INTEGER));

return "NOT EXISTS ({$subquery->getSQL()})";
}

];

echo elgg_list_entities($options, 'elgg_search');

198 Kapitel 3. Continue Reading

Elgg Documentation, Release master

3.3.29 Services

Elgg uses the Elgg\Application class to load and bootstrap Elgg. In future releases this class will offer a set of
service objects for plugins to use.

Bemerkung: If you have a useful idea, you can add a new service!

Menus

elgg()->menus provides low-level methods for constructing menus. In general, menus should be passed to
elgg_view_menu for rendering instead of manual rendering.

3.3.30 Plugin settings

Contents

• User settings

• Group settings

• Retrieving settings in your code

• Setting values while in code

• Default plugin (group|user) settings

You need to perform some extra steps if your plugin needs settings to be saved and controlled via the administration
panel:

• Create a file in your plugin’s default view folder called plugins/your_plugin/settings.php, where
your_plugin is the name of your plugin’s directory in the mod hierarchy

• Fill this file with the form elements you want to display together with internationalised text labels

• Set the name attribute in your form components to params[`varname`] where varname is the name of
the variable. These will be saved as metadata attached to a plugin entity. So, if your variable is called
params[myparameter] your plugin (which is also passed to this view as $vars['entity']) will be called
$vars['entity']->myparameter

An example settings.php would look like:

echo elgg_view_field([
'#type' => 'select',
'#label' => elgg_echo('myplugin:settings:limit'),
'name' => 'params[limit]',
'value' => $vars['entity']->limit,
'options' => [5,8,12,15],

]);

Bemerkung: You don’t need to add a save button or the form, this will be handled by the framework.

3.3. Developer Guides 199

Elgg Documentation, Release master

Bemerkung: You cannot use form components that send no value when „off.“ These include radio inputs and check
boxes.

If your plugin settings require a cache flush you can add a (hidden) input on the form with the name ‚flush_cache‘ and
value ‚1‘

elgg_view_field([
'#type' => 'hidden',
'name' => 'flush_cache',
'value' => 1,

]);

User settings

Your plugin might need to store per user settings too, and you would like to have your plugin’s options to appear in the
user’s settings page. This is also easy to do and follows the same pattern as setting up the global plugin configuration
explained earlier. The only difference is that instead of using a settings file you will use usersettings. So, the path
to the user edit view for your plugin would be plugins/<your_plugin>/usersettings.php.

Bemerkung: The title of the usersettings form will default to the plugin name. If you want to change this, add a
translation for <plugin_id>:usersettings:title.

Group settings

If your plugin needs settings per group you can extend the view groups/edit/settings to show your settings. The
settings are shown during group creation and edit. In order for the settings to be saved correctly they need a name in
the format settings[<plugin id>][<setting name>].

Retrieving settings in your code

To retrieve settings from your code use:

$setting = elgg_get_plugin_setting($name, $plugin_id);

or for user settings:

$user_setting = elgg_get_plugin_user_setting($name, $user_guid, $plugin_id);

// or
$user = get_user($user_guid);
$user_setting = $user->getPluginSetting($plugin_id, $name);

where:

• $name Is the value you want to retrieve

• $user_guid Is the user you want to retrieve these for (defaults to the currently logged in user)

• $plugin_name Is the name of the plugin (detected if run from within a plugin)

or for group settings:

200 Kapitel 3. Continue Reading

Elgg Documentation, Release master

$group = get_entity($group_guid);
$value = $group->getPluginSetting('<plugin id>', '<setting name>');

Setting values while in code

Values may also be set from within your plugin code, to do this use one of the following functions:

$plugin = elgg_get_plugin_from_id($plugin_id);
$plugin->setSetting($name, $value);

or for user settings:

$user = elgg_get_logged_in_user_entity();
$user->setPluginSetting($plugin_id, $name, $value);

or for group settings:

$group = get_entity($group_guid);
$group->setPluginSetting($plugin_id, $name, $value);

Warnung: The $plugin_id needs to be provided when setting plugin (user)settings.

Default plugin (group|user) settings

If a plugin or a user not have a setting stored in the database, you sometimes have the need for a certain default value.
You can pass this when using the getter functions.

$user_setting = elgg_get_plugin_user_setting($name, $user_guid, $plugin_id, $default);

$plugin_setting = elgg_get_plugin_setting($name, $plugin_id, $default);

$group_setting = $group->getPluginSetting($plugin_id, $name, $default);

Alternatively you can also provide default plugin and user settings in the elgg-plugin.php file.

<?php

return [
'settings' => [

'key' => 'value',
],
'user_settings' => [

'key' => 'value',
],

];

Bemerkung: Group settings don’t have a default value available in the elgg-plugin.php file.

3.3. Developer Guides 201

Elgg Documentation, Release master

3.3.31 Themes

Customize the look and feel of Elgg.

A theme is a type of plugin that overrides display aspects of Elgg.

This guide assumes you are familiar with:
• Plugins

• Views

Contents

• Theming Principles and Best Practices

• Create your plugin

• Customize the CSS

– CSS variables

– View extension

– View overloading

– Icons

• Tools

• Customizing the front page

Theming Principles and Best Practices

No third-party CSS frameworks
Elgg does not use a CSS framework, because such frameworks lock users into a specific HTML markup, which
in the end makes it much harder for plugins to collaborate on the appearance. What’s is-primary in one theme,
might be something else in the other. Having no framework allows plugins to alter appearance using pure css,
without having to overwrite views and append framework-specific selectors to HTML markup elements.

/* BAD */
<div class="box has-shadow is-inline">

This is bad, because if the plugin wants to change the styling, it will have to␣
→˓either write really specific css

clearing all the attached styles, or replace the view entirely just to modify␣
→˓the markup
</div>

/* GOOD */
<div class="box-role">

This is good, because a plugin can just simply add .box-role rule
</div>
<style>

.box-role {
padding: 1rem;
display: inline-block;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);

(Fortsetzung auf der nächsten Seite)

202 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

}
</style>

8-point grid system
Elgg uses an 8-point grid system <https://builttoadapt.io/intro-to-the-8-point-grid-system-d2573cde8632>, so
sizing of elements, their padding, margins etc is done in increments and fractions of 8px. Because our default
font-size is 16px, we use fractions of rem, so 0.5rem = 8px. 8-point grid system makes it a lot easier for
developers to collaborate on styling elements: we no longer have to think if the padding should be 5px or 6px.

/* BAD */
.menu > li {

margin: 2px 2px 2px 0;
}

.menu > li > a {
padding: 3px 5px;

}

/* GOOD */
.menu > li > a {

padding: 0.25rem 0.5rem;
}

Mobile first
We write mobile-first CSS. We use two breakpoints: 50rem and 80rem (800px and 1280px at 16px/rem).

/* BAD: mobile defined in media blocks, different display types */

.menu > li {
display: inline-block;

}
@media screen and (max-width: 820px) {

.menu > li {
display: block;
width: 100%;

}
}

/* GOOD: mobile by default. Media blocks style larger viewports. */

.menu {
display: flex;
flex-direction: column;

}
@media screen and (min-width: 50rem) {

.menu {
flex-direction: row;

}
}

Flexbox driven
Flexbox provides simplicity in stacking elements into grids. Flexbox is used for everything from menus to layout
elements.

3.3. Developer Guides 203

Elgg Documentation, Release master

/* BAD */
.heading:after {

visibility: hidden;
height: 0;
clear: both;
content: " ";

}
.heading > h2 {

float: left;
}
.heading > .controls {

float: right;
}

/* GOOD */
.heading {

display: flex;
justify-content: flex-end;

}
.heading > h2 {

order: 1;
margin-right: auto;

}
.heading > .controls {

order: 2;
}

Symmetrical
We maintain symmetry.

/* BAD */
.row .column:first-child {

margin-right: 10px;
}

/* GOOD */
.row {

margin: 0 -0.5rem;
}
.row .column {

margin: 0.5rem;
}

Simple color transitions
We maintain 4 sets of colors for text, background and border: soft, mild, strong and highlight. When
transitioning to hover or active state, we go one level up, e.g. from soft to mild, or use highlight. When
transition to inactive or disabled state, we go one level down.

Increase the click area
When working with nested anchors, we increase the click area of the anchor, rather than the parent

/* BAD */
.menu > li {

margin: 5px;
(Fortsetzung auf der nächsten Seite)

204 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

padding: 5px 10px;
}

/* GOOD */
.menu > li {

margin: 0.5rem;
}
.menu > li > a {

padding: 0.5rem 1rem;
}

No z-index 999999
z-indexes are incremented with a step of 1.

Wrap HTML siblings
We make sure that there are no orphaned strings within a parent and that siblings are wrapped in a way that they
can be targeted by CSS.

/* BAD */
<label>

Orphan
Sibling

</label>

/* GOOD */
<label>

Sibling
Sibling

</label>

/* BAD */
<div>

<h3>Title</h3>
<p>Subtitle</p>
<div class="right">This goes to the right</div>

</div>

/* GOOD */
<div>

<div class="left">
<h3>Title</h3>
<p>Subtitle</p>
</div>
<div class="right">This goes to the right</div>

</div>

3.3. Developer Guides 205

Elgg Documentation, Release master

Create your plugin

Create your plugin as described in the developer guide.

• Create a new directory under mod/

• Create a new elgg-plugin.php

• Create a composer.json file describing your theme.

Customize the CSS

The css is split into several files based on what aspects of the site you’re theming. This allows you to tackle them one
at a time, giving you a chance to make real progress without getting overwhelmed.

Here is a list of the existing CSS views:

• elements/buttons.css: Provides a way to style all the different kinds of buttons your site will use. There are 5
kinds of buttons that plugins will expect to be available: action, cancel, delete, submit, and special.

• elements/chrome.css: This file has some miscellaneous look-and-feel classes.

• elements/components.css: This file contains many “css objects” that are used all over the site: media block, list,
gallery, table, owner block, system messages, river, tags, photo, and comments.

• elements/forms.css: This file determines what your forms and input elements will look like.

• elements/icons.css: Contains styles for the icons and avatars used on your site.

• elements/layout.css: Determines what your page layout will look like: sidebars, page wrapper, main body, header,
footer, etc.

• elements/modules.css: Lots of content in Elgg is displayed in boxes with a title and a content body. We called
these modules. There are a few kinds: info, aside, featured, dropdown, popup, widget. Widget styles are included
in this file too, since they are a subset of modules.

• elements/navigation.css: This file determines what all your menus will look like.

• elements/typography.css: This file determines what the content and headings of your site will look like.

• rtl.css: Custom rules for users viewing your site in a right-to-left language.

• admin.css: A completely separate theme for the admin area (usually not overridden).

• elgg.css: Compiles all the core elements/* files into one file (DO NOT OVERRIDE).

• elements/reset.css: Contains a reset stylesheet that forces elements to have the same default

CSS variables

Elgg uses CssCrush for preprocessing CSS files. This gives us the flexibility of using global CSS variables. Plugins
should, wherever possible, use global CSS variables, and extend the core theme with their plugin variables, so they can
be simply altered by other plugins.

To add or alter variables, use the vars:compiler, css event. Note that you may need to flush the cache to see your
changes in action.

For a list of default core variables, see engine/theme.php.

206 Kapitel 3. Continue Reading

Elgg Documentation, Release master

View extension

There are two ways you can modify views:

The first way is to add extra stuff to an existing view via the views_extensions section within your elgg-plugin.php
definition.

For example, the following configuration will add mytheme/css to Elgg’s core css file:

<?php
return [

'view_extensions' => [
'elgg.css' => [

'mytheme/css' => [],
],

],
];

View overloading

Plugins can have a view hierarchy, any file that exists here will replace any files in the existing core view hierarchy. . .
so for example, if my plugin has a file:

/mod/myplugin/views/default/elements/typography.css

it will replace:

/views/default/elements/typography.css

But only when the plugin is active.

This gives you total control over the way Elgg looks and behaves. It gives you the option to either slightly modify or
totally replace existing views.

Icons

As of Elgg 2.0 the default Elgg icons come from the FontAwesome library. You can use any of these icons by calling:

elgg_view_icon('icon-name');

icon-name can be any of the FontAwesome icons without the fa--prefix.

By default you will get the solid styled variant of the icons. Postfixing the icon name with -solid, -regular or -light
allows you to target a specific style. Be advised; the light styled variant is only available as a FontAwesome Pro licensed
icon.

Tools

We’ve provided you with some development tools to help you with theming: Turn on the “Developers” plugin and go
to the “Theme Preview” page to start tracking your theme’s progress.

3.3. Developer Guides 207

http://fontawesome.io/
http://fontawesome.io/icons/

Elgg Documentation, Release master

Customizing the front page

The main Elgg index page is served via a resource view.

Therefore, you can override it by providing your own resource file in your_plugin/views/default/resources/
index.php.

3.3.32 Writing a plugin upgrade

Every now and then there comes a time when a plugin needs to change the contents or the structure of the data it has
stored either in the database or the dataroot.

The motivation for this may be that the data structure needs to be converted to more efficient or flexible structure. Or
perhaps due to a bug the data items have been saved in an invalid way, and they needs to be converted to the correct
format.

Migrations and convertions like this may take a long time if there is a lot of data to be processed. This is why Elgg
provides the Elgg\Upgrade\AsynchronousUpgrade class that can be used for implementing long-running upgrades.

Declaring a plugin upgrade

Plugin can communicate the need for an upgrade under the upgrades key in elgg-plugin.php file. Each value of the
array must be the fully qualified name of an upgrade class that extends the Elgg\Upgrade\AsynchronousUpgrade
class.

Example from mod/blog/elgg-plugin.php file:

return [
'upgrades' => [

Blog\Upgrades\AccessLevelFix::class,
Blog\Upgrades\DraftStatusUpgrade::class,

]
];

The class names in the example refer to the classes:
• mod/blog/classes/Blog/Upgrades/AccessLevelFix

• mod/blog/classes/Blog/Upgrades/DraftStatusUpgrade

Bemerkung: Elgg core upgrade classes can be declared in engine/lib/upgrades/async-upgrades.php.

The upgrade class

A class extending the Elgg\Upgrade\AsynchronousUpgrade class has a lot of freedom on how it wants to handle the
actual processing of the data. It must however declare some constant variables and also take care of marking whether
each processed item was upgraded successfully or not.

The basic structure of the class is the following:

<?php

namespace Blog\Upgrades;
(Fortsetzung auf der nächsten Seite)

208 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

use Elgg\Upgrade\AsynchronousUpgrade;
use Elgg\Upgrade\Result;

/**
* Fixes invalid blog access values
*/
class AccessLevelFix extends AsynchronousUpgrade {

/**
* Version of the upgrade
*
* @return int
*/
public function getVersion() {

return 2016120300;
}

/**
* Should the run() method receive an offset representing all processed items?
*
* @return bool
*/
public function needsIncrementOffset() {

return true;
}

/**
* Should this upgrade be skipped?
*
* @return bool
*/
public function shouldBeSkipped() {

return false;
}

/**
* The total number of items to process in the upgrade
*
* @return int
*/
public function countItems() {

// return count of all blogs
}

/**
* Runs upgrade on a single batch of items
*
* @param Result $result Result of the batch (this must be returned)
* @param int $offset Number to skip when processing
*
* @return Result Instance of \Elgg\Upgrade\Result

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 209

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

*/
public function run(Result $result, $offset) {

// fix 50 blogs skipping the first $offset
}

}

Warnung: Do not assume when your class will be instantiated or when/how often its public methods will be called.

Class methods

getVersion()

This must return an integer representing the date the upgrade was added. It consists of eight digits and is in format
yyyymmddnn where:

• yyyy is the year

• mm is the month (with leading zero)

• dd is the day (with leading zero)

• nn is an incrementing number (starting from 00) that is used in case two separate upgrades have been added
during the same day

shouldBeSkipped()

This should return false unless the upgrade won’t be needed.

Warnung: If true is returned the upgrade cannot be run later.

needsIncrementOffset()

If true, your run() method will receive as $offset the number of items aready processed. This is useful if you
are only modifying data, and need to use the $offset in a function like elgg_get_entities() to know how many
you’ve already handled.

If false, your run() method will receive as $offset the total number of failures. false should be used if your
process deletes or moves data out of the way of the process. E.g. if you delete 50 objects on each run(), you don’t
really need the $offset.

210 Kapitel 3. Continue Reading

Elgg Documentation, Release master

countItems()

Get the total number of items to process during the upgrade. If unknown, Batch::UNKNOWN_COUNT can be returned,
but run() must manually mark the upgrade complete.

run()

This must perform a portion of the actual upgrade. And depending on how long it takes, it may be called multiple times
during a single request.

It receives two arguments:

• $result: An instance of Elgg\Upgrade\Result object

• $offset: The offset where the next upgrade portion should start (or total number of failures)

For each item the method processes, it must call either:

• $result->addSuccesses(): If the item was upgraded successfully

• $result->addFailures(): If it failed to upgrade the item

Both methods default to one item, but you can optionally pass in the number of items.

Additionally it can set as many error messages as it sees necessary in case something goes wrong:

• $result->addError("Error message goes here")

If countItems() returned Batch::UNKNOWN_COUNT, then at some point run() must call
$result->markComplete() to finish the upgrade.

In most cases your run() method will want to pass the $offset parameter to one of the elgg_get_entities()
functions:

/**
* Process blog posts
*
* @param Result $result The batch result (will be modified and returned)
* @param int $offset Starting point of the batch
* @return Result Instance of \Elgg\Upgrade\Result;
*/
public function run(Result $result, $offset) {

$blogs = elgg_get_entitites([
'type' => 'object'
'subtype' => 'blog'
'offset' => $offset,

]);

foreach ($blogs as $blog) {
if ($this->fixBlogPost($blog)) {

$result->addSuccesses();
} else {

$result->addFailures();
$result->addError("Failed to fix the blog {$blog->guid}.");

}
}

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 211

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

return $result;
}

getUpgrade()

Use this function to get the related ElggUpgrade entity that is related to this upgrade.

Administration interface

Each upgrade extending the Elgg\Upgrade\AsynchronousUpgrade class gets listed in the admin panel after trigge-
ring the site upgrade from the Administration dashboard.

While running the upgrades Elgg provides:

• Estimated duration of the upgrade

• Count of processed items

• Number of errors

• Possible error messages

3.3.33 Views

Contents

• Introduction

• Using views

• Views as templates

• Views as cacheable assets

• Views and third-party assets

– Specifying additional views directories

• Viewtypes

• Altering views via plugins

– Overriding views

– Extending views

– Altering view input

– Altering view output

– Replacing view output completely

• Displaying entities

– Full and partial entity views

• Listing entities

212 Kapitel 3. Continue Reading

Elgg Documentation, Release master

– Rendering a list with an alternate view

– Rendering a list as a table

• Icons

– Generic icons

– Entity icons

• Related

Introduction

Views are responsible for creating output. They handle everything from:

• the layout of pages

• chunks of presentation output (like a footer or a toolbar)

• individual links and form inputs.

• the images, js, and css needed by your web page

Using views

At their most basic level, the default views are just PHP files with snippets of html:

<h1>Hello, World!</h1>

Assuming this view is located at /views/default/hello.php, we could output it like so:

echo elgg_view('hello');

For your convenience, Elgg comes with quite a lot of views by default. In order to keep things manageable, they are
organized into subdirectories. Elgg handles this situation quite nicely. For example, our simple view might live in
/views/default/hello/world.php, in which case it would be called like so:

echo elgg_view('hello/world');

The name of the view simply reflects the location of the view in the views directory.

Views as templates

You can pass arbitrary data to a view via the $vars array. Our hello/world view might be modified to accept a
variable like so:

<h1>Hello, <?= $vars['name']; ?>!</h1>

In this case, we can pass an arbitrary name parameter to the view like so:

echo elgg_view('hello/world', ['name' => 'World']);

which would produce the following output:

3.3. Developer Guides 213

Elgg Documentation, Release master

<h1>Hello, World!</h1>

Warnung: Views don’t do any kind of automatic output sanitization by default. You are responsible for doing the
correct sanitization yourself to prevent XSS attacks and the like.

Views as cacheable assets

As mentioned before, views can contain JS, CSS, or even images.

Asset views must meet certain requirements:

• They must not take any $vars parameters

• They must not change their output based on global state like

– who is logged in

– the time of day

• They must contain a valid file extension

– Bad: my/cool/template

– Good: my/cool/template.html

For example, suppose you wanted to load some CSS on a page. You could define a view mystyles.css, which would
look like so:

/* /views/default/mystyles.css */
.mystyles-foo {
background: red;

}

Bemerkung: Leave off the trailing „.php“ from the filename and Elgg will automatically recognize the view as ca-
cheable.

To get a URL to this file, you would use elgg_get_simplecache_url:

// Returns "https://mysite.com/.../289124335/default/mystyles.css
elgg_get_simplecache_url('mystyles.css');

Elgg automatically adds the magic numbers you see there for cache-busting and sets long-term expires headers on the
returned file.

Warnung: Elgg may decide to change the location or structure of the returned URL in a future release for whatever
reason, and the cache-busting numbers change every time you flush Elgg’s caches, so the exact URL is not stable
by design.

With that in mind, here’s a couple anti-patterns to avoid:

• Don’t rely on the exact structure/location of this URL

• Don’t try to generate the URLs yourself

• Don’t store the returned URLs in a database

214 Kapitel 3. Continue Reading

Elgg Documentation, Release master

On the page you want to load the css, call:

elgg_require_css('mystyles');

Views and third-party assets

The best way to serve third-party assets is through views. However, instead of manually copy/pasting the assets into
the right location in /views/*, you can map the assets into the views system via the "views" key in your plugin’s
elgg-plugin.php config file.

The views value must be a 2 dimensional array. The first level maps a viewtype to a list of view mappings. The secondary
lists map view names to file paths, either absolute or relative to the Elgg root directory.

If you check your assets into source control, point to them like this:

<?php // mod/example/elgg-plugin.php
return [

// view mappings
'views' => [

// viewtype
'default' => [

// view => /path/from/filesystem/root
'js/jquery-ui.js' => __DIR__ . '/node_modules/components-jqueryui/jquery-ui.

→˓min.js',
],

],
];

To point to assets installed with composer, use install-root-relative paths by leaving off the leading slash:

<?php // mod/example/elgg-plugin.php
return [

'views' => [
'default' => [

// view => path/from/install/root
'js/jquery-ui.js' => 'vendor/npm-asset/components-jqueryui/jquery-ui.min.js',

],
],

];

Elgg core uses this feature extensively, though the value is returned directly from /engine/views.php.

Bemerkung: You don’t have to use NPM, Composer Asset Plugin or any other script for managing your plugin’s
assets, but we highly recommend using a package manager of some kind because it makes upgrading so much easier.

3.3. Developer Guides 215

Elgg Documentation, Release master

Specifying additional views directories

In elgg-plugin.php you can also specify directories to be scanned for views. Just provide a view name prefix ending
with / and a directory path (like above).

<?php // mod/file/elgg-plugin.php
return [

'views' => [
'default' => [

'file/icon/' => __DIR__ . '/graphics/icons',
],

],
];

With the above, files found within the icons folder will be interpreted as views. E.g. the view file/icon/general.
gif will be created and mapped to mod/file/graphics/icons/general.gif.

Bemerkung: This is a fully recursive scan. All files found will be brought into the views system.

Multiple paths can share the same prefix, just give an array of paths:

<?php // mod/file/elgg-plugin.php
return [

'views' => [
'default' => [

'file/icon/' => [
__DIR__ . '/graphics/icons',
__DIR__ . '/more_icons', // processed 2nd (may override)

],
],

],
];

Viewtypes

You might be wondering: „Why /views/default/hello/world.php instead of just /views/hello/world.php?“.

The subdirectory under /views determines the viewtype of the views below it. A viewtype generally corresponds to
the output format of the views.

The default viewtype is assumed to be HTML and other static assets necessary to render a responsive web page in a
desktop or mobile browser, but it could also be:

• RSS

• ATOM

• JSON

• Mobile-optimized HTML

• TV-optimized HTML

• Any number of other data formats

216 Kapitel 3. Continue Reading

Elgg Documentation, Release master

You can force Elgg to use a particular viewtype to render the page by setting the view input variable like so: https:/
/mysite.com/?view=rss.

You could also write a plugin to set this automatically using the elgg_set_viewtype() function. For example, your
plugin might detect that the page was accessed with an iPhone’s browser string, and set the viewtype to iphone by
calling:

elgg_set_viewtype('iphone');

The plugin would presumably also supply a set of views optimized for those devices.

Altering views via plugins

Without modifying Elgg’s core, Elgg provides several ways to customize almost all output:

• You can override a view, completely changing the file used to render it.

• You can extend a view by prepending or appending the output of another view to it.

• You can alter a view’s inputs by event.

• You can alter a view’s output by event.

Overriding views

Views in plugin directories always override views in the core directory; however, when plugins override the views of
other plugins, later plugins take precedent.

For example, if we wanted to customize the hello/world view to use an h2 instead of an h1, we could create a file at
/mod/example/views/default/hello/world.php like this:

<h2>Hello, <?= $vars['name']; ?></h2>

Bemerkung: When considering long-term maintenance, overriding views in the core and bundled plugins has a cost:
Upgrades may bring changes in views, and if you have overridden them, you will not get those changes.

You may instead want to alter the input or the output of the view via events.

Bemerkung: Elgg caches view locations. This means that you should disable the system cache while developing with
views. When you install the changes to a production environment you must flush the caches.

Extending views

There may be other situations in which you don’t want to override the whole view, you just want to prepend or append
some more content to it. In Elgg this is called extending a view.

For example, instead of overriding the hello/world view, we could extend it like so:

elgg_extend_view('hello/world', 'hello/greeting');

If the contents of /views/default/hello/greeting.php is:

3.3. Developer Guides 217

Elgg Documentation, Release master

<h2>How are you today?</h2>

Then every time we call elgg_view('hello/world');, we’ll get:

<h1>Hello, World!</h1>
<h2>How are you today?</h2>

You can prepend views by passing a value to the 3rd parameter that is less than 500:

// appends 'hello/greeting' to every occurrence of 'hello/world'
elgg_extend_view('hello/world', 'hello/greeting');

// prepends 'hello/greeting' to every occurrence of 'hello/world'
elgg_extend_view('hello/world', 'hello/greeting', 450);

All view extensions should be registered in your plugin’s elgg-plugin.php.

Altering view input

It may be useful to alter a view’s $vars array before the view is rendered.

Before each view rendering the $vars array is filtered by the event ["view_vars", $view_name]. Each registered
handler function is passed these arguments:

• $event - the string "view_vars"

• $view_name - the view name being rendered (the first argument passed to elgg_view())

• $returnvalue - the modified $vars array

• $params - an array containing:

– vars - the original $vars array, unaltered

– view - the view name

– viewtype - The viewtype being rendered

Altering view input example

Here we’ll alter the default pagination limit for the comments view:

elgg_register_event_handler('view_vars', 'page/elements/comments', 'myplugin_alter_
→˓comments_limit');

function myplugin_alter_comments_limit(\Elgg\Event $event) {
$vars = $event->getValue();

// only 10 comments per page
$vars['limit'] = elgg_extract('limit', $vars, 10);

return $vars;
}

218 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Altering view output

Sometimes it is preferable to alter the output of a view instead of overriding it.

The output of each view is run through the event ["view", $view_name] before being returned by elgg_view().
Each registered handler function is passed these arguments:

• $event - the string "view"

• $view_name - the view name being rendered (the first argument passed to elgg_view())

• $result - the modified output of the view

• $params - an array containing:

– viewtype - The viewtype being rendered

To alter the view output, the handler just needs to alter $returnvalue and return a new string.

Altering view output example

Here we’ll eliminate breadcrumbs that don’t have at least one link.

elgg_register_event_handler('view', 'navigation/breadcrumbs', 'myplugin_alter_breadcrumb
→˓');

function myplugin_alter_breadcrumb($event, $type, $returnvalue, $params) {
// we only want to alter when viewtype is "default"
if ($params['viewtype'] !== 'default') {

return $returnvalue;
}

// output nothing if the content doesn't have a single link
if (false === elgg_strpos($returnvalue, '<a ')) {

return '';
}

// returning nothing means "don't alter the returnvalue"
}

Replacing view output completely

You can pre-set the view output by setting $vars['__view_output']. The value will be returned as a string. View
extensions will not be used and the view event will not be triggered.

elgg_register_event_handler('view_vars', 'navigation/breadcrumbs', 'myplugin_no_page_
→˓breadcrumbs');

function myplugin_no_page_breadcrumbs(\Elgg\Event $event) {
if (elgg_in_context('pages')) {

return ['__view_output' => ""];
}

}

3.3. Developer Guides 219

Elgg Documentation, Release master

Bemerkung: For ease of use you can also use a already existing default event callback to prevent output \Elgg\
Values::preventViewOutput

Displaying entities

If you don’t know what an entity is, check this page out first.

The following code will automatically display the entity in $entity:

echo elgg_view_entity($entity);

As you’ll know from the data model introduction, all entities have a type (object, site, user or group), and optionally a
subtype (which could be anything - ‚blog‘, ‚forumpost‘, ‚banana‘).

elgg_view_entity will automatically look for a view called type/subtype; if there’s no subtype, it will look for
type/type. Failing that, before it gives up completely it tries type/default.

RSS feeds in Elgg generally work by outputting the object/default view in the ‚rss‘ viewtype.

For example, the view to display a blog post might be object/blog. The view to display a user is user/default.

Full and partial entity views

elgg_view_entity actually has a number of parameters, although only the very first one is required. The first three
are:

• $entity - The entity to display

• $viewtype - The viewtype to display in (defaults to the one we’re currently in, but it can be forced - eg to display
a snippet of RSS within an HTML page)

• $full_view - Whether to display a full version of the entity. (Defaults to true.)

This last parameter is passed to the view as $vars['full_view']. It’s up to you what you do with it; the usual
behaviour is to only display comments and similar information if this is set to true.

Listing entities

This is then used in the provided listing functions. To automatically display a list of blog posts (see the full tutorial),
you can call:

echo elgg_list_entities([
'type' => 'object',
'subtype' => 'blog',

]);

This function checks to see if there are any entities; if there are, it first displays the navigation/pagination view in
order to display a way to move from page to page. It then repeatedly calls elgg_view_entity on each entity before
returning the result.

Note that elgg_list_entities allows the URL to set its limit and offset options, so set those explicitly if you
need particular values (e.g. if you’re not using it for pagination).

220 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Elgg knows that it can automatically supply an RSS feed on pages that use elgg_list_entities. It initializes the
["head","page"] event (which is used by the header) in order to provide RSS autodiscovery, which is why you can
see the orange RSS icon on those pages in some browsers.

Entity listings will default try to load entity owners and container owners. If you want to prevent this you can turn this
off.

echo elgg_list_entities([
'type' => 'object',
'subtype' => 'blog',

// disable owner preloading
'preload_owners' => false,

]);

See also this background information on Elgg’s database.

If you want to show a message when the list does not contain items to list, you can pass a no_resultsmessage or true
for the default message. If you want even more controle over the no_results message you can also pass a Closure (an
anonymous function).

echo elgg_list_entities([
'type' => 'object',
'subtype' => 'blog',

'no_results' => elgg_echo('notfound'),
]);

Rendering a list with an alternate view

You can define an alternative view to render list items using 'item_view' parameter.

In some cases, default entity views may be unsuitable for your needs. Using item_view allows you to customize the
look, while preserving pagination, list’s HTML markup etc.

Consider these two examples:

echo elgg_list_entities([
'type' => 'group',
'relationship' => 'member',
'relationship_guid' => elgg_get_logged_in_user_guid(),
'inverse_relationship' => false,
'full_view' => false,

]);

echo elgg_list_entities([
'type' => 'group',
'relationship' => 'invited',
'relationship_guid' => (int) $user_guid,
'inverse_relationship' => true,
'item_view' => 'group/format/invitationrequest',

]);

In the first example, we are displaying a list of groups a user is a member of using the default group view. In the second
example, we want to display a list of groups the user was invited to.

3.3. Developer Guides 221

Elgg Documentation, Release master

Since invitations are not entities, they do not have their own views and can not be listed using elgg_list_*. We are
providing an alternative item view, that will use the group entity to display an invitation that contains a group name
and buttons to access or reject the invitation.

Rendering a list as a table

Since 2.3 you can render lists as tables. Set $options['list_type'] = 'table' and provide an array of TableCo-
lumn objects as $options['columns']. The service elgg()->table_columns provides several methods to create
column objects based around existing views (like page/components/column/*), properties, or methods.

In this example, we list the latest my_plugin objects in a table of 3 columns: entity icon, the display name, and a
friendly format of the time.

echo elgg_list_entities([
'type' => 'object',
'subtype' => 'my_plugin',

'list_type' => 'table',
'columns' => [

elgg()->table_columns->icon(),
elgg()->table_columns->getDisplayName(),
elgg()->table_columns->time_created(null, [

'format' => 'friendly',
]),

],
]);

See the Elgg\Views\TableColumn\ColumnFactory class for more details on how columns are specified and ren-
dered. You can add or override methods of elgg()->table_columns in a variety of ways, based on views, proper-
ties/methods on the items, or given functions.

Icons

Elgg has support for two kind of icons: generic icons to help with styling (eg. show delete icon) and Entity icons (eg.
user avatar).

Generic icons

As of Elgg 2.0 the generic icons are based on the FontAwesome library. You can get any of the supported icons by
calling elgg_view_icon($icon_name, $vars); where:

• $icon_name is the FontAwesome name (without fa-) for example user

• $vars is optional, for example you can set an additional class

elgg_view_icon() calls the view output/iconwith the given icon name and outputs all the correct classes to render
the FontAwesome icon. If you wish to replace an icon with another icon you can write a view_vars, output/icon
event to replace the icon name with your replacement.

For backwards compatibility some older Elgg icon names are translated to a corresponding FontAwesome icon.

222 Kapitel 3. Continue Reading

http://fontawesome.io/icons/

Elgg Documentation, Release master

Entity icons

To view an icon belowing to an Entity call elgg_view_entity_icon($entity, $size, $vars); where:

• $entity is the ElggEntity you wish to show the icon for

• $size is the requestes size. Default Elgg supports large, medium, small, tiny and topbar (master is also
available, but don’t use it)

• $vars in order to pass additional information to the icon view

elgg_view_entity_icon() calls a view in the order:

• icon/<type>/<subtype>

• icon/<type>/default

• icon/default

So if you wish to customize the layout of the icon you can overrule the corresponding view.

An example of displaying a user avatar is

// get the user
$user = elgg_get_logged_in_user_entity();

// show the small icon
echo elgg_view_entity_icon($user, 'small');

// don't add the user_hover menu to the icon
echo elgg_view_entity_icon($user, 'small', [

'use_hover' => false,
]);

Related

Page structure best practice

Elgg pages have an overall pageshell, a main layout and several page elements. It’s recommended to always use the
default layout as all page elements can be controlled using that layout.

If you’re not using the default layout you can call

$layout_area = elgg_view_layout($layout_name, [
'content' => $content,
'section' => $section,

]);

The different page elements are passed as an array in the second parameter. The array keys correspond to elements in
the layout. The array values contain the html that should be displayed in those areas:

$layout_area = elgg_view_layout('default', [
'content' => $content,

]);

3.3. Developer Guides 223

Elgg Documentation, Release master

$layout_area = elgg_view_layout('default', [
'content' => $content,
'sidebar' => $sidebar,

]);

You can then, ultimately, pass this into the elgg_view_page function:

echo elgg_view_page($title, $layout_area);

If you’re using the default layout you can also pass the array with page elements directly to elgg_view_page:

echo elgg_view_page($title, [
'content' => $content,
'sidebar' => $sidebar,

]);

You can control many of the page elements:

echo elgg_view_page('This is the browser title', [
'title' => 'This is the page title',
'content' => $content,
'sidebar' => false, // no default sidebar
'sidebar_alt' => $sidebar_alt, // show an alternate sidebar

]);

Siehe auch:
Have a look at the page/layouts/default view to find out more information about the supported page elements

Simplecache

Siehe auch:
• Performance

• Views

The Simplecache is a mechanism designed to alleviate the need for certain views to be regenerated dynamically. Instead,
they are generated once, saved as a static file, and served in a way that entirely bypasses the Elgg engine.

If Simplecache is turned off (which can be done from the administration panel), these views will be served as normal,
with the exception of site CSS.

The criteria for whether a view is suitable for the Simplecache is as follows:

• The view must not change depending on who or when it is being looked at

• The view must not depend on variables fed to it (except for global variables like site URL that never change)

224 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Regenerating the Simplecache

You can regenerate the Simplecache at any time by:

• Loading /upgrade.php, even if you have nothing to upgrade

• In the admin panel click on ‚Flush the caches‘

• Enabling or disabling a plugin

• Reordering your plugins

Using the Simplecache in your plugins

Registering views with the Simplecache
You can register a view with the Simplecache with the following function at init-time:

elgg_register_simplecache_view($viewname);

Accessing the cached view
If you registered a JavaScript or CSS file with Simplecache and put in the view folder as your_view.js or your_view.
css you can very easily get the url to this cached view by calling elgg_get_simplecache_url($view). For example:

$js = elgg_get_simplecache_url('your_view.js');
$css = elgg_get_simplecache_url('your_view.css');

Page/elements/foot vs footer

page/elements/footer is the content that goes inside this part of the page:

<div class="elgg-page-footer">
<div class="elgg-inner">

<!-- page/elements/footer goes here -->
</div>

</div>

Its content is visible to end users and usually where you would put a sitemap or other secondary global navigation,
copyright info, powered by elgg, etc.

page/elements/foot is inserted just before the ending </body> tag and is mostly meant as a place to insert scripts
that don’t already work with elgg_import_esm('my/module');. In other words, you should never override this view
and probably don’t need to extend it either. Just use the elgg_*_esm functions instead

3.3. Developer Guides 225

Elgg Documentation, Release master

3.3.34 Walled Garden

Elgg supports a „Walled Garden“ mode. In this mode, almost all pages are restricted to logged in users. This is useful
for sites that don’t allow public registration.

Activating Walled Garden mode

To activate Walled Garden mode in Elgg, go to the Administration section. On the right sidebar menu, under the
„Configure“ section, expand „Settings,“ then click on „Advanced.“

From the Advanced Settings page, find the option labelled „Restrict pages to logged-in users.“ Enable this option, then
click „Save“ to switch your site into Walled Garden mode.

Exposing pages through Walled Gardens

Many plugins extend Elgg by adding pages. Walled Garden mode will prevent these pages from being viewed by logged
out users. Elgg uses events to manage which pages are visible through the Walled Garden.

Plugin authors must register pages as public if they should be viewable through Walled Gardens:

• by setting 'walled' => false in route configuration

• by responding to the public_pages, walled_garden event. The returned value is an array of regexp expressi-
ons for public pages.

The following code shows how to expose http://example.org/my_plugin/public_page through a Walled Garden. This
assumes the plugin has registered a route for my_plugin/public_page.

// Preferred way
elgg_register_route('my_plugin:public_page', [

'path' => '/my_plugin/public_page',
'resource' => 'my_plugin/public_page',
'walled' => false,

]);

// Legacy approach
elgg_register_event_handler('public_pages', 'walled_garden', 'my_plugin_walled_garden_
→˓public_pages');

function my_plugin_walled_garden_public_pages(\Elgg\Event $event) {
$pages = $event->getValue();

$pages[] = 'my_plugin/public_page';

return $pages;
}

226 Kapitel 3. Continue Reading

http://example.org/my_plugin/public_page

Elgg Documentation, Release master

3.3.35 Web services

Build an HTTP API for your site.

Elgg provides a powerful framework for building web services. This allows developers to expose functionality to other
web sites and desktop applications along with doing integrations with third-party web applications. While we call the
API RESTful, it is actually a REST/RPC hybrid similar to the APIs provided by sites like Flickr and Twitter.

To create an API for your Elgg site, you need to do 4 things:

• enable the web services plugin

• expose methods

• setup API authentication

• setup user authentication

Additionally, you may want to control what types of authentication are available on your site. This will also be covered.

Contents

• Security

• Exposing methods

– Response formats

– Parameters

– Receive parameters as associative array

• API authentication

– Key-based authentication

– Signature-based authentication

• User authentication

• Building out your API

• Determining the authentication available

• Related

Security

It is crucial that the web services are consumed via secure protocols. Do not enable web services if your site is not
served via HTTPs. This is especially important if you allow API key only authentication.

If you are using third-party tools that expose API methods, make sure to carry out a thorough security audit. You
may want to make sure that API authentication is required for ALL methods, even if they require user authentication.
Methods that do not require API authentication can be easily abused to spam your site.

Ensure that the validity of API keys is limited and provide mechanisms for your API clients to renew their keys.

3.3. Developer Guides 227

Elgg Documentation, Release master

Exposing methods

API methods can be exposed in one of two ways: - using the web_services section in the elgg-plugin.php file of
your plugin - during the 'register', 'api_methods' event

As an example, let’s assume you want to expose a function that echos text back to the calling application. The function
could look like this

function my_echo($string) {
return $string;

}

Since we are providing this function to allow developers to test their API clients, we will require neither API authenti-
cation nor user authentication. This call registers the function with the web services API framework:

// as part of the elgg-plugin.php
'web_services' => [

'test.echo' => [
'GET' => [// the HTTP call method (GET|POST)

'callback' => 'my_echo', // required
'description' => 'A testing method which echos back a string', // optional,␣

→˓the description of the API method
'params' => [// optional, input parameters for the API method

'string' => ['type' => 'string'],
],
'require_api_auth' => false, // optional, requires API authentication␣

→˓(default: false)
'require_user_auth' => false, // optional, requires User authentication␣

→˓(default: false)
'associative' => false, // optional, provide the input params as an array to␣

→˓the callback function (default: false)
],

],
],

// as part of the 'register', 'api_methods' event
function my_plugin_event_handler(\Elgg\Event $event) {

$results = $event->getValue();

$results['test.echo']['GET'] = [
'callback' => 'my_echo',
'description' => 'A testing method which echos back a string',
'params' => [

'string' => ['type' => 'string'],
],

];

return $results;
}

Bemerkung: If no description is provided in the API method definition the system will check for the existence of
the language key web_services:api_methods:<method>:<http call method>:description

228 Kapitel 3. Continue Reading

Elgg Documentation, Release master

If you add this code to a plugin and then go to http://yoursite.com/services/api/rest/json/?method=system.api.list, you
should now see your test.echo method listed as an API call. Further, to test the exposed method from a web browser,
you could hit the url: http://yoursite.com/services/api/rest/json/?method=test.echo&string=testing and you should see
JSON data like this:

{
"status":0,
"result":"testing"

}

Plugins can filter the output of individual API methods by registering a handler for 'rest:output',$method event.

Response formats

JSON is the default format, however XML and serialized PHP can be fetched by enabling the data_views plugin and
substituting xml or php in place of json in the above URLs.

You can also add additional response formats by defining new view types.

Parameters

Parameters expected by each method should be listed as an associative array, where the key represents the parameter
name, and the value contains an array with type, default and required fields.

Values submitted with the API request for each parameter should match the declared type. API will throw on exception
if validation fails.

Recognized parameter types are:

• integer (or int)

• boolean (or bool) 'false', 0 and '0' will evaluate to false the rest will evaluate to true

• string

• float

• array

Unrecognized types will throw an API exception.

You can use additional fields to describe your parameter, e.g. description.

// as part of the elgg-plugin.php
'web_services' => [

'test.greet' => [
'GET' => [

'callback' => 'my_greeting',
'description' => 'A testing method which greets the user with a custom␣

→˓greeting',
'params' => [

'name' => [
'type' => 'string',
'required' => true,
'description' => 'Name of the person to be greeted by the API',

],
'greeting' => [

(Fortsetzung auf der nächsten Seite)

3.3. Developer Guides 229

http://yoursite.com/services/api/rest/json/?method=system.api.list
http://yoursite.com/services/api/rest/json/?method=test.echo&string=testing

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

'type' => 'string',
'required' => false,
'default' => 'Hello',
'description' => 'Greeting to be used, e.g. "Good day" or "Hi"',

],
],

],
],

],

Bemerkung: If a missing parameter has no default value, the argument will be null. Before Elgg v2.1, a bug caused
later arguments to be shifted left in this case.

Receive parameters as associative array

If you have a large number of method parameters, you can force the execution script to invoke the callback function
with a single argument that contains an associative array of parameter => input pairs (instead of each parameter being
a separate argument). To do that, set $assoc to true in elgg_ws_expose_function().

function greet_me($values) {
$name = elgg_extract('name', $values);
$greeting = elgg_extract('greeting', $values, 'Hello');
return "$greeting, $name";

}

// as part of the elgg-plugin.php
'web_services' => [

'test.greet' => [
'GET' => [

'callback' => 'greet_me',
'description' => 'A testing method which echos a greeting',
'params' => [

'name' => [
'type' => 'string',

],
'greeting' => [

'type' => 'string',
'required' => false,
'default' => 'Hello',

],
],
'associative' => true,

],
],

],

Bemerkung: If a missing parameter has no default value, null will be used.

230 Kapitel 3. Continue Reading

Elgg Documentation, Release master

API authentication

You may want to control access to some of the functions that you expose. Perhaps you are exposing functions in order
to integrate Elgg with another open source platform on the same server. In that case, you only want to allow that other
application access to these methods. Another possibility is that you want to limit what external developers have access
to your API. Or maybe you want to limit how many calls a developer can make against your API in a single day.

In all of these cases, you can use Elgg’s API authentication functions to control access. Elgg provides two built-in me-
thods to perform API authentication: key based and HMAC signature based. You can also add your own authentication
methods. The key based approach is very similar to what Google, Flickr, or Twitter. Developers can request a key (a
random string) and pass that key with all calls that require API authentication. The keys are stored in the database and
if an API call is made without a key or a bad key, the call is denied and an error message is returned.

Key-based authentication

As an example, let’s write a function that returns the number of users that have registered on your site since a certain
timestamp.

function count_new_users(int $since) {
return elgg_count_entities([

'type' => 'user',
'created_since' => $since,

]);
}

Now, let’s expose it and make the number of minutes a required parameter:

// as part of the elgg-plugin.php
'web_services' => [

'users.new' => [
'GET' => [

'callback' => 'count_new_users',
'description' => 'Number of users who have used the site in the past x␣

→˓minutes',
'params' => [
'since' => [

'type' => 'int',
'required' => true,

],
],
'require_api_auth' => true,

],
],

],

This function is now available and if you check system.api.list, you will see that it requires API authenticati-
on. If you hit the method with a web browser, it will return an error message about failing the API authentication.
To test this method, you need an API key. As of Elgg 3.2 API keys can be generated by the webservices plugin.
It will return a public and private key and you will use the public key for this kind of API authentication. Grab a
key and then do a GET request with your browser on this API method passing in the key string as the parameter
api_key. It might look something like this: http://yoursite.com/services/api/rest/xml/?method=users.active&api_key=
1140321cb56c71710c38feefdf72bc462938f59f.

3.3. Developer Guides 231

http://yoursite.com/services/api/rest/xml/?method=users.active&api_key=1140321cb56c71710c38feefdf72bc462938f59f
http://yoursite.com/services/api/rest/xml/?method=users.active&api_key=1140321cb56c71710c38feefdf72bc462938f59f

Elgg Documentation, Release master

Signature-based authentication

The HMAC Authentication is similar to what is used with OAuth or Amazon’s S3 service. This involves both the
public and private key. If you want to be very sure that the API calls are coming from the developer you think they are
coming from and you want to make sure the data is not being tampered with during transmission, you would use this
authentication method. Be aware that it is much more involved and could turn off developers when there are other sites
out there with key-based authentication.

User authentication

So far you have been allowing developers to pull data out of your Elgg site. Now we’ll move on to pushing data into
Elgg. In this case, it is going to be done by a user. Maybe you have created a desktop application that allows your Users
to post to the wire without going to the site. You need to expose a method for posting to the wire and you need to make
sure that a user cannot post using someone else’s account. Elgg provides a token-based approach for user authentication.
It allows a user to submit their username and password in exchange for a token using the method auth.gettoken. This
token can then be used for some amount of time to authenticate all calls to the API before it expires by passing it as the
parameter auth_token. If you do not want to have your users trusting their passwords to 3rd-party applications, you
can also extend the current capability to use an approach like OAuth.

Let’s write our wire posting function:

function my_post_to_wire($text) {

$text = elgg_substr($text, 0, 140);

$access = ACCESS_PUBLIC;

// returns guid of wire post
return thewire_save_post($text, $access, "api");

}

Exposing this function is the same as the previous except we require user authentication and we’re going to make this
use POST rather than GET HTTP requests.

// as part of the elgg-plugin.php
'web_services' => [

'thewire.post' => [
'POST' => [

'callback' => 'my_post_to_wire',
'description' => 'Post to the wire. 140 characters or less',
'params' => [
'text' => [

'type' => 'string',
],

],
'require_api_auth' => true,
'require_user_auth' => true,

],
],

],

Please note that you will not be able to test this using a web browser as you did with the other methods. You need to
write some client code to do this.

232 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Building out your API

As soon as you feel comfortable with Elgg’s web services API framework, you will want to step back and design your
API. What sort of data are you trying to expose? Who or what will be API users? How do you want them to get access
to authentication keys? How are you going to document your API? Be sure to take a look at the APIs created by popular
Web 2.0 sites for inspiration. If you are looking for 3rd party developers to build applications using your API, you will
probably want to provide one or more language-specific clients.

Determining the authentication available

Elgg’s web services API uses a type of pluggable authentication module (PAM) architecture to manage how users and
developers are authenticated. This provides you the flexibility to add and remove authentication modules. Do you want
to not use the default user authentication PAM but would prefer using OAuth? You can do this.

The first step is registering a callback function for the 'rest', 'init' event:

elgg_register_event_handler('rest', 'init', 'rest_plugin_setup_pams');

Then in the callback function, you register the PAMs that you want to use:

function rest_plugin_setup_pams() {
// user token can also be used for user authentication
elgg_register_pam_handler(\Elgg\WebServices\PAM\UserToken::class);

// simple API key check
elgg_register_pam_handler(\Elgg\WebServices\PAM\APIKey::class, 'sufficient', 'api');

}

Related

HMAC Authentication

Elgg’s RESTful API framework provides functions to support a HMAC signature scheme for API authentication. The
client must send the HMAC signature together with a set of special HTTP headers when making a call that requires
API authentication. This ensures that the API call is being made from the stated client and that the data has not been
tampered with.

The HMAC must be constructed over the following data:

• The public API key identifying you to the Elgg api server as provided by the APIAdmin plugin

• The private API Key provided by Elgg (that is companion to the public key)

• The current unix time in seconds

• A nonce to guarantee two requests the same second have different signatures

• URL encoded string representation of any GET variable parameters, eg method=test.test&foo=bar

• If you are sending post data, the hash of this data

Some extra information must be added to the HTTP header in order for this data to be correctly processed:

• X-Elgg-apikey - The public API key

• X-Elgg-time - Unix time used in the HMAC calculation

• X-Elgg-nonce - a random string

3.3. Developer Guides 233

http://en.wikipedia.org/wiki/Pluggable_Authentication_Modules
https://en.wikipedia.org/wiki/HMAC

Elgg Documentation, Release master

• X-Elgg-hmac - The HMAC as base64 encoded

• X-Elgg-hmac-algo - The algorithm used in the HMAC calculation

If you are sending POST data you must also send:

• X-Elgg-posthash - The hash of the POST data

• X-Elgg-posthash-algo - The algorithm used to produce the POST data hash

• Content-type - The content type of the data you are sending (this can be application/
x-www-form-urlencoded or multipart/form-data)

• Content-Length - The length in bytes of your POST data

Elgg provides a sample API client that implements this HMAC signature: \Elgg\WebServices\ElggApiClient. It
serves as a good reference on how to implement it.

Supported hashing algorithms

• sha256: recommended

• sha1: fast however less secure

• md5: weak and will be removed in the future

POST hash calculation

When sending the POST data as Content-Type: application/x-www-form-urlencoded; the post hash needs to
be calculated over all the post data using one of the supported hashing algorithms.

When sending the POST data as Content-Type: multipart/form-data; the post hash needs to be calculated over
an empty string.

The result of the hashing needs to be reported in the X-Elgg-posthash header and the used hashing algorithm must
be reported in the X-Elgg-posthash-algo header.

Warnung: Since the POST hash isn’t calculated when using Content-Type: multipart/form-data; only use
this when calling APIs that need an file input.

HMAC hash calculation

The overall HMAC needs to be calculated over the following data (in order) using the API secret as the HMAC secret
and with one of the supported hashing algorithms:

1. a UNIX timestamp, report this timestamp in the X-Elgg-time header

2. a random string, report this string in the X-Elgg-nonce header

3. the public API key, report this API key in the X-Elgg-apikey header

4. the url query string (for example method=test.test&foo=bar)

5. when the request is a POST add the posthash as reported in the X-Elgg-posthash header

The resulting string needs to be base64 encoded and then url encoded and be reported in the X-Elgg-hmac header.
The used hashing algorithm needs to be reported in the X-Elgg-hmac-algo.

234 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Hashing cache

For security reasons each HMAC hash needs to be unique, all submitted hashes are stored for 25 hours to prevent reuse.

API results

Contents

• Success result structure

• Error result structure

• Default status codes

Success result structure

A successful API result looks like this:

{
"status": 0,
"result": "API result"

}

Depending on the API call result can contain any type of content (string, number, array, object, etc.).

An example of a numeric result (for example a user count):

{
"status": 0,
"result": 10

}

An example of an object result (for example a user):

{
"status": 0,
"result": {

"name": "Some user",
"username": "apiexample",
"email": "user@example.com"

}
}

3.3. Developer Guides 235

Elgg Documentation, Release master

Error result structure

When an API call fails the result will look like this:

{
"status": -1,
"message": "The reason the API call failed"

}

Default status codes

The status field always contains a number representing the result. Any value other than 0 is considered an error.

• 0: This is a success result

• -1: This is a generic error result

• -20: The user authentication token is missing, is invalid or has expired

• -30: The api key has been disabled

• -31: The api key is inactive

• -32: The api key is invalid

Developers can implement their own status codes to represent different error states, so the request doesn’t have to rely
on the error message to know what went wrong.

Bemerkung: result and message can contain messages in different languages. This is depending on the user lan-
guage when using user authenticated API calls or the site language for other API calls. Keep in mind that the language
can change, eighter by the user or by a site administrator for the site language.

3.3.36 Widgets

Widgets are content areas that users can drag around their page to customize the layout. They can typically be customized
by their owner to show more/less content and determine who sees the widget. By default Elgg provides plugins for
customizing the profile page and dashboard via widgets.

Contents

• Structure

• Register the widget

– Multiple widgets

– Magic widget name and description

– How to restrict where widgets can be used

– Allow multiple widgets on the same page

– Register widgets in an event

– Modify widget properties of existing widget registration

236 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• Default widgets

Structure

To create a widget, create two views:

• widgets/widget/edit

• widgets/widget/content

content.php is responsible for all the content that will output within the widget. The edit.php file contains any extra
edit functions you wish to present to the user. You do not need to add access level as this comes as part of the widget
framework.

Bemerkung: Using HTML checkboxes to set widget flags is problematic because if unchecked, the checkbox input
is omitted from form submission. The effect is that you can only set and not clear flags. The „input/checkboxes“ view
will not work properly in a widget’s edit panel.

Register the widget

Once you have created your edit and view pages, you need to initialize the plugin widget.

The easiest way to do this is to add the widgets section to your elgg-plugin.php config file.

return [
'widgets' => [

'filerepo' => [
'context' => ['profile'],

],
]

];

Alternatively you can also use an function to add a widget. This is done within the plugins init() function.

// Add generic new file widget
elgg_register_widget_type([

'id' => 'filerepo',
'name' => elgg_echo('widgets:filerepo:name'),
'description' => elgg_echo('widgets:filerepo:description'),
'context' => ['profile'],

]);

Bemerkung: The only required attribute is the id.

3.3. Developer Guides 237

Elgg Documentation, Release master

Multiple widgets

It is possible to add multiple widgets for a plugin. You just initialize as many widget directories as you need.

// Add generic new file widget
elgg_register_widget_type([

'id' => 'filerepo',
'name' => elgg_echo('widgets:filerepo:name'),
'description' => elgg_echo('widgets:filerepo:description'),
'context' => ['profile'],

]);

// Add a second file widget
elgg_register_widget_type([

'id' => 'filerepo2',
'name' => elgg_echo('widgets:filerepo2:name'),
'description' => elgg_echo('widgets:filerepo2:description'),
'context' => ['dashboard'],

]);

// Add a third file widget
elgg_register_widget_type([

'id' => 'filerepo3',
'name' => elgg_echo('widgets:filerepo3:name'),
'description' => elgg_echo('widgets:filerepo3:description'),
'context' => ['profile', 'dashboard'],

]);

Make sure you have the corresponding directories within your plugin views structure:

'Plugin'
/views

/default
/widgets

/filerepo
/edit.php
/content.php

/filerepo2
/edit.php
/content.php

/filerepo3
/edit.php
/content.php

238 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Magic widget name and description

When registering a widget you can omit providing a name and a description. If a translation in the followi-
ng format is provided, they will be used. For the name: widgets:<widget_id>:name and for the description
widgets:<widget_id>:description. If you make sure these translation are available in a translation file, you have
very little work registering the widget.

elgg_register_widget_type(['id' => 'filerepo']);

How to restrict where widgets can be used

The widget can specify the context that it can be used in (just profile, just dashboard, etc.).

elgg_register_widget_type([
'id' => 'filerepo',
'context' => ['profile', 'dashboard', 'other_context'],

]);

Allow multiple widgets on the same page

By default you can only add one widget of the same type on the page. If you want more of the same widget on the page,
you can specify this when registering the widget:

elgg_register_widget_type([
'id' => 'filerepo',
'multiple' => true,

]);

Register widgets in an event

If, for example, you wish to conditionally register widgets you can also use an event to register widgets.

function my_plugin_init() {
elgg_register_event_handler('handlers', 'widgets', 'my_plugin_conditional_widgets_

→˓event');
}

function my_plugin_conditional_widgets_event(\Elgg\Event $event) {
if (!elgg_is_active_plugin('file')) {

return;
}

$return = $event->getValue();

$return[] = \Elgg\WidgetDefinition::factory([
'id' => 'filerepo',

]);

return $return;
}

3.3. Developer Guides 239

Elgg Documentation, Release master

Modify widget properties of existing widget registration

If, for example, you wish to change the allowed contexts of an already registered widget you can do so by re-registering
the widget with elgg_register_widget_type as it will override an already existing widget definition. If you want
even more control you can also use the handlers, widgets event to change the widget definition.

function my_plugin_init() {
elgg_register_event_handler('handlers', 'widgets', 'my_plugin_change_widget_

→˓definition_event');
}

function my_plugin_change_widget_definition_event(\Elgg\Event $event) {
$return = $event->getValue();

foreach ($return as $key => $widget) {
if ($widget->id === 'filerepo') {

$return[$key]->multiple = false;
}

}

return $return;
}

Default widgets

If your plugin uses the widget canvas, you can register default widget support with Elgg core, which will handle ever-
ything else.

To announce default widget support in your plugin, register for the get_list, default_widgets event:

elgg_register_event_handler('get_list', 'default_widgets', 'my_plugin_default_widgets_
→˓event');

function my_plugin_default_widgets_event(\Elgg\Event $event) {
$return = $event->getValue();

$return[] = [
'name' => elgg_echo('my_plugin'),
'widget_context' => 'my_plugin',
'widget_columns' => 3,

'event_name' => 'create',
'event_type' => 'user',
'entity_type' => 'user',
'entity_subtype' => ELGG_ENTITIES_ANY_VALUE,

];

return $return;
}

In the event handler, push an array into the return value defining your default widget support and when to create default
widgets. Arrays require the following keys to be defined:

• name - The name of the widgets page. This is displayed on the tab in the admin interface.

240 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• widget_context - The context the widgets page is called from. (If not explicitly set, this is your plugin’s id.)

• widget_columns - How many columns the widgets page will use.

• event_name - The Elgg event name to create new widgets for. This is usually create.

• event_type - The Elgg event type to create new widgets for.

• entity_type - The entity type to create new widgets for.

• entity_subtype - The entity subtype to create new widgets for. The can be ELGG_ENTITIES_ANY_VALUE to
create for all entity types.

To have widgets be created you need to register the following event:

elgg_register_event_handler('create:after', 'object', 'Elgg\Widgets\
→˓CreateDefaultWidgetsHandler');

When an object triggers an event that matches the event, entity_type, and entity_subtype parameters passed, Elgg
core will look for default widgets that match the widget_context and will copy them to that object’s owner_guid and
container_guid. All widget settings will also be copied.

3.4 Tutorials

Walk through all the required steps in order to customize Elgg.

The instructions are detailed enough that you don’t need much previous experience with Elgg.

3.4.1 Hello world

This tutorial shows you how to create a new plugin that consists of a new page with the text „Hello world“ on it.

Before anything else, you need to install Elgg.

In this tutorial we will pretend your site’s URL is https://elgg.example.com.

First, create a directory that will contain the plugin’s files. It should be located under the mod/ directory which is located
in your Elgg installation directory. So in this case, create mod/hello/.

Composer file

Elgg requires that your plugin has a composer file that contains information about the plugin. Therefore, in the directory
you just created, create a file called composer.json and copy this code into it:

{
"name": "elgg/hello",
"type": "elgg-plugin",
"description": "Hello World plugin",
"license": "GPL-2.0-only",

}

3.4. Tutorials 241

Elgg Documentation, Release master

Registering a route

The next step is to register a route which has the purpose of handling request that users make to the URL https://
elgg.example.com/hello.

Update elgg-plugin.php to look like this:

<?php

return [
'routes' => [

'default:hello' => [
'path' => '/hello',
'resource' => 'hello',

],
],

];

This registration tells Elgg that it should call the resource view hello when a user navigates to https://elgg.
example.com/hello.

View file

Create mod/hello/views/default/resources/hello.php with this content:

<?php

echo elgg_view_page('Hello', [
'title' => 'Hello world!',
'content' => 'My first page!',

]);

The code creates an array of parameters to be given to the elgg_view_layout() function, including:

• The title of the page

• The contents of the page

• Filter which is left empty because there’s currently nothing to filter

This creates the basic layout for the page. The layout is then run through elgg_view_page() which assembles and
outputs the full page.

Last step

Finally, activate the plugin through your Elgg administrator page: https://elgg.example.com/admin/plugins
(the new plugin appears at the bottom).

You can now go to the address https://elgg.example.com/hello/ and you should see your new page!

242 Kapitel 3. Continue Reading

Elgg Documentation, Release master

3.4.2 Customizing the Home Page

To override the homepage, just override Elgg’s resources/index view by creating a file at /views/default/
resources/index.php.

Any output from this view will become your new homepage.

You can take a similar approach with any other page in Elgg or official plugins.

3.4.3 Building a Blog Plugin

This tutorial will teach you how to create a simple blog plugin. The basic functions of the blog will be creating posts,
saving them and viewing them. The plugin duplicates features that are found in the bundled blog plugin. You can
disable the bundled blog plugin if you wish, but it is not necessary since the features do not conflict each other.

Contents

• Create the plugin’s directory and composer file

• Create the form for creating a new blog post

• Create a page for composing the blogs

• Create the action file for saving the blog post

• Create elgg-plugin.php

• Create a page for viewing a blog post

• Create the object view

• Trying it out

• Displaying a list of blog posts

• The end

Prerequisites:

• Install Elgg

Create the plugin’s directory and composer file

First, choose a simple and descriptive name for your plugin. In this tutorial, the name will be my_blog. Then, create a
directory for your plugin in the /mod/ directory found in your Elgg installation directory. Other plugins are also located
in /mod/. In this case, the name of the directory should be /mod/my_blog/. This directory is the root of your plugin
and all the files that you create for the new plugin will go somewhere under it.

Next, in the root of the plugin, create the plugin’s composer file, composer.json.

See Plugins for more information about the composer file.

3.4. Tutorials 243

Elgg Documentation, Release master

Create the form for creating a new blog post

Create a file at /mod/my_blog/views/default/forms/my_blog/save.php that contains the form body. The form
should have input fields for the title, body and tags of the my_blog post. It does not need form tag markup.

echo elgg_view_field([
'#type' => 'text',
'#label' => elgg_echo('title'),
'name' => 'title',
'required' => true,

]);

echo elgg_view_field([
'#type' => 'longtext',
'#label' => elgg_echo('body'),
'name' => 'body',
'required' => true,

]);

echo elgg_view_field([
'#type' => 'tags',
'#label' => elgg_echo('tags'),
'#help' => elgg_echo('tags:help'),
'name' => 'tags',

]);

$submit = elgg_view_field(array(
'#type' => 'submit',
'#class' => 'elgg-foot',
'value' => elgg_echo('save'),

));
elgg_set_form_footer($submit);

Notice how the form is calling elgg_view_field() to render inputs. This helper function maintains consistency in
field markup, and is used as a shortcut for rendering field elements, such as label, help text, and input. See Forms +
Actions.

You can see a complete list of input views in the /vendor/elgg/elgg/views/default/input/ directory.

It is recommended that you make your plugin translatable by using elgg_echo() whenever there is a string of text that
will be shown to the user. Read more at Internationalization.

Create a page for composing the blogs

Create the file /mod/my_blog/views/default/resources/my_blog/add.php. This page will view the form you
created in the above section.

<?php

// set the title
$title = "Create a new my_blog post";

// add the form to the main column
$content = elgg_view_form("my_blog/save");

(Fortsetzung auf der nächsten Seite)

244 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

// optionally, add the content for the sidebar
$sidebar = "";

// draw the page, including the HTML wrapper and basic page layout
echo elgg_view_page($title, [

'content' => $content,
'sidebar' => $sidebar

]);

The function elgg_view_form("my_blog/save") views the form that you created in the previous section. It also
automatically wraps the form with a <form> tag and the necessary attributes as well as anti-csrf tokens.

The form’s action will be "<?= elgg_get_site_url() ?>action/my_blog/save".

Create the action file for saving the blog post

The action file will save the my_blog post to the database. Create the file /mod/my_blog/actions/my_blog/save.
php:

<?php
// get the form inputs
$title = elgg_get_title_input('title');
$body = get_input('body');
$tags = elgg_string_to_array((string) get_input('tags'));

// create a new my_blog object and put the content in it
$blog = new ElggObject();
$blog->title = $title;
$blog->description = $body;
$blog->tags = $tags;

// the object can and should have a subtype
$blog->setSubtype('my_blog');

// for now, make all my_blog posts public
$blog->access_id = ACCESS_PUBLIC;

// owner is logged in user
$blog->owner_guid = elgg_get_logged_in_user_guid();

// save to database
// if the my_blog was saved, we want to display the new post
// otherwise, we want to register an error and forward back to the form
if ($blog->save()) {
return elgg_ok_response('', "Your blog post was saved.", $blog->getURL());

} else {
return elgg_error_response("The blog post could not be saved.");

}

As you can see in the above code, Elgg objects have several fields built into them. The title of the my_blog post is stored
in the title field while the body is stored in the description field. There is also a field for tags which are stored as
metadata.

3.4. Tutorials 245

Elgg Documentation, Release master

Objects in Elgg are a subclass of something called an „entity“. Users, sites, and groups are also subclasses of entity.
An entity’s subtype allows granular control for listing and displaying, which is why every entity should have a subtype.
In this tutorial, the subtype „my_blog“ identifies a my_blog post, but any alphanumeric string can be a valid subtype.
When picking subtypes, be sure to pick ones that make sense for your plugin.

Create elgg-plugin.php

The /mod/my_blog/elgg-plugin.php file is used to declare various functionalities of the plugin. It can, for example,
be used to configure entities, actions, widgets and routes.

<?php

return [
'entities' => [

[
'type' => 'object',
'subtype' => 'my_blog',
'capabilities' => [

'searchable' => true,
],

],
],
'actions' => [

'my_blog/save' => [],
],
'routes' => [

'view:object:blog' => [
'path' => '/my_blog/view/{guid}/{title?}',
'resource' => 'my_blog/view',

],
'add:object:blog' => [

'path' => '/my_blog/add/{guid?}',
'resource' => 'my_blog/add',

],
'edit:object:blog' => [

'path' => '/my_blog/edit/{guid}/{revision?}',
'resource' => 'my_blog/edit',
'requirements' => [

'revision' => '\d+',
],

],
],

];

Registering the save action will make it available as /action/my_blog/save. By default, all actions are available
only to logged in users. If you want to make an action available to only admins or open it up to unauthenticated users,
you can pass ['access' => 'admin'] or ['access' => 'public'] when registering the action.

246 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Create a page for viewing a blog post

To be able to view a my_blog post on its own page, you need to make a view page. Create the file /mod/my_blog/
views/default/resources/my_blog/view.php:

<?php

// get the entity
$guid = elgg_extract('guid', $vars);
$my_blog = get_entity($guid);

// get the content of the post
$content = elgg_view_entity($my_blog, array('full_view' => true));

echo elgg_view_page($my_blog->getDisplayName(), [
'content' => $content,

]);

This page has much in common with the add.php page. The biggest differences are that some information is extracted
from the my_blog entity, and instead of viewing a form, the function elgg_view_entity is called. This function gives
the information of the entity to something called the object view.

Create the object view

When elgg_view_entity is called or when my_blogs are viewed in a list for example, the object view will generate
the appropriate content. Create the file /mod/my_blog/views/default/object/my_blog.php:

<?php

echo elgg_view('output/longtext', array('value' => $vars['entity']->description));
echo elgg_view('output/tags', array('tags' => $vars['entity']->tags));

As you can see in the previous section, each my_blog post is passed to the object view as $vars['entity']. ($vars
is an array used in the views system to pass variables to a view.)

The last line takes the tags on the my_blog post and automatically displays them as a series of clickable links. Search
is handled automatically.

(If you’re wondering about the „default“ in /views/default/, you can create alternative views. RSS, OpenDD,
FOAF, mobile and others are all valid view types.)

Trying it out

Go to your Elgg site’s administration page, list the plugins and activate the my_blog plugin.

The page to create a new my_blog post should now be accessible at https://elgg.example.com/my_blog/add,
and after successfully saving the post, you should see it viewed on its own page.

3.4. Tutorials 247

Elgg Documentation, Release master

Displaying a list of blog posts

Let’s also create a page that lists my_blog entries that have been created.

Create /mod/my_blog/views/default/resources/my_blog/all.php:

<?php
$titlebar = "All Site My_Blogs";
$pagetitle = "List of all my_blogs";

$body = elgg_list_entities(array(
'type' => 'object',
'subtype' => 'my_blog',

));

echo elgg_view_page($titlebar, [
'title' => $pagetitle,
'content' => $body,

]);

The elgg_list_entities function grabs the latest my_blog posts and passes them to the object view file. Note that
this function returns only the posts that the user can see, so access restrictions are handled transparently. The function
(and its cousins) also transparently handles pagination and even creates an RSS feed for your my_blogs if you have
defined that view.

The list function can also limit the my_blog posts to those of a specified user. For example, the function
elgg_get_logged_in_user_guid grabs the Global Unique IDentifier (GUID) of the logged in user, and by giving
that to elgg_list_entities, the list only displays the posts of the current user:

echo elgg_list_entities(array(
'type' => 'object',
'subtype' => 'my_blog',
'owner_guid' => elgg_get_logged_in_user_guid()

));

Next, you will need to register your route to return the new page when the URL is set to /my_blog/all. Configure the
routes section in elgg-plugin.php to contain the following:

'routes' => [
'collection:object:my_blog:all' => [

'path' => '/my_blog/all',
'resource' => 'my_blog/all',

],
],

Now, if the URL contains /my_blog/all, the user will see an „All Site My_Blogs“ page.

You might also want to update the object view to handle different kinds of viewing, because otherwise the list of
all my_blogs will also show the full content of all my_blogs. Change /mod/my_blog/views/default/object/
my_blog.php to look like this:

<?php
$full = elgg_extract('full_view', $vars, FALSE);

// full view
(Fortsetzung auf der nächsten Seite)

248 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

if ($full) {
echo elgg_view('output/longtext', array('value' => $vars['entity']->description));
echo elgg_view('output/tags', array('tags' => $vars['entity']->tags));

// list view or short view
} else {

// make a link out of the post's title
echo elgg_view_title(

elgg_view('output/url', array(
'href' => $vars['entity']->getURL(),
'text' => $vars['entity']->getDisplayName(),
'is_trusted' => true,

)));
echo elgg_view('output/tags', array('tags' => $vars['entity']->tags));

}

Now, if full_view is true (as it was pre-emptively set to be in this section), the object view will show the post’s
content and tags (the title is shown by view.php). Otherwise the object view will render just the title and tags of the
post.

The end

There’s much more that could be done, but hopefully this gives you a good idea of how to get started.

3.4.4 Integrating a Rich Text Editor

Build your own wysiwyg plugin.

Elgg is bundled with a plugin for CKEditor, and previously shipped with TinyMCE support. However, if you have a
wysiwyg that you prefer, you could use this tutorial to help you build your own.

All forms in Elgg should try to use the provided input views located in views/default/input. If these views are
used, then it is simple for plugin authors to replace a view, in this case input/longtext, with their wysiwyg.

Add the WYSIWYG library code

Now you need to upload TinyMCE into a directory in your plugin. We strongly encourage you to use composer to
manage third-party dependencies, since it is so much easier to upgrade and maintain that way:

composer require npm-asset/tinymce

3.4. Tutorials 249

http://ckeditor.com/
http://www.tinymce.com/

Elgg Documentation, Release master

Tell Elgg when and how to load TinyMCE

Now that you have:

• created your start file

• intialized the plugin

• uploaded the wysiwyg code

It is time to tell Elgg how to apply TinyMCE to longtext fields.

We’re going to do that by extending the input/longtext view and including some javascript. Create a view tinymce/
longtext and add the following code:

<?php

/**
* Elgg long text input with the tinymce text editor intacts
* Displays a long text input field
*/

?>
<!-- include tinymce -->
<script language="javascript" type="text/javascript" src="<?php echo $vars['url']; ?>mod/
→˓tinymce/tinymce/jscripts/tiny_mce/tiny_mce.js"></script>
<!-- intialise tinymce, you can find other configurations here http://wiki.moxiecode.com/
→˓examples/tinymce/installation_example_01.php -->
<script language="javascript" type="text/javascript">

tinyMCE.init({
mode : "textareas",
theme : "advanced",
theme_advanced_buttons1 : "bold,italic,underline,separator,strikethrough,justifyleft,

→˓justifycenter,justifyright, justifyfull,bullist,numlist,undo,redo,link,unlink,image,
→˓blockquote,code",

theme_advanced_buttons2 : "",
theme_advanced_buttons3 : "",
theme_advanced_toolbar_location : "top",
theme_advanced_toolbar_align : "left",
theme_advanced_statusbar_location : "bottom",
theme_advanced_resizing : true,
extended_valid_elements : "a[name|href|target|title|onclick],

→˓img[class|src|border=0|alt|title|hspace|vspace|width|height|align|onmouseover|onmouseout|name],
→˓

hr[class|width|size|noshade],font[face|size|color|style],span[class|align|style]"
});
</script>

Then, in your plugin’s elgg-plugin.php file extend the input/longtext view:

return [
'view_extensions' => [

'input/longtext' => [
'tinymce/longtext' => [],

],
(Fortsetzung auf der nächsten Seite)

250 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

],
];

That’s it! Now every time someone uses input/longtext TinyMCE will be loaded and applied to that textarea.

3.4.5 Basic Widget

Create a widget that will display “Hello, World!” and optionally any text the user wants.

In Elgg, widgets are those components that you can drag onto your profile or admin dashboard.

This tutorial assumes you are familiar with basic Elgg concepts such as:

• Views

• Plugins

You should review those if you get confused along the way.

Contents

• Adding the widget view code

• Registering your widget

• Allow user customization

Adding the widget view code

Elgg automatically scans particular directories under plugins looking for particular files. Views make it easy to add
your display code or do other things like override default Elgg behavior. For now, we will just be adding the view code
for your widget. Create a file at /views/default/widgets/helloworld/content.php. “helloworld” will be the
name of your widget within the hello plugin. In this file add the code:

<?php

echo "Hello, world!";

This will add these words to the widget canvas when it is drawn. Elgg takes care of loading the widget.

Registering your widget

Elgg needs to be told explicitly that the plugin contains a widget so that it will scan the widget views directory. This is
done by registering the widget in your elgg-plugin.php:

<?php
return [

'widgets' => [
'helloworld' => [

'name' => 'Hello, world!',
'description' => 'The "Hello, world!" widget',

],
(Fortsetzung auf der nächsten Seite)

3.4. Tutorials 251

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

],
];

Now go to your profile page using a web browser and add the “hello, world” widget. It should display “Hello, world!”.

Bemerkung: For real widgets, it is always a good idea to support Internationalization.

Allow user customization

Click on the edit link on the toolbar of the widget that you’ve created. You will notice that the only control it gives you
by default is over access (over who can see the widget).

Suppose you want to allow the user to control what greeting is displayed in the widget. Just as Elgg automatically loads
content.php when viewing a widget, it loads edit.php when a user attempts to edit a widget. Put the following code
into /views/default/widgets/helloworld/edit.php:

<div>
<label>Message:</label>
<?php

//This is an instance of the ElggWidget class that represents our widget.
$widget = $vars['entity'];

// Give the user a plain text box to input a message
echo elgg_view('input/text', array(

'name' => 'params[message]',
'value' => $widget->message,
'class' => 'hello-input-text',

));
?>

</div>

Notice the relationship between the values passed to the ‚name‘ and the ‚value‘ fields of input/text. The name of the
input text box is params[message] because Elgg will automatically handle widget variables put in the array params.
The actual php variable name will be message. If we wanted to use the field greeting instead of message we would
pass the values params[greeting] and $widget->greeting respectively.

The reason we set the ‚value‘ option of the array is so that the edit view remembers what the user typed in the previous
time he changed the value of his message text.

Now to display the user’s message we need to modify content.php to use this message variable. Edit /views/default/
widgets/helloworld/content.php and change it to:

<?php

$widget = $vars['entity'];

// Always use the corresponding output/* view for security!
echo elgg_view('output/text', array('value' => $widget->message));

You should now be able to enter a message in the text box and see it appear in the widget.

252 Kapitel 3. Continue Reading

Elgg Documentation, Release master

3.5 Design Docs

Gain a deep understanding of how Elgg works and why it’s built the way it is.

3.5.1 Accessibility

This document describes various design choices to improve accessibility of an Elgg site.

Forms

Input fields should always have an associated label. When using elgg_view_field($options) to draw fields on a
form you will need to pass $options['#label'] = elgg_echo('my_field:label') to have a correct label with
your field.

If you have a form that will perform a search when submitted it is recommended to add 'role' => 'search' to your
form attributes. You can provide this in $form_vars when using elgg_view_form().

Images

When using elgg_view('output/img', $options) it is recommended to provide an alt description of the image.
Elgg will report notices in the error log to let developers know when an alt attribute is missing.

Headings

Headings should be used to give structure to a page. There should always be a h1 on the page and there should also be
no gaps (so no h3 without a h2).

Elgg uses h1 for the page title (like ‚All blogs‘, the title of a blog or the name of a group on the group profile page).
The h2 heading is used by modules on a page, like an ‚info‘ module, a widget or a module in the sidebar.

User generated content with markup, for example a description of a blog, should not allow h1 to be used, but should
start with h2 as the first level heading. The configuration of the CKEditor plugin already handles this.

Sections

A webpage in Elgg is typically sectioned into the following sections:

• header for the topbar contents like the site logo, site navigation and search

• main the main content like the blog page or an overview of members

• footer typically found at the bottom of the page containing some links or other site related information

3.5. Design Docs 253

Elgg Documentation, Release master

Menus

All our menus should be keyboard accessible. This is especially important with menus with multiple levels or submenus.
If you rely on the default menu functionality of Elgg by using the function elgg_view_menu() Elgg will take care of
this.

When using elgg_view_menu() the menu items will be wrapped inside a nav html tag. To allow screenreaders to
know what menu is being listed, the aria-label attribute is added to the nav element to describe the menu. By default
Elgg uses the name of the menu, but it is possible to provide a translation. You need to register this translation with the
following key: menu:name_of_the_menu:header.

3.5.2 Actions

Actions are the primary way users interact with an Elgg site.

Overview

An action in Elgg is the code that runs to make changes to the database when a user does something. For example, log-
ging in, posting a comment, and making a blog post are actions. The action script processes input, makes the appropriate
modifications to the database, and provides feedback to the user about the action.

Action Handler

Actions are registered during the boot process by calling elgg_register_action(). All actions URLs start with
action/ and are served by Elgg’s front end controller through the action service. This approach is different from
traditional PHP applications that send information to a specific file. The action service performs CSRF security checks,
and calls the registered action script file, then optionally forwards the user to a new page. By using the action service
instead of a single script file, Elgg automatically provides increased security and extensibility.

See Forms + Actions for details on how to register and construct an action. To look at the core actions, check out the
directory /actions.

3.5.3 Database

A thorough discussion of Elgg’s data model design and motivation.

Contents

• Overview

• Datamodel

• Entities

– Types

– Subtypes

– Subtype Gotchas

– GUIDs

– Deleted state

254 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• ElggObject

• ElggUser

• ElggSite

• ElggGroup

– The Groups plugin

– Writing a group-aware plugin

• Ownership

• Containers

• Annotations

– Adding an annotation

– Reading annotations

– Useful helper functions

• Metadata

– The simple case

– Reading metadata as objects

– Common mistakes

• Relationships

– Working with relationships

• Access Control

– Access controls in the data model

– How access affects data retrieval

– Write access

• Schema

– InnoDB

– Main tables

– Secundairy tables

Overview

In Elgg, everything runs on a unified data model based on atomic units of data called entities.

Plugins are discouraged from interacting directly with the database, which creates a more stable system and a better user
experience because content created by different plugins can be mixed together in consistent ways. With this approach,
plugins are faster to develop, and are at the same time much more powerful.

Every entity in the system inherits the ElggEntity class. This class controls access permissions, ownership, contain-
ment and provides consistent API for accessing and updating entity properties.

You can extend entities with extra information in two ways:

Metadata: This information describes the entity, it is usually
added by the author of the entity when the entity is created or updated. Examples of metadata include tags, ISBN

3.5. Design Docs 255

Elgg Documentation, Release master

number or a third-party ID, location, geocoordinates etc. Think of metadata as a simple key-value storage.

Annotations: This information extends the entity with properties usually
added by a third party. Such properties include ratings, likes, and votes.

The main differences between metadata and annotations:

• metadata does not have owners, while annotations do

• metadata is not access controlled, while annotations are

• metadata is preloaded when entity is constructed, while annotations are only loaded on demand

These differences might have implications for performance and your business logic, so consider carefully, how you
would like to attach data to your entities.

In certain cases, it may be beneficial to avoid using metadata and annotations and create new entities instead and
attaching them via container_guid or a relationship.

Datamodel

Abb. 9: The Elgg data model diagram

256 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Entities

ElggEntity is the base class for the Elgg data model and supports a common set of properties and methods.

• A numeric Globally Unique IDentifier (See GUIDs)

• Access permissions. (When a plugin requests data, it never gets to touch data that the current user doesn’t have
permission to see)

• An arbitrary subtype (more below)

• An owner

• A container, used to associate content with a group or a user

• UNIX timestamps for certain actions:
– When was the entity created

– When was the entity last updated

– When did the the entity perform it’s last action, or was acted upon

– When was the entity deleted

• A deleted state (deleted entities aren’t shown in normal circumstances)

• A disabled state (disabled entities aren’t shown in normal circumstances)

Types

Actual entities will be instances of four different subclasses, each having a distinct type property and their own addi-
tional properties and methods.

Type PHP class Represents
object ElggObject Most user-created content, like blog posts, uploads, and bookmarks.
group ElggGroup An organized group of users with its own profile page
user ElggUser A user of the system
site ElggSite The site served by the Elgg installation

Each type has its own extended API. E.g. users can be friends with other users, group can have members, while objects
can be liked and commented on.

Subtypes

Each entity must define a subtype, which plugins use to further specialize the entity. Elgg makes it easy to query
specific for entities of a given subtype(s), as well as assign them special behaviors and views.

Subtypes are most commonly given to instances of ElggEntity to denote the kind of content created. E.g. the blog
plugin creates objects with subtype "blog".

By default, users, groups and sites have the subtypes of user, group and site respectively.

Plugins can use custom entity classes that extend the base type class. To do so, they need to register their class at
runtime (e.g. in the 'init', 'system' handler), using elgg_set_entity_class(). For example, the blog plugin
could use elgg_set_entity_class('object', 'blog', \ElggBlog::class).

Plugins can use elgg-plugin.php to define entity class via shortcut entities parameter.

3.5. Design Docs 257

Elgg Documentation, Release master

Subtype Gotchas

Before an entity’s save() method is called, the subtype must be set by writing a string to the subtype property.

Warnung: Subtype cannot be changed after saving.

GUIDs

A GUID is an integer that uniquely identifies every entity in an Elgg installation (a Globally Unique IDentifier). It’s
assigned automatically when the entity is first saved and can never be changed.

Some Elgg API functions work with GUIDs instead of ElggEntity objects.

Deleted state

As of Elgg 6.0 entities also have a deleted state. When a given entity type/subtype supports it before it’s removed from
the database it can get the deleted state. This way a user can restore the entity if the delete action was done too hastily.
For example the user removes a blog post, but this shouldn’t have been done. Now the user has the option to restore the
blog in it’s original state without having to rewrite it.

In the database this is managed by the deleted column in the entities table which can have a value of yes or no
(default) and by the time_deleted column which holds a UNIX timestamp when the entity was deleted.

A site administrator can set a retention period for deleted items. Once the retention period is passed the entity will be
permanently removed from the database.

Deleted items will not show in normal use cases. In the example of the blog post, the blog will not show up in the blog
listing and if anyone has saved a link to the blog post the page will return a 404 - Not Found error.

There is a special page in the user settings section where all the deleted entities of the user can be viewed. Here the
user has the option to restore the entity or permanently delete it before the retention period has passed.

This special page is also available to group owners for deleted entities in their group.

Siehe auch:
For more information check out the Restore capability documentation

ElggObject

The ElggObject entity type represents arbitrary content within an Elgg installation things like blog posts, uploaded
files, etc.

Beyond the standard ElggEntity properties, ElggObject also supports:

• title The title of the object (HTML escaped text)

• description A description of the object (HTML)

Most other data about the object is generally stored via metadata.

258 Kapitel 3. Continue Reading

Elgg Documentation, Release master

ElggUser

The ElggUser entity type represents users within an Elgg installation. These will be set to disabled until their accounts
have been activated (unless they were created from within the admin panel).

Beyond the standard ElggEntity properties, ElggUser also supports:

• name The user’s plain text name. e.g. „Hugh Jackman“

• username Their login name. E.g. „hjackman“

• password A hashed version of their password

• email Their email address

• language Their default language code.

• prev_last_action The previous value of last_action

• last_login The UNIX timestamp of their last log in

• prev_last_login the previous value of last_login

ElggSite

The ElggSite entity type represents your Elgg installation (via your site URL).

Beyond the standard ElggEntity properties, ElggSite also supports:

• name The site name

• description A description of the site

• url The address of the site

ElggGroup

The ElggGroup entity type represents an association of Elgg users. Users can join, leave, and post content to groups.

Beyond the standard ElggEntity properties, ElggGroup also supports:

• name The group’s name (HTML escaped text)

• description A description of the group (HTML)

ElggGroup has addition methods to manage content and membership.

The Groups plugin

Not to be confused with the entity type ElggGroup, Elgg comes with a plugin called „Groups“ that provides a default
UI/UX for site users to interact with groups. Each group is given a profile page linking users to content within the
group.

You can alter the user experience via the traditional means of extending plugins or completely replace the Groups
plugin with your own.

Several of the Elgg core plugins offer support for group content like blogs, bookmarks, discussions, files and pages.

3.5. Design Docs 259

Elgg Documentation, Release master

Writing a group-aware plugin

Plugin owners need not worry too much about writing group-aware functionality, but there are a few key points:

Adding content

By passing along the group as container_guid via a hidden input field, you can use a single form and action to add
both user and group content.

Use ElggEntity->canWriteToContainer(0, $type, $subtype) to determine whether or not the current user
has the right to add content to a group.

Be aware that you will then need to pass the container GUID or username to the page responsible for posting and the
accompanying value, so that this can then be stored in your form as a hidden input field, for easy passing to your actions.
Within a „create“ action, you’ll need to take in this input field and save it as a property of your new element (defaulting
to the current user’s container):

$user = elgg_get_logged_in_user_entity();
$container_guid = (int) get_input('container_guid');

if ($container_guid) {
$container = get_entity($container_guid);

if (!$container instanceof \ElggEntity || !$container->canWriteToContainer($user->
→˓guid, 'object', 'my_content_subtype')) {

return elgg_error_response(elgg_echo('actionunauthorized'));
}

} else {
$container_guid = elgg_get_logged_in_user_guid();

}

$object = new ElggObject();
$object->container_guid = $container_guid;

...

// redirect to the created object
return elgg_ok_response('', $object->getURL());

Ownership

Entities have a owner_guid GUID property, which defines its owner. Typically this refers to the GUID of a user,
although sites and users themselves often have no owner (a value of 0).

The ownership of an entity dictates, in part, whether or not you can access or edit that entity.

260 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Containers

In order to easily search content by group or by user, content is generally set to be „contained“ by either the user who
posted it, or the group to which the user posted. This means the new object’s container_guid property will be set to
the GUID of the current ElggUser or the target ElggGroup.

E.g., three blog posts may be owned by different authors, but all be contained by the group they were posted to.

Bemerkung: This is not always true. Comment entities are contained by the object commented upon, and in some 3rd
party plugins the container may be used to model a parent-child relationship between entities (e.g. a „folder“ object
containing a file object).

Annotations

Annotations are pieces of data attached to an entity that allow users to leave ratings, or other relevant feedback. A poll
plugin might register votes as annotations.

Annotations are stored as instances of the ElggAnnotation class.

Each annotation has:

• An internal annotation type (like comment)

• A value (which can be a string, a boolean or an integer)

• An access permission distinct from the entity it’s attached to

• An owner

Adding an annotation

The easiest way to annotate is to use the annotate method on an entity, which is defined as:

public function annotate(
$name, // The name of the annotation type (eg 'comment')
$value, // The value of the annotation
$access_id = 0, // The access level of the annotation
$owner_id = 0, // The annotation owner, defaults to current user
$vartype = "" // 'text', 'bool' or 'integer'

)

For example, to leave a rating on an entity, you might call:

$entity->annotate('rating', $rating_value, $entity->access_id);

3.5. Design Docs 261

Elgg Documentation, Release master

Reading annotations

To retrieve annotations on an object, you can call the following method:

$annotations = $entity->getAnnotations(
$name, // The type of annotation
$limit, // The number to return
$offset, // Any indexing offset
$order, // 'asc' or 'desc' (default 'asc')

);

If your annotation type largely deals with integer values, a couple of useful mathematical functions are provided:

$averagevalue = $entity->getAnnotationsAvg($name); // Get the average value
$total = $entity->getAnnotationsSum($name); // Get the total value
$minvalue = $entity->getAnnotationsMin($name); // Get the minimum value
$maxvalue = $entity->getAnnotationsMax($name); // Get the maximum value

Useful helper functions

Comments

If you want to provide comment functionality on your plugin objects, the following function will provide the full listing,
form and actions:

function elgg_view_comments(ElggEntity $entity)

Metadata

Metadata in Elgg allows you to store extra data on an ElggEntity beyond the built-in fields that entity supports. For
example, ElggObjects only support the basic entity fields plus title and description, but you might want to include
tags or an ISBN number. Similarly, you might want users to be able to save a date of birth.

Under the hood, metadata is stored as an instance of the ElggMetadata class, but you don’t need to worry about that
in practice (although if you’re interested, see the ElggMetadata class reference). What you need to know is:

• You can potentially have multiple items of each type of metadata attached to a single entity

• Like annotations, values are stored as strings, booleans or integers

• The metadata name is case sensitive

The simple case

Adding metadata

To add a piece of metadata to an entity, just call:

$entity->metadata_name = $metadata_value;

For example, to add a date of birth to a user:

262 Kapitel 3. Continue Reading

Elgg Documentation, Release master

$user->dob = $dob_timestamp;

Or to add a couple of tags to an object:

$object->tags = array('tag one', 'tag two', 'tag three');

When adding metadata like this:

• Reassigning a piece of metadata will overwrite the old value

This is suitable for most purposes. Be careful to note which attributes are metadata and which are built in to the entity
type that you are working with. You do not need to save an entity after adding or updating metadata. You do need to
save an entity if you have changed one of its built in attributes. As an example, if you changed the access_id of an
ElggObject, you need to save it or the change isn’t pushed to the database.

Reading metadata

To retrieve metadata, treat it as a property of the entity:

$tags_value = $object->tags;

Note that this will return the absolute value of the metadata. To get metadata as an ElggMetadata object, you will
need to use the methods described in the finer control section below.

If you stored multiple values in this piece of metadata (as in the „tags“ example above), you will get an array of all
those values back. If you stored only one value, you will get a string, boolean or integer back. Storing an array with
only one value will return a string back to you. E.g.

$object->tags = array('tag');
$tags = $object->tags;
// $tags will be the string "tag", NOT array('tag')

To always get an array back, simply cast to an array;

$tags = (array)$object->tags;

Reading metadata as objects

elgg_get_metadata is the best function for retrieving metadata as ElggMetadata objects:

E.g., to retrieve a user’s DOB

elgg_get_metadata([
'metadata_name' => 'dob',
'guid' => $user_guid,

]);

Or to get all metadata objects:

elgg_get_metadata([
'guid' => $user_guid,
'limit' => false,

]);

3.5. Design Docs 263

Elgg Documentation, Release master

Bemerkung: When retrieving metadata by name the names are matched case-insensitive. Keep your code clean and
do not mix uppercase and lowercase metadata names.

Common mistakes

„Appending“ metadata

Note that you cannot „append“ values to metadata arrays as if they were normal php arrays. For example, the following
will not do what it looks like it should do.

$object->tags[] = "tag four";

Trying to store hashmaps

Elgg does not support storing ordered maps (name/value pairs) in metadata. For example, the following does not work
as you might first expect it to:

// Won't work!! Only the array values are stored
$object->tags = array('one' => 'a', 'two' => 'b', 'three' => 'c');

You can instead store the information like so:

$object->one = 'a';
$object->two = 'b';
$object->three = 'c';

Storing GUIDs in metadata

Though there are some cases to store entity GUIDs in metadata, Relationships are a much better construct for relating
entities to each other.

Relationships

Relationships allow you to bind entities together. Examples: an artist has fans, a user is a member of an organization,
etc.

The class ElggRelationship models a directed relationship between two entities, making the statement:

„{subject} is a {noun} of {target}.“

API name Models Represents
guid_one The subject Which entity is being bound
relationship The noun The type of relationship
guid_two The target The entity to which the subject is bound

The type of relationship may alternately be a verb, making the statement:

264 Kapitel 3. Continue Reading

Elgg Documentation, Release master

„{subject} {verb} {target}.“
E.g. User A „likes“ blog post B

Each relationship has direction. Imagine an archer shoots an arrow at a target; The arrow moves in one direction,
binding the subject (the archer) to the target.

A relationship does not imply reciprocity. A follows B does not imply that B follows A.

Relationships do not have access control. They’re never hidden from view and can be edited with code at any privilege
level, with the caveat that the entities in a relationship may be invisible due to access control!

Working with relationships

Creating a relationship

E.g. to establish that „$user is a fan of $artist“ (user is the subject, artist is the target):

$success = $user->addRelationship($artist->guid, 'fan');

This triggers the event [create, relationship], passing in the created ElggRelationship object. If a handler returns
false, the relationship will not be created and $success will be false.

Verifying a relationship

E.g. to verify that „$user is a fan of $artist“:

if ($user->hasRelationship($artist->guid, 'fan')) {
// relationship exists

}

Deleting a relationship

E.g. to be able to assert that „$user is no longer a fan of $artist“:

$was_removed = $user->removeRelationship($artist->guid, 'fan');

This triggers the event [delete, relationship], passing in the associated ElggRelationship object. If a handler returns
false, the relationship will remain, and $was_removed will be false.

Other useful functions:

• \ElggRelationship->delete(): delete by object

• \ElggEntity->removeAllRelationships(): delete those relating to an entity

3.5. Design Docs 265

Elgg Documentation, Release master

Finding relationships and related entities

Below are a few functions to fetch relationship objects and/or related entities. A few are listed below:

• elgg_get_relationship() : get a relationship object by ID

• elgg_get_relationships() : fetch relationships

• elgg_get_entities() : fetch entities in relationships in a variety of ways

E.g. retrieving users who joined your group in January 2014.

$entities = elgg_get_entities(array(
'relationship' => 'member',
'relationship_guid' => $group->guid,
'inverse_relationship' => true,

'relationship_created_time_lower' => 1388534400, // January 1st 2014
'relationship_created_time_upper' => 1391212800, // February 1st 2014

));

Access Control

Granular access controls are one of the fundamental design principles in Elgg, and a feature that has been at the centre
of the system throughout its development. The idea is simple: a user should have full control over who sees an item of
data he or she creates.

Access controls in the data model

In order to achieve this, every entity and annotation contains an access_id property, which in turn corresponds to one
of the pre-defined access controls or an entry in the access_collections database table.

Pre-defined access controls

• ACCESS_PRIVATE (value: 0) Private.

• ACCESS_LOGGED_IN (value: 1) Logged in users.

• ACCESS_PUBLIC (value: 2) Public data.

User defined access controls

You may define additional access groups and assign them to an entity, or annotation. A number of functions have been
defined to assist you; see the Access Control Lists for more information.

266 Kapitel 3. Continue Reading

Elgg Documentation, Release master

How access affects data retrieval

All data retrieval functions above the database layer - for example elgg_get_entities will only return items that
the current user has access to see. It is not possible to retrieve items that the current user does not have access to. This
makes it very hard to create a security hole for retrieval.

Write access

The following rules govern write access:

• The owner of an entity can always edit it

• The owner of a container can edit anything therein (note that this does not mean that the owner of a group can
edit anything therein)

• Admins can edit anything

You can override this behaviour using a event called permissions_check, which passes the entity in question to any
function that has announced it wants to be referenced. Returning true will allow write access; returning false will
deny it. See the event reference for permissions_check for more details.

Schema

The database contains a number of primary and secondary tables. You can follow schema changes in engine/schema/
migrations/

The character set of the database should be utf8mb4, this will provide full unicode character support when storing
data.

InnoDB

As of Elgg 3.0 the database uses the InnoDB engine. In order for a correct installation or migration some settings may
need to be adjusted in the database settings.

• innodb_large_prefix should be on

• innodb_file_format should be Barracuda

• innodb_file_per_table should be 1

Main tables

This is a description of the main tables. Keep in mind that in a given Elgg installation, the tables will have a prefix
(typically „elgg_“).

3.5. Design Docs 267

Elgg Documentation, Release master

Table: entities

This is the main Entities table containing Elgg users, sites, objects and groups. When you first install Elgg this is
automatically populated with your first site, your first user and a set of bundled plugins.

It contains the following fields:

• guid An auto-incrementing counter producing a GUID that uniquely identifies this entity in the system

• type The type of entity - object, user, group or site

• subtype A subtype of entity

• owner_guid The GUID of the owner’s entity

• container_guid The GUID this entity is contained by - either a user or a group

• access_id Access controls on this entity

• time_created Unix timestamp of when the entity is created

• time_updated Unix timestamp of when the entity was updated

• last_action Unix timestamp of when the user last performed an action or when within the entity as container
something happened

• enabled If this is ‚yes‘ an entity is accessible, if ‚no‘ the entity has been disabled (Elgg treats it as if it were
deleted without actually removing it from the database)

• deleted If this is ‚yes‘ an entity is marked as deleted, if ‚no‘ (default) the entity is visible within the regular site.
Deleted entities can be viewed in the trash

• time_deleted Unix timestamp of when the entity was deleted

Table: metadata

This table contains Metadata, extra information attached to an entity.

• id A unique IDentifier

• entity_guid The entity this is attached to

• name The name string

• value The value string

• value_type The value class, either text, bool or an integer

• time_created Unix timestamp of when the metadata is created

Table: annotations

This table contains Annotations, this is distinct from Metadata.

• id A unique IDentifier

• entity_guid The entity this is attached to

• name The name string

• value The value string

• value_type The value class, either text, bool or an integer

268 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• owner_guid The owner GUID of the owner who set this annotation

• access_id An Access controls on this annotation

• time_created Unix timestamp of when the annotation is created.

Table: relationships

This table defines Relationships, these link one entity with another.

• guid_one The GUID of the subject entity.

• relationship The type of the relationship.

• guid_two The GUID of the target entity.

• time_created Unix timestamp of when the relationship is created.

Secundairy tables

Table: access_collections

This table defines Access Collections, which grant users access to Entities or Annotations.

• id A unique IDentifier

• name The name of the access collection

• owner_guid The GUID of the owning entity (eg. a user or a group)

• subtype the subtype of the access collection (eg. friends or group_acl)

3.5.4 Events

Contents

• Overview

• Elgg Events

– Before and After Events

– Elgg Event Handlers

– Register to handle an Elgg Event

– Trigger an Elgg Event

– Trigger an Event with results

– Trigger an Elgg Event sequence

– Unregister Event Handlers

– Handler Calling Order

3.5. Design Docs 269

Elgg Documentation, Release master

Overview

Elgg has an event system that can be used to replace or extend core functionality.

Plugins influence the system by creating handlers (callables such as functions and methods) and registering them to
handle the events.

When an event is triggered, a set of handlers is executed in order of priority. Each handler is passed arguments and has
a chance to influence the process. After execution, the „trigger“ function returns a value based on the behavior of the
handlers.

Siehe auch:
• List of events in core

Elgg Events

Elgg Events are triggered when an Elgg object is created, updated, or deleted; and at important milestones while the
Elgg framework is loading. Examples: a blog post being created or a user logging in.

These events are mostly used to notify the rest of the system that something has happened.

There are also events that are used to influence output, configuration or behaviour of the system.

Each Elgg event has a name and a type (system, user, object, relationship name, annotation, group) describing the type
of object passed to the handlers.

Before and After Events

Some events are split into „before“ and „after“. This avoids confusion around the state of the system while in flux. E.g.
Is the user logged in during the [login, user] event?

Before Events have names ending in „:before“ and are triggered before something happens. Handlers can cancel the
event by returning false. When false is returned by a handler, following handlers will not be called.

After Events, with names ending in „:after“, are triggered after something happened. Handlers cannot cancel these
events; all handlers will always be called.

Where before and after events are available, developers are encouraged to transition to them, though older events will
be supported for backwards compatibility.

Elgg Event Handlers

Elgg event handlers are callables:

<?php

/**
* @param \Elgg\Event $event The event object
*
* @return bool if false, the handler is requesting to cancel the event
*/
function event_handler(\Elgg\Event $event) {

...
}

270 Kapitel 3. Continue Reading

http://php.net/manual/en/language.types.callable.php

Elgg Documentation, Release master

In event_handler, the Event object has various methods for getting the name, object type, and object of the event.
See the Elgg\Event class for details.

Register to handle an Elgg Event

Register your handler to an event using elgg_register_event_handler:

<?php

elgg_register_event_handler($event, $type, $handler, $priority);

Parameters:

• $event The event name.

• $type The event type (e.g. „user“ or „object“) or ‚all‘ for all types on which the event is fired.

• $handler The callback of the handler function.

• $priority The priority - 0 is first and the default is 500.

Example:

<?php

// Register the function myPlugin_handle_create_object() to handle the
// create object event with priority 400.
elgg_register_event_handler('create:after', 'object', 'myPlugin_handle_create_object',␣
→˓400);

Warnung: If you handle the „update“ event on an object, avoid calling save() in your event handler. For one
it’s probably not necessary as the object is saved after the event completes, but also because save() calls another
„update“ event and makes $object->getOriginalAttributes() no longer available.

Invokable classes as handlers

You may use a class with an __invoke() method as a handler. Just register the class name and it will be instantiated
(with no arguments) for the lifetime of the event.

<?php

namespace MyPlugin;

class UpdateObjectHandler {
public function __invoke(\Elgg\Event $event) {

}
}

// in init, system
elgg_register_event_handler('update', 'object', MyPlugin\UpdateObjectHandler::class);

3.5. Design Docs 271

Elgg Documentation, Release master

Trigger an Elgg Event

You can trigger a custom Elgg event using elgg_trigger_event:

<?php

if (elgg_trigger_event($event, $object_type, $object)) {
// Proceed with doing something.

} else {
// Event was cancelled. Roll back any progress made before the event.

}

For events with ambiguous states, like logging in a user, you should use Before and After Events by calling
elgg_trigger_before_event or elgg_trigger_after_event. This makes it clear for the event handler what
state to expect and which events can be cancelled.

<?php

// handlers for the user, login:before event know the user isn't logged in yet.
if (!elgg_trigger_before_event('login', 'user', $user)) {

return false;
}

// handlers for the user, login:after event know the user is logged in.
elgg_trigger_after_event('login', 'user', $user);

Parameters:

• $event The event name.

• $object_type The object type (e.g. „user“ or „object“).

• $object The object (e.g. an instance of ElggUser or ElggGroup)

The function will return false if any of the selected handlers returned false and the event is stoppable, otherwise it
will return true.

Trigger an Event with results

Events with results provide a way for plugins to collaboratively determine or alter a value. For example, to decide
whether a user has permission to edit an entity or to add additional configuration options to a plugin.

An event has a value passed into the trigger function, and each handler has an opportunity to alter the value before it’s
passed to the next handler. After the last handler has completed, the final value is returned by the trigger.

You can trigger a custom event using elgg_trigger_event_results:

<?php

// filter $value through the handlers
$value = elgg_trigger_event_results($name, $type, $params, $value);

Parameters:

• $name The name of the event.

• $type The type of the event or ‚all‘ for all types.

272 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• $params Arbitrary data passed from the trigger to the handlers.

• $value The initial value of the event.

Trigger an Elgg Event sequence

Instead of triggering the :before and :after event manually, it’s possible to trigger an event sequence. This will
trigger the :before event, then the actual event and finally the :after event.

elgg()->events->triggerSequence($event, $type, $object, $callable);

// or if you wish to have a result sequence
$result = elgg->events->triggerResultsSequence($name, $type, $params, $value, $callable);

When called with for example 'cache:clear', 'system' the following three events are triggered

• 'cache:clear:before', 'system'

• 'cache:clear', 'system'

• 'cache:clear:after', 'system'

Parameters:

• $event The event name.

• $object_type The object type (e.g. „user“ or „object“).

• $object The object (e.g. an instance of ElggUser or ElggGroup)

• $callable Callable to run on successful event, before event:after

Bemerkung: As of Elgg 6.0 the :after event will no longer be triggered if the result of the callable is false. This
was done in order to prevent the system from thinking something was done which wasn’t successful. For example
the 'delete', 'user' event sequence. If the callback (which handles the actual removal from the database) wasn’t
successful the :after event implied that the user was deleted. Now this is only triggered when the user is actually
removed from the database.

Unregister Event Handlers

The functions elgg_unregister_event_handler can be used to remove handlers already registered by another
plugin or Elgg core. The parameters are in the same order as the registration functions, except there’s no priority
parameter.

<?php

elgg_unregister_event_handler('login', 'user', 'myPlugin_handle_login');

Anonymous functions or invokable objects cannot be unregistered, but dynamic method callbacks can be unregistered
by giving the static version of the callback:

<?php

$obj = new MyPlugin\Handlers();
elgg_register_event_handler('foo', 'bar', [$obj, 'handleFoo']);

(Fortsetzung auf der nächsten Seite)

3.5. Design Docs 273

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

// ... elsewhere

elgg_unregister_event_handler('foo', 'bar', 'MyPlugin\Handlers::handleFoo');

Even though the event handler references a dynamic method call, the code above will successfully remove the handler.

Handler Calling Order

Handlers are called first in order of priority, then registration order.

Bemerkung: Before Elgg 2.0, registering with the all keywords caused handlers to be called later, even if they were
registered with lower priorities.

3.5.5 Security

Elgg’s approach to the various security issues common to all web applications.

Tipp: To report a potential vulnerability in Elgg, email security@elgg.org.

Contents

• Passwords

– Password validation

– Password hashing

– Password throttling

– Password resetting

• Sessions

– Session fixation

– „Remember me“ cookie

• Alternative authentication

• HTTPS

• XSS

• CSRF / XSRF

• Signed URLs

• SQL Injection

• Privacy

• Hardening

274 Kapitel 3. Continue Reading

mailto:security@elgg.org

Elgg Documentation, Release master

Passwords

Password validation

The only restriction that Elgg places on a password is that it must be at least 6 characters long by default, though this
may be changed in /elgg-config/settings.php. Additional criteria can be added by a plugin by registering for the
registeruser:validate:password event.

Password hashing

Passwords are never stored in plain text, only salted hashes produced with bcrypt. This is done via the standard
password_hash() function. On older systems, the password-compat polyfill is used, but the algorithm is identi-
cal.

Elgg installations created before version 1.10 may have residual „legacy“ password hashes created using salted MD5.
These are migrated to bcrypt as users log in, and will be completely removed when a system is upgraded to Elgg 3.0.
In the meantime we’re happy to assist site owners to manually remove these legacy hashes, though it would force those
users to reset their passwords.

Password throttling

Elgg has a password throttling mechanism to make dictionary attacks from the outside very difficult. A user is only
allowed 5 login attempts over a 5 minute period.

Password resetting

If a user forgets his password, a new random password can be requested. After the request, an email is sent with a
unique URL. When the user visits that URL, a new random password is sent to the user through email.

Sessions

Elgg uses PHP’s session handling with custom handlers. Session data is stored in the database. The session cookie
contains the session id that links the user to the browser. The user’s metadata is stored in the session including GUID,
username, email address.

The session’s lifetime is controlled through the server’s PHP configuration and additionally through options in the
/elgg-config/settings.php.

Session fixation

Elgg protects against session fixation by regenerating the session id when a user logs in.

3.5. Design Docs 275

Elgg Documentation, Release master

„Remember me“ cookie

To allow users to stay logged in for a longer period of time regardless of whether the browser has been closed, Elgg uses
a cookie (default called elggperm) that contains what could be considered a super session identifier. This identifier is
stored in a cookies table. When a session is being initiated, Elgg checks for the presence of the elggperm cookie. If it
exists and the session code in the cookie matches the code in the cookies table, the corresponding user is automatically
logged in.

When a user changes their password all existing permanent cookie codes are removed from the database.

The lifetime of the persistent cookie can be controlled in the /elgg-config/settings.php file. The default lifetime is 30
days. The database records for the persistent cookies will be removed after the lifetime expired.

Alternative authentication

Bemerkung: This section is very hand-wavy

To replace Elgg’s default user authentication system, a plugin could replace the default login action with its own.
Better would be to register a PAM handler using elgg_register_pam_handler() which handles the authentication
of the user based on the new requirements.

HTTPS

Bemerkung: You must enable SSL support on your server for any of these techniques to work.

You can serve your whole site over SSL by changing the site URL to include „https“ instead of just „http“.

XSS

Filtering is used in Elgg to make XSS attacks more difficult. The purpose of the filtering is to remove Javascript and
other dangerous input from users.

Filtering is performed through the function elgg_sanitize_input(). This function takes in a string and returns a
filtered string. It triggers a sanitize, input event.

By default Elgg comes with the htmLawed filtering code. Developers can drop in any additional or replacement filtering
code as a plugin.

The elgg_sanitize_input() function is called on any user input as long as the input is obtained through a call to
get_input(). If for some reason a developer did not want to perform the default filtering on some user input, the
get_input() function has a parameter for turning off filtering.

276 Kapitel 3. Continue Reading

Elgg Documentation, Release master

CSRF / XSRF

Elgg generates security tokens to prevent cross-site request forgery. These are embedded in all forms and state-
modifying AJAX requests as long as the correct API is used. Read more in the Forms + Actions developer guide.

Signed URLs

It’s possible to protect URLs with a unique signature. Read more in the Forms + Actions developer guide.

SQL Injection

Elgg’s API sanitizes all input before issuing DB queries. Read more in the Database design doc.

Privacy

Elgg uses an ACL system to control which users have access to various pieces of content. Read more in the Database
design doc.

Hardening

Site administrators can configure settings which will help with hardening the website. Read more in the Administrator
guide Security.

3.5.6 Loggable

Loggable is an interface inherited by any class that wants events relating to its member objects to be saved to the system
log. ElggEntity and ElggExtender both inherit Loggable.

Loggable defines several class methods that are used in saving to the default system log, and can be used to define your
own (as well as for other purposes):

• getSystemLogID() Return a unique identifier for the object for storage in the system log. This is likely to be
the object’s GUID

• getClassName() Return the class name of the object

• getType() Return the object type

• getSubtype() Get the object subtype

• getObjectFromID($id) For a given ID, return the object associated with it

Database details

The default system log is stored in the system_log database table. It contains the following fields:

• id - A unique numeric row ID

• object_id - The GUID of the entity being acted upon

• object_class - The class of the entity being acted upon (eg ElggObject)

• object_type - The type of the entity being acted upon (eg object)

• object_subtype - The subtype of the entity being acted upon (eg blog)

3.5. Design Docs 277

http://en.wikipedia.org/wiki/Cross-site_request_forgery

Elgg Documentation, Release master

• event - The event being logged (eg create or update)

• performed_by_guid - The GUID of the acting entity (the user performing the action)

• owner_guid - The GUID of the user which owns the entity being acted upon

• access_id - The access restriction associated with this log entry

• time_created - The UNIX epoch timestamp of the time the event took place

3.6 Contributor Guides

Participate in making Elgg even better.

Elgg is a community-driven project. It relies on the support of volunteers to succeed. Here are some ways you can help:

3.6.1 Writing Code

Understand Elgg’s standards and processes to get your changes accepted as quickly as possible.

Contents

• License agreement

• Pull requests

• Coding Standards

• Testing

• Coding best practices

• Deprecating APIs

License agreement

By submitting a patch you are agreeing to license the code under a GPLv2 license and MIT license.

Pull requests

Pull requests (PRs) are the best way to get code contributed to Elgg core. The core development team uses them even
for the most trivial changes.

For new features, submit a feature request or talk to us first and make sure the core team approves of your direction
before spending lots of time on code.

278 Kapitel 3. Continue Reading

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://en.wikipedia.org/wiki/MIT_License
https://github.com/Elgg/Elgg/issues
http://community.elgg.org/groups/profile/211069/feedback-and-planning

Elgg Documentation, Release master

Checklists

Use these markdown checklists for new PRs on github to ensure high-quality contributions and help everyone under-
stand the status of open PRs.

Bugfix PRs:

- [] Commit messages are in the standard format
- [] Includes regression test
- [] Includes documentation update (if applicable)
- [] Is submitted against the correct branch
- [] Has LGTM from at least one core developer

Feature PRs:

- [] Commit messages are in the standard format
- [] Includes tests
- [] Includes documentation
- [] Is submitted against the correct branch
- [] Has LGTM from at least two core developers

Choosing a branch to submit to

The following table assumes the latest stable release is 2.1.

Type of change Branch to submit against
Security fix Don’t! Email security@elgg.org for guidance.
Bug fix 1.12 (or 2.1 if the 1.12 fix is too complex)
Performance 2.x
Deprecation 2.x
Minor feature 2.x
Major feature master
Has any breaking change master

If you’re not sure which branch to submit against, just ask!

The difference between minor and major feature is subjective and up to the core team.

Commit message format

We require a particular format to allow releasing more often, and with improved changelogs and source history. Just
follow these steps:

1. Start with the type by selecting the last category which applies from this list:

• docs - only docs are being updated

• chore - this include refactoring, code style changes, adding missing tests, CI stuff, etc.

• perf - the primary purpose is to improve performance

• fix - this fixes a bug

• deprecate - the change deprecates any part of the API

3.6. Contributor Guides 279

mailto:security@elgg.org

Elgg Documentation, Release master

• break - the change breaks any part of the API

• feature - this adds a new user-facing or developer feature

• removed - this removes a user-facing or developer feature

• security - the change affects a security issue in any way. Please do not push this commit to any public repo.
Instead contact security@elgg.org.

E.g. if your commit refactors to fix a bug, it’s still a „fix“. If that bug is security-related, however, the type must
be „security“ and you should email security@elgg.org before proceeding. When in doubt, make your best guess
and a reviewer will provide guidance.

2. In parenthesis, add the component, a short string which describes the subsystem being changed.

Some examples: views, i18n, seo, a11y, cache, db, session, router, <plugin_name>.

3. Add a colon, a space, and a brief summary of the changes, which will appear in the changelog.

No line may exceed 100 characters in length, so keep your summary concise.

Good summary Bad summary (problem)
page owners see their own owner
blocks on pages

bug fix (vague)

bar view no longer dies if ‚foo‘ not
set

updates views/default/bar.php so bar view no longer. . . (redundant info)

narrows river layout to fit iPhone alters the river layout (vague)
elgg_foo() handles arrays for $bar in elgg_foo() you can now pass an array for $bar and the function will. . .

(move detail to description)
removes link color from comments
header in river

fixes db so that. . . (redundant info)

requires non-empty title when sa-
ving pages

can save pages with no title (confusingly summarizes old behavior)

4. (recommended) Skip a line and add a description of the changes. Include the motivation for making them,
any info about back or forward compatibility, and any rationale of why the change had to be done a certain way.
Example:

We speed up the Remember Me table migration by using a single INSERT INTO . . . SELECT query
instead of row-by-row. This migration takes place during the upgrade to 1.9.

Unless your change is trivial/obvious, a description is required.

5. If the commit resolves a GitHub issue, skip a line and add Fixes # followed by the issue number. E.g. Fixes
#1234. You can include multiple issues by separating with commas.

GitHub will auto-close the issue when the commit is merged. If you just want to reference an issue, use Refs #
instead.

When done, your commit message will have the format:

type(component): summary

Optional body
Details about the solution.
Opportunity to call out as breaking change.

Closes/Fixes/Refs #123, #456, #789

Here is an example of a good commit message:

280 Kapitel 3. Continue Reading

mailto:security@elgg.org
mailto:security@elgg.org

Elgg Documentation, Release master

perf(upgrade): speeds up migrating remember me codes

We speed up the Remember Me table migration by using a single INSERT INTO ... SELECT␣
→˓query instead of row-by-row.
This migration takes place during the upgrade to 1.9.

Fixes #6204

Rewriting commit messages

If your PR does not conform to the standard commit message format, we’ll ask you to rewrite it.

To edit just the last commit:

1. Amend the commit: git commit --amend (git opens the message in a text editor).

2. Change the message and save/exit the editor.

3. Force push your branch: git push -f your_remote your_branch (your PR with be updated).

4. Rename the PR title to match

Otherwise you may need to perform an interactive rebase:

1. Rebase the last N commits: git rebase -i HEAD~N where N is a number. (Git will open the
git-rebase-todo file for editing)

2. For the commits that need to change, change pick to r (for reword) and save/exit the editor.

3. Change the commit message(s), save/exit the editor (git will present a file for each commit that needs rewording).

4. git push -f your_remote your_branch to force push the branch (updating your PR).

5. Rename the PR title to match

Coding Standards

Elgg uses set of standards that are based partially on PEAR and PSR2 standards. You can view the ruleset in vendor/
elgg/sniffs/src/Elgg/ruleset.xml.

To check your code for standard violations (provided you have installed Elgg with dev dependencies), run:

phpcs --standard=vendor/elgg/sniffs/src/Elgg -s path/to/dir/to/check

To automatically fix fixable violations, run:

phpcbf --standard=vendor/elgg/sniffs/src/Elgg path/to/dir/to/fix

3.6. Contributor Guides 281

Elgg Documentation, Release master

Testing

Elgg has automated tests for both PHP and JavaScript functionality. All new contributions are required to come with
appropriate tests.

Siehe auch:
Writing tests

General guidelines

Break tests up by the behaviors you want to test and use names that describe the behavior. E.g.:

• Not so good: One big method testAdd().

• Better: Methods testAddingZeroChangesNothing and testAddingNegativeNumberSubtracts

Strive for componentized designs that allow testing in isolation, without large dependency graphs or DB access. Injec-
ting dependencies is key here.

PHP Tests

PHPUnit

Located in engine/tests/phpunit, this is our preferred test suite. It uses no DB access, and has only superficial
access to the entities API.

• We encourage you to create components that are testable in this suite if possible.

• Consider separating storage from your component so at least business logic can be tested here.

• Depend on the Elgg\Filesystem* classes rather than using PHP filesystem functions.

Testing interactions between services

Ideally your tests would construct your own isolated object graphs for direct manipulation, but this isn’t always possible.

If your test relies on Elgg’s Internal Services (_elgg_services() returns a Elgg\Di\InternalContainer), realize
that it maintains a singleton instance for most services it hands out, and many services keep their own local references
to these services as well.

Due to these local references, replacing services on the SP within a test often will not have the desired effect. Instead,
you may need to use functionality baked into the services themselves:

• The events service has methods backup() and restore().

• The logger service has methods disable() and enable().

282 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Coding best practices

Make your code easier to read, easier to maintain, and easier to debug. Consistent use of these guidelines means less
guess work for developers, which means happier, more productive developers.

General coding

Don’t Repeat Yourself

If you are copy-pasting code a significant amount of code, consider whether there’s an opportunity to reduce duplication
by introducing a function, an additional argument, a view, or a new component class.

E.g. If you find views that are identical except for a single value, refactor into a single view that takes an option.

Note: In a bugfix release, some duplication is preferrable to refactoring. Fix bugs in the simplest way possible and
refactor to reduce duplication in the next minor release branch.

Embrace SOLID and GRASP

Use these principles for OO design to solve problems using loosely coupled components, and try to make all components
and integration code testable.

Whitespace is free

Don’t be afraid to use it to separate blocks of code. Use a single space to separate function params and string concate-
nation.

Variable names

Use self-documenting variable names. $group_guids is better than $array.

Avoid double-negatives. Prefer $enable = true to $disable = false.

Interface names

Use the pattern Elgg\{Namespace}\{Name}.

Do not include an I prefix or an Interface suffix.

We do not include any prefix or suffix so that we’re encouraged to:

• name implementation classes more descriptively (the „default“ name is taken).

• type-hint on interfaces, because that is the shortest, easiest thing to do.

Name implementations like Elgg\{Namespace}\{Interface}\{Implementation}.

3.6. Contributor Guides 283

http://nikic.github.io/2011/12/27/Dont-be-STUPID-GRASP-SOLID.html

Elgg Documentation, Release master

Functions

Where possible, have functions/methods return a single type. Use empty values such as array(), "", or 0 to indicate
no results.

Be careful where valid return values (like "0") could be interpreted as empty.

Functions not throwing an exception on error should return false upon failure.

Bemerkung: Particularly low-level, non-API functions/methods, which should not fail under normal conditions,
should throw instead of returning false.

Functions returning only boolean should be prefaced with is_ or has_ (eg, elgg_is_logged_in(),
elgg_has_access_to_entity()).

Ternary syntax

Acceptable only for single-line, non-embedded statements.

Minimize complexity

Minimize nested blocks and distinct execution paths through code. Use Return Early to reduce nesting levels and
cognitive load when reading code.

Use comments effectively

Good comments describe the „why.“ Good code describes the „how.“ E.g.:

Bad:

// increment $i only when the entity is marked as active.
foreach ($entities as $entity) {

if ($entity->active) {
$i++;

}
}

Good:

// find the next index for inserting a new active entity.
foreach ($entities as $entity) {

if ($entity->active) {
$i++;

}
}

Always include a comment if it’s not obvious that something must be done in a certain way. Other developers looking
at the code should be discouraged from refactoring in a way that would break the code.

284 Kapitel 3. Continue Reading

http://www.mrclay.org/2013/09/18/when-reasonable-return-early/

Elgg Documentation, Release master

// Can't use empty()/boolean: "0" is a valid value
if (elgg_is_empty($str)) {

throw new \Elgg\Exceptions\Http\BadRequestException(elgg_echo('foo:string_cannot_be_
→˓empty'));
}

Commit effectively

• Err on the side of atomic commits which are highly focused on changing one aspect of the system.

• Avoid mixing in unrelated changes or extensive whitespace changes. Commits with many changes are scary and
make pull requests difficult to review.

• Use visual git tools to craft highly precise and readable diffs.

Include tests

When at all possible include unit tests for code you add or alter.

Keep bugfixes simple

Avoid the temptation to refactor code for a bugfix release. Doing so tends to introduce regressions, breaking functio-
nality in what should be a stable release.

PHP guidelines

These are the required coding standards for Elgg core and all bundled plugins. Plugin developers are strongly encoura-
ged to adopt these standards.

Developers should first read the PSR-2 Coding Standard Guide.

Elgg’s standards extend PSR-2, but differ in the following ways:

• Indent using one tab character, not spaces.

• Opening braces for classes, methods, and functions must go on the same line.

• If a line reaches over 100 characters, consider refactoring (e.g. introduce variables).

• Compliance with PSR-1 is encouraged, but not strictly required.

Documentation

• Include PHPDoc comments on functions and classes (all methods; declared properties when appropriate), inclu-
ding types and descriptions of all parameters.

• In lists of @param declarations, the beginnings of variable names and descriptions must line up.

• Annotate classes, methods, properties, and functions with @internal unless they are intended for public use,
are already of limited visibility, or are within a class already marked as @internal.

• Use // or /* */ when commenting.

• Use only // comments inside function/method bodies.

3.6. Contributor Guides 285

http://en.wikipedia.org/wiki/Atomic_commit#Atomic_Commit_Convention
http://www.mrclay.org/2014/02/14/gitx-for-cleaner-commits/
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-1-basic-coding-standard.md

Elgg Documentation, Release master

Naming

• Use underscores to separate words in the names of functions, variables, and properties. Method names are ca-
melCase.

• Names of functions for public use must begin with elgg_.

• All other function names must begin with _elgg_.

• Name globals and constants in ALL_CAPS (ACCESS_PUBLIC, $CONFIG).

Miscellaneous

For PHP requirements, see composer.json.

Do not use PHP shortcut tags <? or <%. It is OK to use <?= since it is always enabled as of PHP 5.4.

When creating strings with variables:

• use double-quoted strings

• wrap variables with braces

Bad (hard to read):

echo 'Hello, '.$name."! How is your {$time_of_day}?";

Good:

echo "Hello, {$name}! How is your {$time_of_day}?";

Remove trailing whitespace at the end of lines.

Value validation

When working with user input prepare the input outside of the validation method.

Bad:

function validate_email($email) {
$email = trim($email);

// validate
}

$email = get_input($email);

if (validate_email($email)) {
// the validated email value is now out of sync with an actual input

}

Good:

function validate_email($email) {
// validate

}
(Fortsetzung auf der nächsten Seite)

286 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

$email = get_input($email);
$email = trim($email);

if (validate_email($email)) {
// green light

}

Use exceptions

Do not be afraid to use exceptions. They are easier to deal with than mixed function output:

Bad:

/**
* @return string|bool
*/
function validate_email($email) {

if (empty($email)) {
return 'Email is empty';

}

// validate

return true;
}

Good:

/**
* @return void
* @throws \Elgg\Exceptions\InvalidArgumentException
*/
function validate_email($email) {

if (empty($email)) {
throw new \Elgg\Exceptions\InvalidArgumentException('Email is empty');

}

// validate and throw if invalid
}

Documenting return values

Do not use @return void on methods that return a value or null.

Bad:

/**
* @return bool|void
*/
function validate_email($email) {

(Fortsetzung auf der nächsten Seite)

3.6. Contributor Guides 287

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

if (empty($email)) {
return;

}

// validate

return true;
}

Good:

/**
* @return bool|null
*/
function validate_email($email) {

if (empty($email)) {
return null;

}

// validate

return true;
}

CSS guidelines

Save the css in files with a .css extension.

Use shorthand where possible

Bad:

background-color: #333333;
background-image: url(...);
background-repeat: repeat-x;
background-position: left 10px;
padding: 2px 9px 2px 9px;

Good:

background: #333 url(...) repeat-x left 10px;
padding: 2px 9px;

288 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Use hyphens, not underscores

Bad:

.example_class {}

Good:

.example-class {}

Bemerkung: You should prefix your ids and classnames with text that identifies your plugin.

One property per line

Bad:

color: white;font-size: smaller;

Good:

color: white;
font-size: smaller;

Property declarations

These should be spaced like so: property: value;

Bad:

color:value;
color :value;
color : value;

Good:

color: value;

Vendor prefixes

• Group vendor-prefixes for the same property together

• Longest vendor-prefixed version first

• Always include non-vendor-prefixed version

• Put an extra newline between vendor-prefixed groups and other properties

Bad:

3.6. Contributor Guides 289

Elgg Documentation, Release master

-moz-border-radius: 5px;
border: 1px solid #999999;
-webkit-border-radius: 5px;
width: auto;

Good:

border: 1px solid #999999;

-webkit-border-radius: 5px;
-moz-border-radius: 5px;
border-radius: 5px;

width: auto;

Group subproperties

Bad:

background-color: white;
color: #0054A7;
background-position: 2px -257px;

Good:

background-color: white;
background-position: 2px -257px;
color: #0054A7;

Javascript guidelines

Same formatting standards as PHP apply.

Related functions should be in a namespaced ECMAScript module.

Function expressions should end with a semi-colon.

Deprecating APIs

Occasionally functions and classes must be deprecated in favor of newer replacements. Since 3rd party plugin authors
rely on a consistent API, backward compatibility must be maintained, but will not be maintained indefinitely as plugin
authors are expected to properly update their plugins. In order to maintain backward compatibility, deprecated APIs
will follow these guidelines:

• Minor version (1.x) that deprecates an API must include a wrapper function/class (or otherwise appropriate
means) to maintain backward compatibility, including any bugs in the original function/class. This compatibility
layer uses elgg_deprecated_notice('...', '1.11') to log that the function is deprecated.

• The next major revision (2.0) removes the compatibility layer. Any use of the deprecated API should be corrected
before this.

290 Kapitel 3. Continue Reading

Elgg Documentation, Release master

3.6.2 Database

Contributing database schema changes

Contents

• Database Migrations

Database Migrations

Elgg uses Phinx to manage the database migrations.

Create a migration

To create a new migration run the following in your console:

vendor/bin/phinx create -c engine/schema/migrations.php MigrationClassName

This will generate a timestamped skeleton migration in engine/schema/migrations/. Follow Phinx documentation
to call the necessary methods to modify the database tables.

Executing a migration

Migrations are executed every time your run upgrade.php. If you would like to execute migrations manually, you can
do so via the command line:

// When Elgg is the root project
vendor/bin/phinx migrate -c engine/schema/migrations.php

// When Elgg is installed as a Composer dependency
vendor/bin/phinx migrate -c vendor/elgg/elgg/engine/schema/migrations.php

Check Phinx documentation for additional flags that allow you to run a single migration or a set of migrations within
a time range.

3.6.3 Writing Documentation

New documentation should fit well with the rest of Elgg’s docs.

Contents

• Testing docs locally

• Follow the existing document organization

• Use „Elgg“ in a grammatically correct way

• Avoid first person pronouns

• Eliminate fluff

3.6. Contributor Guides 291

https://phinx.org/

Elgg Documentation, Release master

• Prefer absolute dates over relative ones

• Do not remind the reader to contribute

Testing docs locally

Elgg has a grunt script that automatically builds the docs, opens them in a browser window, and automatically reloads
as you make changes (the reload takes just a few seconds). You need yarn and sphinx installed to be able to use these
scripts.

cd path/to/elgg/
yarn
grunt

It’s that easy! Grunt will continue running, watching the docs for changes and automatically rebuilding.

Bemerkung: You might need to install ‚sphinxcontrib-phpdomain‘. You can do this with the following command: pip
install -U sphinxcontrib-phpdomain

Follow the existing document organization

The current breakdown is not necessarily the One True Way to organize docs, but consistency is better than randomness.

intro/*

This is everything that brand new users need to know (installation, features, license, etc.)

admin/*

Guides for administrators. Task-oriented.

guides/*

API guides for plugin developers. Cookbook-style. Example heavy. Code snippet heavy. Broken down by services
(actions, i18n, routing, db, etc.). This should only discuss the public API and its behavior, not implementation details
or reasoning.

design/*

Design docs for people who want to get a better understanding of how/why core is built the way it is. This should
discuss internal implementation details of the various services, what tradeoffs were made, and the reasoning behind
the final decision. Should be useful for people who want to contribute and for communication b/w core devs.

292 Kapitel 3. Continue Reading

http://gruntjs.com/
https://yarnpkg.com/
http://www.sphinx-doc.org/

Elgg Documentation, Release master

contribute/*

Contributors guides for the various ways people can participate in the project.

appendix/*

More detailed/meta/background information about the project (history, roadmap, etc.)

Use „Elgg“ in a grammatically correct way

Elgg is not an acronym, so writing it in all caps (ELGG or E-LGG) is incorrect. Please don’t do this.

In English, Elgg does not take an article when used as a noun. Here are some examples to emulate:
• „I’m using Elgg to run my website“

• „Install Elgg to get your community online“

When used as an adjective, the article applies to the main noun, so you should use one. For example:
• „Go to the Elgg community website to get help.“

• „I built an Elgg-based network yesterday“

This advice may not apply in languages other than English.

Avoid first person pronouns

Refer to the reader as „you“. Do not include yourself in the normal narrative.

Before:

When we’re done installing Elgg, we’ll look for some plugins!

After:

When you’re done installing Elgg, look for some plugins!

To refer to yourself (avoid this if possible), use your name and write in the third person. This clarifies to future rea-
ders/editors whose opinions are being expressed.

Before:

I think the best way to do X is to use Y.

After:

Evan thinks the best way to do X is to use Y.

3.6. Contributor Guides 293

Elgg Documentation, Release master

Eliminate fluff

Before:

If you want to use a third-party javascript library within the Elgg framework, you should take care to call
the elgg_register_external_file function to register it.

After:

To use a third-party javascript library, call elgg_register_external_file to register it.

Prefer absolute dates over relative ones

It is not easy to tell when a particular sentence or paragraph was written, so relative dates quickly become meaningless.
Absolute dates also give the reader a good indication of whether a project has been abandoned, or whether some advice
might be out of date.

Before:

Recently the foo was barred. Soon, the baz will be barred too.

After:

Recently (as of September 2013), the foo was barred. The baz is expected to be barred by October 2013.

Do not remind the reader to contribute

Focus on addressing only the topic at hand. Constant solicitation for free work is annoying and makes the project look
needy. If people want to contribute to the project, they can visit the contributor guide.

3.6.4 Internationalizing documentation

When you change documentation, remember to update the documentation translation templates before you commit:

cd docs/
make gettext

For more information, see http://www.sphinx-doc.org/en/stable/intl.html#translating-with-sphinx-intl

Special attention

When translating the documentation be aware of special syntax in the documentation files.

Translating links

• Translate text in anonymous links (e.g., `pronunciation`__), but maintain the order of all anonymous links in
a single block. If there are two anonymous links within a single block for translation, they must not be rearranged
relative to each other.

• Translate the text of named links (e.g., `demo site`_) but only if you maintain the name using the correct rST
syntax. In this case that would be `translation of "demo site" <demo site_>`_.

294 Kapitel 3. Continue Reading

http://www.sphinx-doc.org/en/stable/intl.html#translating-with-sphinx-intl

Elgg Documentation, Release master

Do NOT translate

• Anything between pipe characters should not be translated (e.g., master).

• Code, unless it’s a comment in the code.

3.6.5 Translations

Translations multiply the impact that Elgg can have by making it accessible to a larger percentage of the world.

The community will always be indebted to those of you who work hard to provide high quality translations for Elgg’s
UI and docs.

Transifex

All translation for the Elgg project is organized through Transifex.

https://www.transifex.com/organization/elgg

Plugin authors are encouraged to coordinate translations via Transifex as well so the whole community can be unified
and make it really easy for translators to contribute to any plugin in the Elgg ecosystem.

Pulling translations

The translations made in Transifex need to be periodically pulled into the Elgg code repository. This can be done with
the script .scripts/languages.php bundled within Elgg’s source code.

Prerequisites for running the script are:
• Access to command line

• Git

• Transifex CLI tool

The script will do the following steps:
1. Create a new git branch named {branch}_i18n_{timestamp}

2. Pull translations for all languages that have 95% of the strings translated

3. Remove possible invalid language codes

4. Commit the changes to the branch

After this you must push the branch to Github and make a new Pull request.

For example if you want to pull the translations for the 3.x branch, run the following commands:

php .scripts/languages.php 3.x
git push -u your_fork 3.x_i18n_1515151617

Run the command without parameters to get more detailed information of the usage.

3.6. Contributor Guides 295

https://www.transifex.com/organization/elgg
https://git-scm.com/
https://docs.transifex.com/client/introduction

Elgg Documentation, Release master

Transifex configuration

The configuration for Transifex can be found from Elgg’s source code in the file .tx/config.

This file defines:
• The Transifex project associated with Elgg’s major version

• The location of all the files that have translatable content

Read the Transifex documentation for further details.

New major Elgg version

Every major version of Elgg must have its own project in Transifex. This way we can make sure that strings added and
removed between versions do not conflict with each other. For example a translation key removed in Elgg 3 should not
get removed from translations made for Elgg 2. Respectfully a new string added only to Elgg 3 should not be included
in the translations meant for Elgg 2.

The process of setting up a new major version is:

1. Pull latest translations from Transifex to the previous major version

2. Merge the git branch of the previous version to the new to make sure all the latest translation keys are present

3. Create a new Transifex project to https://app.transifex.com/elgg/

4. Update .tx/config file in the development branch of the new major version

• Update the configuration to point to the new Transifex project

• Remove configuration of removed plugins

• Add configuration for new plugins

5. Push the translation sources to the new Transifex project with the command:

tx push -s

6. Copy the new configuration file temporarily (do not commit) to the previous major version, and push the existing
translations from it to the new project:

tx push -t -f --no-interactive

Later, once the dedicated branch (e.g. 3.x has been created for the major version, configure Transifex to fetch new
translation keys from it automatically in https://app.transifex.com/elgg/elgg-core-3/content/. This way you don’t have
to repeat step 5 manually every time new translation keys are added.

It is important to always have a n.x branch besides the branches meant for specific minor versions (n.1, n.2, etc.).
This way the URLs of the auto-update sources do not have to be updated every time a new minor branch is created.

296 Kapitel 3. Continue Reading

https://docs.transifex.com/
https://app.transifex.com/elgg/
https://app.transifex.com/elgg/elgg-core-3/content/

Elgg Documentation, Release master

3.6.6 Reporting Issues

Report bugs and features requests to https://github.com/Elgg/Elgg/issues. See below for guidelines.

DISCLAIMERS

Achtung: Security issues should be reported to security @ elgg . org! Please do not post any security issues on
github!!

Bemerkung: Support requests belong on the community site. Tickets with support requests will be closed.

Wichtig: We cannot make any guarantees as to when your ticket will be resolved.

Bug reports

Before submitting a bug report:

• Search for an existing ticket on the issue you’re having. Add any extra info there.

• Verify the problem is reproducible

– On the latest version of Elgg

– With all third-party plugins disabled

Good bug report checklist:

• Expected behavior and actual behavior

• Clear steps to reproduce the problem

• The version of Elgg you’re running

• Browsers affected by this problem

Feature requests

Before submitting a feature request:

• Check the community site for a plugin that has the features you need.

• Consider if you can develop a plugin that does what you need.

• Search through the closed tickets to see if someone else suggested the same feature, but got turned down. You’ll
need to be able to explain why your suggestion should be considered this time.

Good feature request checklist:

• Detailed explanation of the feature

• Real-life use-cases

• Proposed API

3.6. Contributor Guides 297

https://github.com/Elgg/Elgg/issues
http://community.elgg.org
http://community.elgg.org

Elgg Documentation, Release master

3.6.7 Becoming a Financial Supporter

All funds raised via the Elgg supporters network go directly into:
• Elgg core development

• Infrastructure provision (elgg.org, github, etc.)

It is a great way to help with Elgg development!

Benefits

For only $50 per year for individuals or $150 per year for organizations, you can get listed as a supporter on our
supporters page. Elgg supporters are listed there unless they request not to be.

Supporters are able to put this official logo on their site if they wish:

Disclaimer

We operate a no refund policy on supporter subscriptions. If you would like to withdraw your support, go to PayPal
and cancel your subscription. You will not be billed the following year.

Being an Elgg Supporter does not give an individual or organization the right to impersonate, trade as or imply they
are connected to the Elgg project. They can, however, mention that they support the Elgg project.

If you have any questions about this disclaimer, email info@elgg.org.

We reserve the right to remove or refuse a listing without any prior warning at our complete discretion. There is no
refund policy.

If there is no obvious use of Elgg, your site will be linked to with „nofollow“ set.

Sign up

If you would like to become an Elgg supporter:

• read the disclaimer above

• on the supporters page, subscribe via PayPal

• send an email to info@elgg.org with:

– the date you subscribed

– your name (and organization name, if applicable)

– your website

298 Kapitel 3. Continue Reading

http://elgg.org/supporter.php
http://elgg.org/supporter.php
mailto:info@elgg.org
http://elgg.org/supporter.php
mailto:info@elgg.org

Elgg Documentation, Release master

– your Elgg community profile

Once all the details have been received, we will add you to the appropriate list. Thanks for your support!

3.6.8 Adding a Service to Elgg

The services guide has general information about using Elgg services.

To add a new service object to Elgg:

1. Annotate your class as @internal if it is an internal service.

2. Open the class Elgg\Di\InternalContainer and/or Elgg\Di\PublicContainer.

3. Add a @property-read annotation for your service at the top. This allows IDEs and static code analyzers to
understand the type of the property when using _elgg_services() or elgg().

4. Register your service in engine\internal_services.php or engine\public_services.php using auto-
wiring or with a factory.

Inject your dependencies

Elgg uses PHP-DI for registering and resolving services. Dependencies can be autowired (based on the typehinted
constructor argument services can be injected) or a service can be constructed in a factory.

Bemerkung: For more information about PHP-DI visit their website.

Making a service part of the public API

If your service is meant for use by plugin developers:

1. Make an interface Elgg\Services\<Name> that contains only those methods needed in the public API.

2. Have your service class implement that interface.

3. For methods that are in the interface, move the documentation to the interface. You can simply use
{@inheritdoc} in the PHPDocs of the concrete class methods.

4. Document your service in docs/guides/services.rst (this file).

5. Open the PHPUnit test Elgg\ApplicationTest and add your service key to the $names array in
testServices().

6. Open the class Elgg\Application.

7. Add @property-read declaration to document your service, but use your interface as the type, not your service
class name.

Now your service will be available via property access on the Elgg\Application instance:

// using the public foo service
$three = elgg()->foo->add(1, 2);

Bemerkung: For examples, see the config service, including the interface Elgg\Services\Config and the concrete
implementation Elgg\Config.

3.6. Contributor Guides 299

Elgg Documentation, Release master

Service Life Cycle and Factories

By default, services registered on the service provider are „shared“, meaning the service provider will store the created
instance for the rest of the request, and serve that same instance to all who request the property.

If you need developers to be able to construct objects that are pre-wired to Elgg services, you may need to add a public
factory method to Elgg\Application. Here’s an example that returns a new instance using internal Elgg services:

public function createFoo($bar) {
$logger = $this->services->logger;
$db = $this->services->db;
return new Elgg\Foo($bar, $logger, $db);

}

3.6.9 Writing tests

Contents

• Vision

• Running Tests

– Elgg Core Test Suite

– Plugin tests

– End-to-end tests

• Motivation

• Strategy

– Continuous Integration

– Dependency Injection

– Behavior-Driven Development

Vision

We want to make manual testing unnecessary for core developers, plugin authors, and site administrators by promoting
and enabling fast, automated testing at every level of the Elgg stack.

We look forward to a world where the core developers do not need to do any manual testing to verify the correctness of
code contributed to Elgg. Similarly, we envision a world where site administrators can upgrade and install new plugins
with confidence that everything works well together.

300 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Running Tests

Elgg Core Test Suite

Currently our tests are split in two pieces:
• PHPUnit tests are located in /tests/phpunit – these are split between unit tests and integration tests.

Since we have a phpunit.xml configuration at the root of Elgg, testing should be as easy as:

git clone http://github.com/Elgg/Elgg
cd Elgg
phpunit

If you write a unit test you can extend the \Elgg\UnitTestCase class or if you write a integration test you can extend
the \Elgg\IntegrationTestCase class. These classes have some helper functions when writing tests. The following
functions are often used:

• up() - used to prepare every test that is executed in the test case

• down() - executed after every test that is executed in the test case. Mostly used to cleanup / restore.

• createUser() - creates an ElggUser entity to be used in your test

• createGroup() - creates an ElggGroup entity to be used in your test

• createObject() - creates an ElggObject entity to be used in your test

Plugin tests

Ideally plugins are configured in such a way that they can be unit-tested much like Elgg core. Plugin developers are
free to implement their own methods for unit testing, but we encourage everyone to make it as easy as Elgg core:

git clone http://github.com/developer/elgg-plugin plugin
cd plugin
phpunit

End-to-end tests

Since Elgg plugins have so much power to override, filter, and modify Elgg’s and other plugins‘ behavior, it’s important
to be able to run end-to-end tests on a staging server with your final configuration before deploying to production.

Bemerkung: ToDo: Make it easy to run all Elgg integration and acceptance tests from the admin area given the current
plugin configuration. (without worrying about database corruption!)

3.6. Contributor Guides 301

Elgg Documentation, Release master

Motivation

Briefly, the wins we expect from testing are:
• Increased confidence in the system.

• More freedom to refactor.

• Built-in, up-to-date documentation.

We love community contributions, but in order to maintain stability we cannot accept outside contributions without
first verifying their correctness. By promoting automated testing, the core developers can avoid the hassle of manual
verification before accepting patches. It also means that external developers don’t have to spend time earning trust with
the core team. If a patch comes in and has tests to verify it, then we can be confident it works without worrying about
the reputation of the contributor.

Note that these benefits can also extend to the plugins repository. Site owners are encouraged to „test plugins thorough-
ly“ before deploying them on a production site. As of March 2013, this translates to manually verifying all the features
that the plugin promises to offer. But Elgg provides a huge number of features, and it’s not reasonable to test for all of
them on every browser you want to support on every device you want to support. But what if plugin developers could
write tests for their plugins and site owners could just run the tests for all installed plugins to verify the functionality is
maintained? Then they wouldn’t be limited to just picking plugins from „trusted“ developers or „stable“ releases. They
could see that, indeed, nothing broke when they upgraded that critical plugin from 1.3 to 2.5, and push the upgrade to
production with confidence.

The reason this isn’t happening today is because Elgg itself is not easily testable at this level yet. We want to change
that.

Strategy

We have several guiding principles that we think will be helpful in bringing our vision into reality.

In short, we are advocating:
• Continuous integration – if GitHub checks aren’t happy, we’re not happy

• Dependency injection – For creating highly testable, modular code

• BDD – Tests should verify features and provide documentation, not rehash the Class API

Continuous Integration

We run all of our tests on GitHub Actions so that we can get real time feedback on the correctness of incoming pull
requests and development as it progresses. If the GitHub checks aren’t passing, we don’t commit to the repo. This
empowers us to merge pull requests in at a rapid pace, so long as they pass the tests. It also allows us to reject pull
requests without detailed investigation if they do not pass the tests. We can get past the „does it work or not“ question
and talk about the things that humans need to talk about: API design, usefulness to the project, whether it belongs in
core or a plugin, etc. We want as many features as possible provided by Elgg core to be verified automatically by tests
running on GitHub Actions.

302 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Dependency Injection

In order to maximize testability, all dependencies need to be explicit. Global functions, Singletons, and service loca-
tors are death for testability because it’s impossible to tell what dependencies are hiding under the covers, and it’s even
harder to mock out those dependencies. Mocking is critical because you want your unit tests to test only one class at a
time. Test failures in a TestCase should not result due to brokenness in a dependency; test failures should only indicate
brokenness in the class under test. This makes everything much easier to debug. As of March 2013, most of Elgg still
assumes and uses global state, and that has made Elgg and Elgg plugins historically very difficult to test. Fortunately
we are moving in the opposite direction now, and a lot of work in Elgg 1.9 has gone into refactoring core components
to be more dependency injectable. We are already reaping the benefits from that effort.

Behavior-Driven Development

For us this means we name tests for features rather than methods. When you test for features, you are encouraged to
write fewer, smaller, logical tests. When a test fails, we can know exactly what feature is compromised. Furthermore,
when naming your tests for features, the list of tests provides documentation on what features the system supports. Do-
cumentation is something that is typically very troublesome to keep up to date, but when documentation and verification
are one and the same, it becomes very easy to keep the documentation up to date.

Consider these two test methods:
• testRegister()

• testCanRegisterFilesAsActionHandlers()

From just looking at the names, testRegister tells you that the class under test probably has a method named register.
If this test passes, it presumably verifies that it is behaving correctly, but doesn’t tell you what correct behavior entails,
or what the original author of the test was intending to verify. If that method has multiple correct uses that you need
to test for, this terse naming convention also encourages you to write a very long test which tests for all conditions and
features of said method. Test failure could be caused by any one of those uses being compromised, and it will take more
time to figure out where the true problem lies.

On the other hand, testCanRegisterFilesAsActionHandlers tells you that there are these things called „actions“
that need to be „handled“ and that files can be registered as valid handlers for actions. This introduces newcomers to
project terminology and communicates clearly the intent of the test to those already familiar with the terminology.

For a good example of what we’re looking for, check out /tests/phpunit/Elgg/ViewServiceTest.php

3.6.10 Core tasks

Certain tasks surrounding Elgg are reserved for the core developer as they require special permissions. The guides
below show the workflow for these actions.

Moving a plugin to its own repository

Contents

• Plugin extraction steps

– Move the code to its own repository

– Dependencies

– Commit the code

3.6. Contributor Guides 303

Elgg Documentation, Release master

– Packagist

– Tag a release

– Translations

• Elgg core cleanup

– Remove the plugin

– Translations

– Bundled

– Composer

– Documentation

Plugin extraction steps

Move the code to its own repository

Follow the GitHub guide Splitting a subfolder out into a new repository. This will make sure that the commit history
is preserved.

Dependencies

If the plugin has dependencies on any external libraries, make sure these dependencies are managed. For example if a
PHP library is required which comes bundled with Elgg core, make sure to add it to the composer.json of this plugin
as you can’t rely on Elgg core keeping the library.

Commit the code

During the GitHub guide a new repository is created for the plugin you’re trying to move.

Since an attemp was already made to extract some of the plugins to their own repository maybe the repository already
exists.

If the repository didn’t exist for the plugin, make sure you create it under the Elgg organisation.

If the repository already exists, the best way to update the code would be by a Pull Request. This will however probably
fail because of a difference in how the repository was first created (as discussed in this GitHub issue).

The initial repositories where created with

git subtree split

and the guide calls for

git filter-branch --prune-empty --subdirectory-filter

This will leave a difference in the commits which GitHub is unable to resolve. In that case you’ll have to force push the
changes to the existing Elgg plugin repository.

304 Kapitel 3. Continue Reading

https://help.github.com/articles/splitting-a-subfolder-out-into-a-new-repository/
https://github.com/Elgg
https://github.com/Elgg/Elgg/issues/9419#issuecomment-237864270

Elgg Documentation, Release master

Warnung: Since this will override all the history in the plugin repository, make sure you know this is what you
want to do.

Packagist

Make sure the composer.json of the plugin contains all the relevant information. Here is an example:

{
"name": "elgg/<name of the repository>",
"description": "<a description of the plugin>",
"type": "elgg-plugin",
"keywords": ["elgg", "plugin"],
"license": "GPL-2.0-only",
"support": {

"source": "https://github.com/elgg/<name of the repository>",
"issues": "https://github.com/elgg/<name of the repository>/issues"

},
"conflict": {

"elgg/elgg": "< <minimal Elgg required version>"
}

}

The conflict rule is there to help prevent the installation of this plugin in an unsupported Elgg version.

Add the repository to Packagist, for the existing repositories this was already done. Make sure Packagist is updated
correctly with all the commits.

Tag a release

In order for Composer to be able to cache the plugin for faster installation, a release has to be made on the reposito-
ry. Probably the first version that needs to be tagged is the same version as mentioned in the elgg-plugin.php or
composer.json. After this development can begin, following the Semver versioning scheme.

Translations

If the translations for the plugin need to be managed by Transifex, add the plugin to Transifex.

Elgg core cleanup

Now that the plugin has been moved to it’s own repository, it’s time to make a Pull Request on Elgg core to remove the
original code.

3.6. Contributor Guides 305

https://packagist.org/
https://packagist.org/
http://semver.org/
https://app.transifex.com/elgg/
https://app.transifex.com/elgg/

Elgg Documentation, Release master

Remove the plugin

• Delete the mod folder for the plugin

• Search for the plugin name in core to find any references which also need to be removed (eg. old docs, special
tests, etc.)

Translations

Since the plugin no longer is part of Elgg core, make sure the configuration of Transifex no longer contains the plugin.

Bundled

If the plugin still comes bundled with the release of a new Elgg version, make sure to add the plugin to the composer.
json.

Composer

Check the core composer dependencies if requirements that were specific for the removed plugin can also be removed
in the core dependencies.

Documentation

Add a mention in the Upgrade Notes documentation that the plugin was removed from Elgg core.

Release Process Workflow

Release a new version of Elgg.

This is the process the core team follows for making a new Elgg release. We have published this information in the
spirit of openness, and to streamline onboarding of new team members.

Contents

• Requirements

• Merge commits up from lower branches

– For each branch

• Preparation for first new stable minor/major release

– Preparation for a new major release

• Prepare the release

– Make a PR with translation updates

– Make the release PR

• Tag the release

– Additional actions for the first new minor / major

306 Kapitel 3. Continue Reading

https://app.transifex.com/elgg/

Elgg Documentation, Release master

– Additional action for the first new major

• Update the website

– Update elgg.org download page

– Update elgg.org

• Make the announcement

Requirements

• SSH access to elgg.org

• Commit access to http://github.com/Elgg/Elgg

• Admin access to https://elgg.org/

• Access to Twitter account

• Node.js and Yarn installed

• Sphinx installed (easy_install sphinx && easy_install sphinx-intl)

• Transifex client installed (easy_install transifex-client)

• Transifex account with access to Elgg project

• Admin access to Read The Docs

• Admin access to Scrutinizer

Merge commits up from lower branches

Determine the LTS branch. We need to merge any new commits there up through the other branches.

For each branch

Check out the branch, make sure it’s up to date, and make a new work branch with the merge. E.g. here we’re merging
1.12 commits into 2.0:

git checkout 2.0
git pull
git checkout -b merge112
git merge 1.12

Bemerkung: If already up-to-date (no commits to merge), we can stop here for this branch.

If there are conflicts, resolve them, git add ., and git merge.

Make a PR for the branch and wait for automated tests and approval by other dev(s).

git push -u my_fork merge112

Once merged, we would repeat the process to merge 2.0 commits into 2.1.

3.6. Contributor Guides 307

http://github.com/Elgg/Elgg
https://elgg.org/
https://twitter.com/elgg
https://readthedocs.org/projects/elgg/
https://scrutinizer-ci.com/g/Elgg/Elgg/

Elgg Documentation, Release master

Preparation for first new stable minor/major release

• Update the Support policy to include the new minor/major release date and fill in the blanks for the previous
release.

• Update the README.md file badges to point to the correct new release numbers.

Preparation for a new major release

• Change the Transifex configuration to push translations to a different project

Prepare the release

Make a PR with translation updates

Install the prerequisites:

easy_install transifex-client
easy_install sphinx
easy_install sphinx-intl

Bemerkung: On Windows you need to run these command in a console with admin privileges

Run the languages.php script. For example, to pull translations:

php .scripts/languages.php 3.x

Make a pull request with the new translations and have it merged before the next step.

Next, manually browse to the /admin/site_settings page and verify it loads. If it does not, a language file from
Transifex may have a PHP syntax error. Fix the error and amend your commit with the new file:

only necessary if you fixed a language file
git add .
git commit --amend

Make the release PR

Bring your local git clone up to date.

Merge latest commits up from lowest supported branch.

Visit https://github.com/Elgg/Elgg/compare/<new>...<old> and submit the PR if there is anything that
needs to be merged up.

Bemerkung: On Windows you need to run these command in a console with admin privileges

Run the release.php script. For example, to release 1.12.5:

308 Kapitel 3. Continue Reading

Elgg Documentation, Release master

git checkout 1.12
php .scripts/release.php 1.12.5

This creates a release-1.12.5 branch in your local repo.

Next, submit a pull request via GitHub for automated testing and approval by another developer:

git push your-remote-fork release-1.12.5

Tag the release

Once approved and merged, create a release on GitHub:

• Goto releases

• Click ‚Draft a new release‘

• Enter the version

• Select the correct branch (eg 1.12 for a 1.12.x release, 2.3 for a 2.3.x release, etc)

• Set the release title as ‚Elgg {version}‘

• Paste the CHANGELOG.md part related to this release in the description

Bemerkung: GitHub is setup to listen to the creation of a new release to automaticly make the ZIP release of Elgg.
After the release was created wait a few minutes and the ZIP should be added to the release.

Some final administration

• Mark GitHub release milestones as completed

• Move unresolved tickets in released milestones to later milestones

Additional actions for the first new minor / major

• Make a new branch on GitHub (for example 3.3)

• Set the new branch as the default branch (optional, but suggested for stable releases)

• Configure Read The Docs to build the new branch (not the new tag)

• Configure Scrutinizer to build the new branch

• Check the Elgg starter project for potential requirement / config changes in the composer.json

• Add the new minor / major version to the Elgg/community_plugins repository so developers can upload
plugins for the new release

• Update the build configuration for the Elgg reference (on the Elgg.org webserver)

in the file /root/elgg-scripts/cron/make_reference
set the main build branch to the correct branch
make sure if you change the main build branch to add the previous branch to the other␣
→˓branches to build
the new configuration will be applied by the daily cron

3.6. Contributor Guides 309

https://readthedocs.org/projects/elgg/
https://scrutinizer-ci.com/g/Elgg/Elgg/
http://reference.elgg.org/

Elgg Documentation, Release master

Additional action for the first new major

• On GitHub add a branch protection rule (for example 4.*)

• Configure Scrutinizer to track the new major branches (for example 4.*)

Update the website

Update elgg.org download page

• Clone https://github.com/Elgg/community

• Add the new version to classes/Elgg/Releases.php

• Commit and push the changes

• Download the ZIP release from GitHub

• Upload the ZIP to the elgg.org webserver

sudo mv ~/elgg-x.y.z.zip /var/www/www.elgg.org/download
sudo chown deploy:deploy /var/www/www.elgg.org/download/elgg-x.y.z.zip

Update elgg.org

• Clone https://github.com/Elgg/www.elgg.org

• (optional) Change the required Elgg version in composer.json

• Update vendors

composer update

• Commit and push the changes

• Pull to live site

sudo -su deploy
cd /var/www/www.elgg.org
git pull
composer install --no-dev

• Go to community admin panel

• Flush APC cache

• Run upgrade

310 Kapitel 3. Continue Reading

https://github.com/Elgg/community
https://github.com/Elgg/www.elgg.org

Elgg Documentation, Release master

Make the announcement

This should be the very last thing you do.

1. Open https://github.com/Elgg/Elgg/blob/<tag>/CHANGELOG.md and copy the contents for that version

2. Sign in at https://elgg.org/blog and compose a new blog with a summary

3. Copy in the CHANGELOG contents, clear formatting, and manually remove the SVG anchors

4. Add tags release and elgg2.x where x is whatever branch is being released

5. Tweet from the elgg Twitter account

3.7 Appendix

Miscellaneous information about the project.

3.7.1 Upgrade Notes

If you are upgrading your plugins and website to a new major Elgg releases, the following noteworthy changes apply.

See the administrator guides for how to upgrade a live site.

From 5.x to 6.0

Contents

• Databases

• ES Modules

• Composer

• Annotations

• Entity Icons

• Headings

• CSS and HTML structure changes

• Changes in functions

• Miscellaneous API changes

• Removed Config values

3.7. Appendix 311

https://elgg.org/blog
https://twitter.com/elgg

Elgg Documentation, Release master

Databases

DB Requirements

• The minimal MySQL version is now 8.0

• The minimal MariaDB version is now 10.6

Deleted state

Entities can now be marked as deleted in the database. This allows entities to be restored from the database when
deletion was done too soon.

Bemerkung: Because of changes to ElggEntity::delete() the working of ElggFile::delete() was changed.
It was possible to symlink a file to a different location (through other ways then Elgg) and when deleting the ElggFile
is was possible to only delete the symlink and not the target file. This was changed and ElggFile::delete() will
now always delete both the symlink and the target file.

Siehe auch:
Check the database documentation or the Restore capability documentation for more information.

ES Modules

We no longer use RequireJS for inclusion of AMD JavaScript modules. Instead we now rely on the native use of
ECMAScript modules. All modules can be referenced under the same name as an importable module.

Related functions changes

• elgg_define_js() this function has been removed. You might need elgg_register_esm() as a replacement.

• elgg_require_js() this function has been removed. You might need elgg_import_esm() as a replacement.

• elgg_unrequire_js() this function has been removed

The event ‚config‘, ‚amd‘ has been removed. The event ‚elgg.data‘, ‚site‘ has been removed. You can switch to the
‚elgg.data‘, ‚page‘ event.

Bemerkung: With the switch to ECMAScript modules we can no longer add Sub-Resource Integrity checks to the
imported modules.

Bemerkung: With the switch to ECMAScript modules we temporarily dropped Javascript testing features. This will
be added in the future.

312 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Composer

PHP Requirements

The minimal PHP version is now 8.1. Also the intl module is now required to be enabled.

PHPUnit

Elgg now uses PHPUnit 10.5. You might need to update your tests.

Annotations

Due to a naming conflict in the default join alias between the annotations and metadata table, the default join alias
for the annotations table has been changed from n_table to a_table.

If your code uses very specific clauses (select, where, order_by, etc.) you need to update your code. If you use the
\Elgg\Database\QueryBuilder for your query parts you should be ok.

Enabled column

The enabled column for annotations has been removed. An annotation is no longer enabled or disabled. You can no
longer perform the enable and disable API calls on annotations. Other related API functions have been removed.

Entity Icons

Cropping coordinates

The cropping coordinates of the default icon (icon) are now stored in a uniform way, same as those of the other icon
types. The metadata x1, x2, y1 and y2 no longer exist. Use the new \ElggEntity function getIconCoordinates().

Icontime

The metadata icontime has been removed from the database. This was an unreliable way to check if an icon was
uploaded. This was only stored for the icon type icon.

A reliable way to check if an icon was uploaded is to use the \ElggEntity::hasIcon() function.

Headings

The use of headings (h1, h2, h3) have been revisited throughout the entire codebase to make sure they are used when
appropriate and that they also are used in the correct order. You can read more about the intended usage in Accessibility.

Most notable changes are the following:

• H1 is always the page title (and no longer the logo / site name)

• Modules (info, sidebar, widgets) use the H2 heading

• H3 headings on entity / relationship / annotation summary titles have been replaced by a regular text element

3.7. Appendix 313

Elgg Documentation, Release master

CSS and HTML structure changes

The HTML structure of pages have been changed. Entity summaries and full view entity pages have been wrap-
ped in an article element. Sidebar elements now use the aside html element. Modules (like widgets of info-
modules) now use a section element instead of a div. Duplicate css classes on the same element like elgg-body
and elgg-layout-body have been removed.

Elgg provided some helper classes for creating a grid layout (like elgg-grid, elgg-col, elgg-row). These helper
classes have been removed. You can do all those things with regular css like display: grid.

Some other styling changes include a new background color for the body, improved styling of breadcrumbs and a more
basic owner block chip.

Changes in functions

Removed lib functions

• elgg_disable_annotations() has been removed

• elgg_enable_annotations() has been removed

• elgg_set_view_location() has been removed

• elgg_strrchr() has been removed

• elgg_strripos() has been removed

• elgg_unrequire_css() has been removed. Use elgg_unregister_external_file('css', $view) as
replacement.

Removed class functions

• \ElggAnnotation->enable()

• \ElggAnnotation->disable()

• \ElggEntity->disableAnnotations()

• \ElggEntity->enableAnnotations()

• \ElggEntity->getTags() use elgg_get_metadata() as an alternative.

Lib functions function parameters

• elgg_get_entity_statistics() now requires an array of $options to be used by
elgg_get_entities().

• elgg_get_simplecache_url() has the second argument ($subview) removed. The full $view name needs
to be provided as the first argument.

314 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Miscellaneous API changes

• The interface \Elgg\EntityIcon has been removed. Implemented functions in \ElggEntity have been moved
to \Elgg\Traits\Entity\Icons

• View names from a ‚css‘ or ‚js‘ view folder now always need to be referenced by their full view name (previously
is was possible to omit the first folder if it was ‚css‘ or ‚js‘)

Removed Config values

• system_cache_loaded

From 5.0 to 5.1

Contents

• Changes in the DOM structure

• Deprecated Views

• Deprecated Routes

Changes in the DOM structure

In order to improve accessibility the HTML DOM structure has been changed slightly. Some sections of the page have
been changed from a div to header, main or footer. The classes or place in the DOM has not been changed.

Deprecated Views

• page/elements/<section>/after is deprecated: Extend the correct page/elements/<section>

• page/elements/<section>/before is deprecated: Prepend the correct page/elements/<section>

• resources/comments/edit is deprecated: This resource is no longer in use

Deprecated Routes

• edit:object:comment is deprecated: Editing comments uses an inline form

From 4.x to 5.0

Contents

• CKEditor

• Composer

• Events and Hooks

3.7. Appendix 315

Elgg Documentation, Release master

• Private Settings

• Breadcrumbs integrated into menu system

• Upgrades

• Session

• Gatekeepers

• Files plugin

• Embed plugin

• Javascript

• Exceptions

• ElggRiverItem

• Metadata options in getter functions

• Changes in functions

CKEditor

The editor has been updated to version 5. This brings some new features (like mentions and images in content) but
also impacts existing plugins. Most notable are The Wire (which now also has mention support) and the removal of the
Embed plugin.

The related ‚longtext‘ menu is no longer available.

Composer

PHP Requirements

The minimal PHP version is now 8.0.

Faker

The faker library is no longer maintained by fzaninotto so we switched to a fork which is maintained by FakerPHP.

Events and Hooks

These two similar concepts have been merged and from now on we will only refer to events. The public service hooks
no longer exists. All hooks can now be registered in the events section of your plugin. If you use hook callbacks that
expect a type hinted ElggHook argument you will need to update this to ElggEvent.

316 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Create event

The create, <object|group|user|site> events can no longer be used to prevent the creation of the entity. Use
create:before if you wish to prevent the creation.

Private Settings

The concept of private settings has been removed from the system. All private settings have been copied to metadata.
All related functions have been removed.

Breadcrumbs integrated into menu system

Helper functions for the breadcrumb menu have been changed to use elgg_register_menu_item() for adding items
to the breadcrumb menu. Breadcrumb related events have been removed in favor of the regular menu events.

Upgrades

Async or system upgrades are no longer classes that implement interfaces but extend abstract classes. Update your
upgrades to extend the correct classes. The reason for this change is to be able to access the ElggUpgrade entity from
the Batch that runs a part of the upgrade. You can access the upgrade by calling $this->getUpgrade().

Session

If you use the session service directly (or via elgg_get_session()) you might need to update your code. Various
functions of this class have been moved to the elgg()->session_manager service.

Gatekeepers

The PageOwnerCanEditGatekeeper middleware now requires a pageowner to be set. This gatekeeper now also re-
quires a logged in user at all times.

Files plugin

Files uploaded using the file plugin are no longer stored with the owner but with the file entity. File icons have also
been changed. Icon images are only available for image file types. Icon sizes have been changed to use the default icon
sizes.

Embed plugin

The embed plugin has been removed.

3.7. Appendix 317

Elgg Documentation, Release master

Javascript

Hooks system

The javascript hook functions have been moved to an AMD module. If you used javascript hooks than you need to
update your code to use the elgg/hook module. The concept of ‚instant hooks‘ is no longer present in the system.

The 'init', 'system' event is no longer triggered in javascript.

Removed functions

• elgg.is_in_object_array

• elgg.is_instant_hook

• elgg.is_triggered_hook

• elgg.push_to_object_array

• elgg.register_hook_handler use the register function provide by the elgg\hooks module

• elgg.register_instant_hook

• elgg.set_triggered_hook

• elgg.trigger_hook use the trigger function provided by the elgg\hooks module

Exceptions

The uses of exceptions in Elgg has been revisited. The \Elgg\Exceptions\InvalidParameterException
has been removed and replaced with the correct exception. Also the use of the \Elgg\Exceptions\
InvalidArgumentException has been checked. In some cases the exception was replaced by a more appropriate
exception.

ElggRiverItem

It’s no longer allowed to set arbitrary data during runtime on an ElggRiverItem. Since the data was only available
during runtime and not saved to the database this distinction has been removed. When setting an unsupported attribute
an \Elgg\Exceptions\RuntimeException is thrown.

// this is allowed
$item = new \ElggRiverItem();
$item->subject_guid = elgg_get_logged_in_user_guid();

// this is no longer allowed (causes an \Elgg\Exceptions\RuntimeException)
$item = new \ElggRiverItem();
$item->foo = 'bar';

318 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Metadata options in getter functions

Previously there was a magic that would turn the metadata_value string into an array if it contained an ,.

This magic has been removed. You now need to provide the array yourself. Because of this magic it was impossible to
query for a metadata value that contained an ,.

// previously
$options = [

'metadata_name_value_pairs' => [
'some_name' => 'some_value1, some_value2',

],
];

// would result into, thus giving it an OR value
$options = [

'metadata_name_value_pairs' => [
'name' => 'some_name',
'value' => [

'some_value1',
'some_value2',

],
'operand' => '=',

],
];

Changes in functions

The following functions now have their arguments and/or return types type-hinted, this can cause TypeError errors.
Also some class functions have their return value type hinted and you should update your function definition. Some
function might have their arguments changed or the return type has been changed.

Lib functions return types

• elgg_add_admin_notice() now returns null on failure instead of a bool

• elgg_create_river_item() now returns null on failure or an ElggRiverItem

• elgg_delete_metadata() no longer returns null

• elgg_delete_river() no longer returns null

• elgg_deprecated_notice() no longer returns bool

• elgg_generate_entity_url() now returns null on failure instead of a bool

• elgg_generate_url() now returns null on failure instead of a bool

• elgg_get_annotation_from_id() now returns null if no annotation is found instead of a bool

• elgg_get_download_url() now returns null if there is an error

• elgg_get_entity_as_row() now returns null if no entity is found instead of a bool

• elgg_get_entity_dates() no longer returns a bool

• elgg_get_form_footer() no longer returns a bool

3.7. Appendix 319

Elgg Documentation, Release master

• elgg_get_inline_url() now returns null if there is an error

• elgg_get_metadata_from_id() now returns null if no metadata could be found

• elgg_get_page_owner_entity() now returns null if page owner could not be found

• elgg_get_river_item_from_id() now returns null if no river item could be found

• elgg_get_system_cache() now returns an instance of \Elgg\Cache\BaseCache instead of an \ElggCache

• elgg_get_uploaded_file() now returns null if no file could be found or the file was invalid

• elgg_normalize_site_url() now returns null when the url is not a site url

• elgg_register_action() no longer returns a bool

• elgg_register_menu_item() no longer has a return value

• elgg_register_widget_type() no longer has a return value

• elgg_set_form_footer() no longer has a return value

• elgg_trigger_after_event() no longer has a return value

• elgg_unregister_action() no longer has a return value

• elgg_unregister_event_handler() no longer has a return value

• elgg_unregister_notification_event() no longer has a return value

• elgg_unregister_notification_method() no longer has a return value

• elgg_unregister_widget_type() no longer has a return value

• elgg_view_annotation() no longer returns a bool

• elgg_view_comments() no longer returns a bool

• elgg_view_list_item() no longer returns a bool

• elgg_view_relationship() no longer returns a bool

• get_entity() now returns null if no entity is found instead of a bool

• get_user() now returns null if no user is found instead of a bool

• elgg_ws_expose_function() no longer returns a bool

Lib functions function parameters

• blog_prepare_form_vars() now requires a ElggBlog for $blog and a ElggAnnotation for $revision

• bookmarks_prepare_form_vars() now requires a ElggBookmark for $bookmark

• discussion_prepare_form_vars() now requires a ElggDiscussion for $topic

• elgg_add_action_tokens_to_url() now requires a string for $url and a bool for $html_encode

• elgg_can_edit_widget_layout() now requires a string for $context and int for $user_guid

• elgg_clear_event_handlers() now requires a string for $event and $type

• elgg_clear_sticky_form() now requires a string for $context

• elgg_create_widget() now requires an int for $owner_guid and $access_id and a string for $handler
and $context

• elgg_define_js() now requires a string for $name and an array for $config

320 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• elgg_delete_system_cache() now requires a string for $type

• elgg_echo() now requires a string for $message_key and a string for $language

• elgg_enqueue_notification_event() no longer requires a $type

• elgg_entity_exists() now requires a int for $guid

• elgg_entity_gatekeeper() now requires a int for $guid and a string for $type and a string for
$subtype and a bool for $validate_can_edit

• elgg_error_response() now requires a string or array for $message and a string for $forward_url

• elgg_extend_view() now requires a string for $view and $view_extension

• elgg_extract() now requires a bool for $strict

• elgg_format_bytes() now requires an int for $size and $precision

• elgg_format_element() now requires a string for $tag_name and a string for $text

• elgg_format_html() now requires a string for $html

• elgg_generate_action_url() now requires a string for $action and a boolean for $add_csrf_tokens

• elgg_generate_entity_url() now requires a string for $resource and $subresource

• elgg_generate_url() now requires a string for $name

• elgg_get_config() now requires a string for $name

• elgg_get_download_url() now requires a bool for $use_cookie and a string for $expires

• elgg_get_embed_url() now requires a string for $size

• elgg_get_entity_class() now requires a string for $type and a string for $subtype

• elgg_get_excerpt() now requires a string for $text and an int for $num_chars

• elgg_get_friendly_upload_error() now requires an int for $error_code

• elgg_get_friendly_time() now requires an int for $time and $current_time

• elgg_get_friendly_title() now requires a string for $title

• elgg_get_icon_sizes() now requires a string for $entity_type and $entity_subtype

• elgg_get_ini_setting_in_bytes() now requires a string for $setting

• elgg_get_inline_url() now requires a bool for $use_cookie and a string for $expires

• elgg_get_login_url() now requires a string for $fragment

• elgg_get_metadata_from_id() now requires an int for $id

• elgg_get_registration_url() now requires a string for $fragment

• elgg_get_request_data() now requires a bool for $filter_result

• elgg_get_simplecache_url() now requires a string for $view and $sub_view

• elgg_get_sticky_value() now requires a string for $form_name and a string for $variable and a bool
for $filter_result

• elgg_get_sticky_values() now requires a string for $form_name and a bool for $filter_result

• elgg_get_title_input() now requires a string for $variable and a string for $default

• elgg_get_uploaded_file() now requires a string for $input_name and a bool for
$check_for_validity

3.7. Appendix 321

Elgg Documentation, Release master

• elgg_get_uploaded_files() now requires a string for $input_name

• elgg_get_view_extensions() now requires a string for $view

• elgg_get_widget_types() now requires a string or array for $context

• elgg_get_widgets() now requires a int for $owner_guid and string for $context

• elgg_group_tool_gatekeeper() now requires a string for $tool_name and an int for $group_guid

• elgg_html_decode() now requires a string for $string

• elgg_http_add_url_query_elements() now requires a string for $url

• elgg_http_build_url() now requires a bool for $html_encode

• elgg_http_get_signed_url() now requires a string for $url and $expires

• elgg_http_remove_url_query_element() now requires a string for $url and a string for $element

• elgg_http_url_is_identical() now requires a string for $url1 and $url2 and an array for
$ignore_params

• elgg_http_validate_signed_url() now requires a string for $url

• elgg_in_context() now requires a string for $context

• elgg_is_sticky_form() now requires a string for $form_name

• elgg_is_widget_type() now requires a string for $handler and $context

• elgg_language_key_exists() now requires a string for $key and a string for $language

• elgg_list_entities() now requires a callable for $getter and a callable for $viewer

• elgg_list_entities_from_relationship_count() now requires an array for $options

• elgg_list_relationships() now requires an array for $options

• elgg_load_system_cache() now requires a string for $type

• elgg_make_sticky_form() now requires a string for $form_name

• elgg_normalize_site_url() now requires a string for $unsafe_url

• elgg_normalize_url() now requires a string for $url

• elgg_ok_response() now requires a string or array for $message and a string for $forward_url

• elgg_parse_emails() now requires a string for $text

• elgg_push_context() now requires a string for $context

• elgg_redirect_response() now requires a string for $forward_url

• elgg_register_action() now requires a string for $filename

• elgg_register_ajax_view() now requires a string for $view

• elgg_register_error_message() now requires a string|array for $message

• elgg_register_event_handler() now requires a string for $event and $type and an int for $priority
and a callable|string for $callable

• elgg_register_menu_item() now requires a string for $menu_name and a array|\ElggMenuItem for
$menu_item

• elgg_register_notification_event() now requires a string for $object_type and
$object_subtype

322 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• elgg_register_notification_method() now requires a string for $name

• elgg_register_route() now requires a string for $name

• elgg_register_simplecache_view() now requires a string for $view_name

• elgg_register_success_message() now requires a string|array for $message

• elgg_register_title_button() has the first argument ($handler) removed and requires a string for
$name, $entity_type and $entity_subtype

• elgg_register_viewtype_fallback() now requires a string for $viewtype

• elgg_register_widget_type() now only supports an array suitable for \Elgg\
WidgetDefinition::factory() for $options

• elgg_remove_config() now requires a string for $name

• elgg_require_js() now requires a string for $name

• elgg_save_config() now requires a string for $name

• elgg_save_resized_image() now requires a string for $source and a string for $destination

• elgg_save_system_cache() now requires a string for $type

• elgg_set_config() now requires a string for $name

• elgg_set_context() now requires a string for $context

• elgg_set_entity_class() now requires a string for $type and a string for $subtype and a string for
$class

• elgg_set_form_footer() now requires a string for $footer

• elgg_set_http_header() now requires a string for $header and a bool for $replace

• elgg_set_page_owner_guid() now requires a int for $guid

• elgg_set_view_location() now requires a string for $view, $location and $viewtype

• elgg_set_viewtype() now requires a string for $viewtype

• elgg_strip_tags() now requires a string for $string and $allowable_tags

• elgg_trigger_after_event() now requires a string for $event and $type

• elgg_trigger_before_event() now requires a string for $event and $type

• elgg_trigger_deprecated_event() now requires a string for $event, $type, $message and $version

• elgg_trigger_event() now requires a string for $event and $type

• elgg_unregister_ajax_view() now requires a string for $view

• elgg_register_event_handler() now requires a string for $event and $type and a callable|string
for $callable

• elgg_unregister_menu_item() now requires a string for $menu_name and $item_name

• elgg_unregister_notification_event() now requires a string for $object_type and
$object_subtype

• elgg_unregister_notification_method() now requires a string for $name

• elgg_unregister_route() now requires a string for $name

• elgg_unregister_widget_type() now requires a string for $handler

• elgg_unrequire_js() now requires a string for $name

3.7. Appendix 323

Elgg Documentation, Release master

• elgg_validate_invite_code() now requires a string for $username and $code

• elgg_validate_registration_data() now requires a string for $username, $name and $email, a bool
for $multiple and a string|array for $password

• elgg_view() now requires a string for $view and $viewtype and a bool for $recurse

• elgg_view_annotation_list() now requires an array for $annotations

• elgg_view_deprecated() now requires a string for $view, $message and $version

• elgg_view_comments() now requires an ElggEntity for $entity and a bool for $add_comment

• elgg_view_entity_icon() now requires a string for $size and an array for $vars

• elgg_view_entity_list() now requires an array for $entities

• elgg_view_exists() now requires a string for $view and $viewtype and an array for $vars

• elgg_view_form() now requires a string for $action and an array for $form_vars and $body_vars

• elgg_view_icon() now requires a string for $name and an array for $vars

• elgg_view_image_block() now requires a string for $type, $title and $body

• elgg_view_layout() now requires a string for $layout_name and an array for $vars

• elgg_view_message() now requires a string for $type and $body

• elgg_view_page() now requires a string for $title and $page_shell, an array for $vars and a
string|array for $body

• elgg_view_relationship_list() now requires an array for $relationships

• elgg_view_river_item() now requires an ElggRiverItem for $item

• elgg_view_resource() now requires a string for $name

• elgg_view_title() now requires a string for $title

• embed_get_list_options() now requires an array for $options

• embed_list_items() now requires an array for $entities and $vars

• file_prepare_form_vars() now requires an ElggFile for $file

• get_entity() now requires a int for $guid

• get_input() now requires a string for $variable and a bool for $filter_result

• get_user() now requires a int for $guid

• groups_get_group_join_menu_item() now requires an ElggUser for $user

• groups_get_group_leave_menu_item() now requires an ElggUser for $user

• groups_get_invited_groups() now requires an int for $user_guid, a bool for $return_guids and an
array for $options

• notify_user() now requires an int|array for $to and a int for $from and a string for $subject and
$message

• pages_get_navigation_tree() now requires a ElggEntity for $container

• pages_prepare_form_vars() now requires a ElggPage for $page, an int for $parent_guid and a
ElggAnnotation for $revision

• pages_prepare_parent_breadcrumbs() now requires a ElggPage for $page

• set_input() now requires a string for $variable

324 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• thewire_filter() now requires a string for $text

• thewire_get_hashtags() now requires a string for $text

• thewire_save_post() now requires a string for $text and $method and an int for $userid and
$access_id and $parent_guid

• uservalidationbyemail_request_validation() now requires an int for $user_guid

• elgg_ws_expose_function() now requires a string for $method and $description and $call_method,
an array for $parameters and a bool for $require_api_auth and $require_user_auth and $assoc

• elgg_ws_register_service_handler() now requires a string for $handler

• elgg_ws_unexpose_function() now requires a string for $method and a string for
$http_request_method

• elgg_ws_unregister_service_handler() now requires a string for $handler

Class function return types

• \ElggEntity::deleteMetadata() no longer returns null

• \ElggEntity::getOwnedAccessCollection() no longer returns false but nullwhen no access collection
is found

• \ElggEntity::setContainerGUID() no longer returns int

• \ElggFile::getDownloadURL() now returns null if there is an error

• \ElggFile::getInlineURL() now returns null if there is an error

• \ElggMenuItem::factory() no longer returns null if there is an error

• \Elgg\Page::getParentEntity() no longer returns false but null if there is no parent entity found

Class function parameters

• \ElggAccessCollection::getObjectFromID() now requires a int for $id

• \ElggAnnotation::getObjectFromID() now requires a int for $id

• \ElggEntity::addRelationship() now requires an int for $guid_two and a string for $relationship

• \ElggEntity::cache() now requires a bool for $persist

• \ElggEntity::canAnnotate() now requires an int for $user_guid and a string for $annotation_name

• \ElggEntity::canComment() now requires an int for $user_guid

• \ElggEntity::canDelete() now requires an int for $user_guid

• \ElggEntity::canEdit() now requires an int for $user_guid

• \ElggEntity::canWriteToContainer() now requires an int for $user_guid and a string for $type and
$subtype

• \ElggEntity::countAnnotations() now requires a string for $name

• \ElggEntity::countEntitiesFromRelationship() now requires a string for $relationship and a
bool for $inverse_relationship

• \ElggEntity::delete() now requires a bool for $recursive

3.7. Appendix 325

Elgg Documentation, Release master

• \ElggEntity::deleteAnnotations() now requires a string for $name

• \ElggEntity::deleteIcon() now requires a string for $type

• \ElggEntity::deleteMetadata() now requires a string for $name

• \ElggEntity::deleteOwnedAnnotations() now requires a string for $name

• \ElggEntity::disable() now requires a string for $reason and a bool for $recursive

• \ElggEntity::disableAnnotations() now requires a string for $name

• \ElggEntity::enable() now requires a bool for $recursive

• \ElggEntity::enableAnnotations() now requires a string for $name

• \ElggEntity::getAnnotationsAvg() now requires a string for $name

• \ElggEntity::getAnnotationsMax() now requires a string for $name

• \ElggEntity::getAnnotationsSum() now requires a string for $name

• \ElggEntity::getIcon() now requires a string for $size and $type

• \ElggEntity::getIconLastChange() now requires a string for $size and $type

• \ElggEntity::getIconURL() now requires a string or array for $params

• \ElggEntity::getObjectFromID() now requires an int for $id

• \ElggEntity::getOwnedAccessCollections() now requires an array for $options

• \ElggEntity::getOwnedAccessCollection() now requires a string for $subtype

• \ElggEntity::getMetadata() now requires a string for $name

• \ElggEntity::getVolatileData() now requires a string for $name

• \ElggEntity::hasIcon() now requires a string for $size and $type

• \ElggEntity::removeAllRelationships() no longer allows null to be passed to $relationship

• \ElggEntity::removeRelationship() now requires an int for $guid_two and a string for
$relationship

• \ElggEntity::saveIconFromElggFile() now requires a string for $type

• \ElggEntity::saveIconFromLocalFile() now requires a string for $input_name and $type

• \ElggEntity::saveIconFromUploadedFile() now requires a string for $input_name and $type

• \ElggEntity::setContainerGUID() now requires an int for $container_guid

• \ElggEntity::setDisplayName() now requires a string for $display_name

• \ElggEntity::setMetadata() now requires a string for $name and $value_type and a bool for
$multiple

• \ElggEntity::setTempMetadata() now requires a string for $name and a bool for $multiple

• \ElggEntity::setVolatileData() now requires a string for $name

• \ElggEntity::updateLastAction() now requires an int for $posted

• \ElggMetadata::getObjectFromID() now requires a int for $id

• \ElggRelationship::getObjectFromID() now requires a int for $id

• \ElggFile::getDownloadURL() now requires a bool for $use_cookie and a string for $expires

• \ElggFile::getInlineURL() now requires a bool for $use_cookie and a string for $expires

326 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• \ElggGroup::isToolEnabled() now requires a string for $name

• \ElggMenuItem::factory() now requires an array for $options

• \ElggTempFile::getDownloadURL() now requires a bool for $use_cookie and a string for $expires

• \ElggTempFile::getInlineURL() now requires a bool for $use_cookie and a string for $expires

• \Elgg\WebServices\Di\ApiRegistrationService::registerApiMethod() now requires a \Elgg\
WebServices\ApiMethod as the only parameter

Moved classes

• \ElggAutoP has been moved to \Elgg\Views\AutoParagraph

• \ElggCache has been moved to \Elgg\Cache\BaseCache

• \ElggDiskFilestore has been moved to \Elgg\Filesystem\Filestore\DiskFilestore

• \ElggFilestore has been moved to \Elgg\Filesystem\Filestore

• \ElggRewriteTester has been moved to \Elgg\Router\RewriteTester

• \ElggTempDiskFilestore has been moved to \Elgg\Filesystem\Filestore\TempDiskFilestore

• \Elgg\Database\SiteSecret has been moved to \Elgg\Security\SiteSecret

Deprecated APIs

• elgg_clear_plugin_hook_handlers use elgg_clear_event_handlers

• elgg_register_plugin_hook_handler use elgg_register_event_handler

• elgg_trigger_plugin_hook use elgg_trigger_event_results

• elgg_unregister_plugin_hook_handler use elgg_unregister_event_handler

• get_user_by_email use elgg_get_user_by_email

• get_user_by_username use elgg_get_user_by_username

Removed classes

• Elgg\WebServices\ApiKeyForm

• Loggable this interface has been merged into the ElggData class

Removed functions

• blog_prepare_form_vars

• bookmarks_prepare_form_vars

• discussion_prepare_form_vars

• elgg_get_breadcrumbs

• elgg_pop_breadcrumb

• elgg_set_email_transport use _elgg_services()->set('mailer', ...)

3.7. Appendix 327

Elgg Documentation, Release master

• elgg_trigger_deprecated_plugin_hook

• elgg_ws_expose_function use elgg-plugin.php or 'register', 'api_methods' event

• file_prepare_form_vars

• get_user_by_email use elgg_get_user_by_email

• get_user_by_username use elgg_get_user_by_username

• groups_prepare_form_vars

• messages_prepare_form_vars

• pages_prepare_form_vars

• thewire_latest_guid

Removed class functions

• \ElggWidget::saveSettings()

Removed events

• access:collections:addcollection, collection use the create, access_collection sequence

• access:collections:deletecollection, collection use the delete, access_collection se-
quence

• prepare, breadcrumbs use register, menu:breadcrumbs

• widget_settings, <widget_handler>

Removed exceptions

• \Elgg\Exceptions\InvalidParameterException

Constants

• The misspelled REFERER constant has been removed. Use REFERRER instead.

• The REFERRER constant has been changed to a string with the value __elgg_referrer

From 4.2 to 4.3

Contents

• Deprecation of rel=“toggle“ and rel=“popup“

• PAM handlers

• Deprecated APIs

• Deprecated Config values

328 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Deprecation of rel=“toggle“ and rel=“popup“

If you are using rel="toggle" or rel="popup" for showing some hidden content you will need to update your code.
The correct javascript will automatically be loaded if you draw content using output/url (directly or indirectly) and
pass the class elgg-popup or elgg-toggle. If you need popup/toggle features on your own elements, you will need
to set the correct class and require the correct javascript (elgg/popup or elgg/toggle).

PAM handlers

PAM handlers, which handle authentication, have been reworked. The registration now uses a DI service instead of a
static variable in a class.

Because of the rework PAM handlers can now also be invokable classes and Elgg core (including the Webservices
plugin) is using this. If as a developer you unregistered certain PAM handlers please check the new code.

Deprecated APIs

Lib functions

• add_entity_relationship() use \ElggEntity->addRelationship()

• add_translation() use elgg()->translator->addTranslation()

• add_user_to_access_collection() use \ElggAccessCollection->addMember()

• can_edit_access_collection() use \ElggAccessCollection->canEdit()

• check_entity_relationship() use \ElggEntity->hasRelationship() or \
ElggEntity->getRelationship()

• check_rate_limit_exceeded() use elgg_is_authentication_failure_limit_reached()

• create_access_collection() use elgg_create_access_collection()

• current_page_url() use elgg_get_current_url()

• delete_access_collection() use \ElggAccessCollection->delete()

• delete_relationship() use \ElggRelationship->delete()

• elgg_authenticate() use elgg_pam_authenticate()

• elgg_clear_sticky_value()

• elgg_delete_metadata_by_id() use \ElggMetadata->delete()()

• elgg_get_engine_path()

• elgg_get_loaded_external_files() use elgg_get_loaded_external_resources()

• elgg_register_external_view() use elgg_register_ajax_view() and
elgg_register_simplecache_view()

• elgg_unregister_external_view() use elgg_unregister_ajax_view()

• execute_new_password_request() use elgg_save_new_password()

• filter_tags() use elgg_sanitize_input()

• find_active_users() use elgg_get_entities()

• force_user_password_reset() use \ElggUser->setPassword()

3.7. Appendix 329

Elgg Documentation, Release master

• generate_invite_code() use elgg_generate_invite_code()

• generate_random_cleartext_password() use elgg_generate_password()

• get_access_array() use elgg_get_access_array()

• get_access_collection() use elgg_get_access_collection()

• get_current_language() use elgg_get_current_language()

• get_default_access() use elgg_get_default_access()

• get_dir_size()

• get_entity_relationships() use elgg_get_relationships()

• get_entity_statistics() use elgg_get_entity_statistics()

• get_members_of_access_collection() use \ElggAccessCollection->getMembers()

• get_online_users() use elgg_list_entities()

• get_readable_access_level() use elgg_get_readable_access_level()

• get_relationship() use elgg_get_relationship()

• get_write_access_array() use elgg_get_write_access_array()

• has_access_to_entity() use \ElggEnity->hasAccess() or elgg_has_access_to_entity()

• is_email_address() use elgg_is_valid_email()

• log_login_failure() use elgg_register_authentication_failure()

• login() use elgg_login()

• logout() use elgg_logout()

• parse_urls() use elgg_parse_urls()

• register_pam_handler() use elgg_register_pam_handler()

• register_user() use elgg_register_user()

• remove_entity_relationship() use \ElggEntity->removeRelationship()

• remove_entity_relationships() use \ElggEntity->removeAllRelationships()

• remove_user_from_access_collection() use \ElggAccessCollection->removeMember()

• reset_login_failure_count() use elgg_reset_authentication_failures()

• send_new_password_request() use elgg_request_new_password()

• string_to_tag_array() use elgg_string_to_array()

• unregister_pam_handler() use elgg_unregister_pam_handler()

330 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Class functions

• \ElggEntity->deleteRelationships() use \ElggEntity->removeAllRelationships()

• \ElggUser->getFriends() use \ElggUser->getEntitiesFromRelationship()

• \ElggUser->getFriendsObjects() use \ElggUser->getEntitiesFromRelationship()

• \ElggUser->getFriendsOf() use \ElggUser->getEntitiesFromRelationship()

• \ElggUser->isFriend() use \ElggUser->isFriendOf()

Events

• 'annotate', '{$entity->getType()}' use the 'create', 'annotate' event

Hooks

• 'action_gatekeeper:upload_exceeded_msg', 'all'

• 'classes', 'icon' use the 'view_vars', 'output/icon' hook

• 'fail', 'auth'

• 'file:icon:url', 'override' use the 'entity:icon:url', 'object' hook

• 'find_active_users', 'system'

• 'form:values', 'blog'

• 'is_member', 'group' use the 'gatekeeper', 'all' hook

• 'page_owner', 'system' use route definitions

• 'status', 'user' use the 'create', 'object' event

• 'validate', 'input' use the 'sanitize', 'input' hook

Classes

• \ElggPAM use elgg_pam_authenticate()

Notable function parameters

• Passing order_by_metadata or order_by_annotation to elgg_get_entities is deprecated. Use
sort_by instead.

3.7. Appendix 331

Elgg Documentation, Release master

Deprecated Config values

• elgg_settings_file

• path use elgg_get_root_path()

• pluginspath use elgg_get_plugins_path()

• site_guid use elgg_get_site_entity()->guid

• sitedescription use elgg_get_site_entity()->description

• sitename use elgg_get_site_entity()->getDisplayName()

• url use elgg_get_site_url()

From 4.1 to 4.2

Contents

• Stash replaced with Phpfastcache

• Metadata and Annotation boolean values

• System message functions

• Javascript functions

• Security

• Groups

• Deprecated APIs

Stash replaced with Phpfastcache

The internal caching library Stash has been replaced with Phpfastcache. Phpfastcache is better maintained, provides
more cachedrivers and adds more features to the cache implementation. This change should cause no issues on any
existing installation. If you have Memcache or Redis configured in your elgg-config/settings.php you might
need to update your configuration.

Metadata and Annotation boolean values

The database model has been changed to keep boolean values intact between saving and retrieving. Before this change
if you saved a boolean value it would be returned as an integer. Now it will remain a boolean.

Warnung: If you saved boolean values previously they will still be integers in the database (until saved again).

332 Kapitel 3. Continue Reading

https://www.phpfastcache.com/

Elgg Documentation, Release master

System message functions

The functions system_message() and register_error() have been replaced by
elgg_register_success_message() and elgg_register_error_message(). The new functions have the
ability to pass extra options to the system messages registry.

Javascript functions

The Elgg javascript libraries have gotten a massive overhaul. A lot of functions have been deprecated. You can find all
deprecated functions and globals in views/default/core/js/deprecated.js.

System messages

If you use system messages in your javascript, you now should require the elgg/system_messages module.

Security tokens

If you use elgg.security.addToken() in your javascript, you now should require the elgg/security module.

Translations

If you use elgg.echo() in your javascript, you now should require the elgg/i18n module.

UI functions

The user hover menu is no longer initialized from the global ui.js, but requires the javascript on demand from the
icon/user/default view.

ElggUser & ElggEntity

The javascript equivalent of the ElggUser and ElggEntity should no longer be used. The logged in user entity should
no longer be referenced in the elgg.session.user page data. You can find its attributes in elgg.user as an array.

Security

output/url now has added security features to help prevent malicious user generated output. The view supports
$vars['allowed_schemes'] which contains a list of allowed URL schemes. The provided $vars['href'] will be
matched against the allowed list. If the URL doesn’t have an allowed scheme the URL will be prefixed with denied:.

This will help to prevent user input like javascript:alert('just testing'); from being presented to the users.

By default the following schemes are allowed: http, https, ftp, sftp, ssh, file

If you use the pattern elgg_view('output/url', ['text' => 'something', 'href' =>
'javascript:void(0);']) update your code to set href to false.

3.7. Appendix 333

Elgg Documentation, Release master

Groups

The menu name for the tabs on the group members page has been replaced to use the default filter menu logic. Rewrite
your plugin hooks from menu:groups_members to menu:filter:groups/members. Since this is a different menu
the current group entity is now available in the hook parameter filter_entity.

Deprecated APIs

Lib functions

• elgg_view_menu_item() use elgg_view('navigation/menu/elements/item/url', ['item' =>
$myMenuItem])

• register_error() use elgg_register_error_message()

• system_message() use elgg_register_success_message()

From 4.0 to 4.1

Contents

• Entity Capabilities

• Threaded Comments

• Deprecated APIs

Entity Capabilities

A new way of registering entity capabilities has been introduced. The following related functions have been deprecated:

• elgg_register_entity_type() use elgg_entity_enable_capability($type, $subtype,
'searchable')

• elgg_unregister_entity_type() use elgg_entity_disable_capability($type, $subtype,
'searchable')

• get_registered_entity_types() use elgg_entity_types_with_capability('searchable')

• is_registered_entity_type() use elgg_entity_has_capability($type, $subtype,
'searchable')

The config variable registered_entities is no longer available.

The current implemented capabilities are ‚commentable‘, ‚likable‘ and ‚searchable‘.

334 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Threaded Comments

Support for threaded comments has been added. This feature needs to be enable in the site settings. To make this work
changes have been made to comments related JavaScript and CSS. If you use specific styling or have custom features
related to this feature you might need to give it some extra attention.

Deprecated APIs

Lib functions

• elgg_get_version() use elgg_get_release()

• get_user_by_code() use elgg_get_user_by_persistent_token() where you only need to provide the
token, not the hashed token

Plugin hooks

• 'likes:is_likable', '<type>:<subtype>' use $entity->hasCapability('likable')

From 3.x to 4.0

Contents

• Composer

• Javascript

• Notifications

• Split OkResponse, ErrorResponse and RedirectResponse

• Datamodel

• Plugin development

• Plugins

• Type hinted functions

• Change in function parameters

• Renamed hook/event handler callbacks

• Reworked exceptions

• Reworked Traits

• Miscellaneous API changes

• Deprecated APIs

• Removed functions

• Removed views / resources

• Removed hooks / events

• Removed actions

3.7. Appendix 335

Elgg Documentation, Release master

Composer

PHP Requirements

To be compatible with PHP 8 we needed to increase the minimal PHP version to 7.4. PHP versions < 7.4 are already
end-of-life.

Composer project

The root of the composer project is no longer handled as a semi functional plugin. Languages from the languages
directory are nog longer imported, the views from the views directory are no longer registered, the PHP DI services
from the elgg-services.php are no longer registered and the start.php file is no longer included.

If you needed specific modification to your Elgg installation you need to make a plugin and ensure that the plugin is
the latest in the plugin order to allow you to overrule everything you needed to change.

Doctrine DBAL

Elgg replaced v2 with v3 of the doctrine/dbal dependency. On of the most notable changes is that if you work with
QueryBuilders and use the $qb->fetch() function you will no longer get an object, but an array. If you want your
rows to be useable as classes, you can use elgg()->db->getData($qb). Another important change is that if you
provide your own query parameters, you should no longer prefix keys with a colon in the parameters but still do so in
the query.

PHP-DI

This feature has been updated to use the latest version of PHP-DI. Most notable breaking change for Elgg is the need
to change your plugin service definition to use \DI\create() instead of \DI\object().

ZendMail replaced by LaminasMail

Because of the deprecation of the Zend\Mail library and it’s replacement by the Laminas\Mail all references have
been updated.

Removed composer dependencies

• bower-asset/jquery-treeview the related js and css are no longer available in the system

• bower-asset/jquery.imgareaselect the related js and css are no longer available in the system

• npm-asset/formdata-polyfill all modern browser have support, no longer a need for a polyfill

• npm-asset/jquery-form use native FormData functionality

• npm-asset/weakmap-polyfill all modern browser have support, no longer a need for a polyfill

• simpletest/simpletest

336 Kapitel 3. Continue Reading

https://www.zend.com/blog/evolution-zend-framework-laminas-project

Elgg Documentation, Release master

Javascript

AJAX

The following Ajax helper functions have been removed in favor of their counterparts in asynchronous module elgg/
Ajax. * elgg.action() * elgg.get() * elgg.getJSON() * elgg.post()

The ajax function elgg.api has been moved to the executeMethod function in the asynchronous module elgg/
webservices in the webservices plugin. Other elgg.ajax functions and attributes have been removed from the sys-
tem. Also the legacy handling of ajax calls have been removed from the system.

Classes

The javascript logic for automatically booting some javascript for your plugin and registering hooks via the Elgg/
Plugin class has been removed from the system. This functionality was never used by core and hardly seen in plugins.
Use AMD loaded javascript or extend elgg.js for always loaded javascript.

The ElggPriorityList javascript class has been removed from the system.

System Hooks

The AMD modules for elgg/init and elgg/ready have been removed. The init, system hook is still available but
it only makes sense to rely on this hook from non-AMD loaded js libraries. The boot, system and ready, system
triggers have been removed from the system. Replace with init, system for the same effect.

jQuery

The jQuery library has been updated to the latest version (v3.5.x). This is a major update from the version used in Elgg
3.x. For information about what is changed between these release you should take a look at the jQuery website.

jQuery UI

The jQuery UI library has been updated to v1.12.x. The library is no longer loaded in full by default. If you need
to use features from the library you can require them in your own script. For example to be able to use the sortable
functionality do the following:

require('jquery-ui/widgets/sortable');

// or in your own AMD script
define(['jquery-ui/widgets/sortable'], function() {

// use the sortable
});

3.7. Appendix 337

Elgg Documentation, Release master

Miscellaneous JS changes

• The AMD module elgg/widgets no longer returns an object and no longer requires you to call init on the
module

Notifications

Pre Elgg 1.9 notification handling has been removed. Related functions and hooks no longer exist.

Subscriptions

The relationship in the database which stores the subscription method for notifications has been changed from
notifymethod to notify:method.

Multiple Recipients

An ElggEmail now supports multiple recipients in To, Cc and Bcc. The related getter functions like getTo() will now
always return an array.

Settings

A generic storage for notification preferences has been introduced in \ElggUser::setNotificationSetting() and
\ElggUser::getNotificationSettings(), the notification settings now have a ‚purpose‘.

For example group_join can be used to manage the default subscription you get with a group when you join the group.

The Notifications plugin has generic handling of displaying and saving the settings. To display the setting extend the
view notifications/settings/records (plural) with a view which uses notifications/settings/record
(singular).

When requesting notification settings other than the default setting, if the user hasn’t saved a setting yet it’ll fall back
to the default notification settings.

Management of the notification preferences for adding a new users to a friend collection has been removed.

Notification Salutation & Sign-off

To be able to have a more generic salutation and sign-off for outgoing mail notifications we have removed these texts
from various translation strings and moved them to generic translations. This will mean you have to update your trans-
lations to reflect the new text and also check your code for uses of notifications where you provide your own salutation
or sign-off text. You can find out more about this new behaviour in Notifications.

338 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Notifications plugin

The Notifications plugin has been removed. All the features of the plugin are now part of Elgg core. Some pages (like
the group notification settings) have been moved to the correct plugin.

This means that event handlers, hook handlers, actions, views and languages keys have been (re)moved or renamed.

Notification Event Handling

The notification hooks no longer receive the origin parameter.

Site notification

The site notifications plugin now shows the notification subject by default. If a site notification was created with the
factory function SiteNotification::factory() more of the original notification information is stored with the site
notification:

• Notification subject is stored in title

• Notification summary is stored in summary

• Notification body is stored in description

Split OkResponse, ErrorResponse and RedirectResponse

The classes Elgg\Http\ErrorResponse and Elgg\Http\RedirectResponse were extensions of Elgg\Http\
OkReponse this complicated validating responses (for example in hooks). The classes have been split apart to allow
for easier and clearer checks.

All classes now extend Elgg\Http\Response and implement Elgg\Http\ReponseBuilder. The default HTTP
error code when using elgg_error_response() has been changed to return a 400 status.

Datamodel

Schema changes

• The access_id, owner_guid and enabled columns in the metadata table have been removed

• The enabled column in the river table has been removed

• The relationship column in the entity_relationships table now has a max length of 255 (up from 50)

ElggEntity attributes

Setting the type, subtype and enabled attributes of an ElggEntity is no longer possible using the magic setter.
Changing the type is no longer possible, use the correct base class for your entity (eg. ElggObject, ElggGroup or
ElggUser).

To change the subtype use the function setSubtype($subtype)

3.7. Appendix 339

Elgg Documentation, Release master

// this no longer works and throws an \Elgg\Exceptions\InvalidArgumentException
$object = new ElggObject();
$object->subtype = 'my_subtype';

// The correct use is
$object->setSubtype('my_subtype');

To change the enabled state of an entity use the correct functions

// this no longer works and throws an \Elgg\Exceptions\InvalidArgumentException
$object = new ElggObject();
$object->enabled = 'no';

// The correct use is
$object->enable(); // to enable
$object->disable(); // to disable

ElggUser attributes

Setting the admin and banned metadata of an ElggUser is no longer possible using the magic setter.

To change the admin state use the functions makeAdmin() and removeAdmin()

// this no longer works and throws an \Elgg\Exceptions\InvalidArgumentException
$user = new ElggUser()
$user->admin = 'yes';

// The correct use is
$user->makeAdmin(); // to give the admin role
$user->removeAdmin(); // to remove the admin role

To change the banned state use the functions ban() and unban()

// this no longer works and throws an \Elgg\Exceptions\InvalidArgumentException
$user = new ElggUser()
$user->banned = 'yes';

// The correct use is
$user->ban(); // to ban the user
$user->unban(); // to unban the user

Plugin development

Plugin bootstrapping

The following files are no longer included during bootstrapping of a plugin:

• activate.php use PluginBootstrap->activate()

• deactivate.php use PluginBootstrap->deactivate()

• views.php use elgg-plugin.php

340 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• start.php use elgg-plugin.php and/or PluginBootstrap

Plugin Manifest

The plugin manifest file is no longer used. Features of the manifest have been removed or moved to different locations.

It is no longer possible to require a specific php ini setting.

• php version requirement -> composer require

• php extension requirement -> composer require

• plugin conflicts -> composer conflicts

• plugin requirement -> elgg-plugin

• plugin position requirement -> elgg-plugin

• plugin version -> elgg-plugin

• plugin activate on install -> elgg-plugin

• plugin name -> elgg-plugin

• plugin description -> composer.json

• plugin categories -> composer.json

• plugin license -> composer.json

• plugin repo link -> composer.json

• plugin issues link -> composer.json

• plugin homepage link -> composer.json

• plugin authors/contributors -> composer.json

Hookable field configurations

Some plugins had the option to configure entity fields in config. These features have been replaced by a central service
that provides a mechanisme to request a hookable field config for a certain type/subtype.

You can request these configuration using the following code:

$fields = elgg()->fields->get('<entity_type>', '<entity_subtype');

The results will be an array with field configurations usable in elgg_view_field($field)

The following related functionality has been replaced by this new way:

• The config for pages is no longer available in elgg_get_config('pages') use
elgg()->fields->get('object', 'page')

• The config for group is no longer available in elgg_get_config('group') use
elgg()->fields->get('group', 'group')

• The config for profile_fields is no longer available in elgg_get_config('profile_fields') use
elgg()->fields->get('user', 'user')

• Setting the config for pages, group and user:profile via elgg_set_config is no longer possible. Use a
hook callback for fields, <entity_type>:<entity_subtype>.

• The hook profile:fields, group has been replaced by the new hook fields, group:group

3.7. Appendix 341

Elgg Documentation, Release master

• The hook profile:fields, user has been replaced by the new hook fields, user:user

Menus

Instead of registering the _elgg_setup_vertical_menu and _elgg_menu_transform_to_dropdown for menus,
this is replaced by using the menu vars prepare_vertical and prepare_dropdown. Setting them to true will give
you the same effect. This allows for individual control in views when this is required.

The automatic marking as ‚selected‘ of parent menu items of the selected menu item will now always happen for every
menu.

Filter tabs

The preparation of tabs for the filter menu by using the elgg_get_filter_tabs() function and the 'filter_tabs',
'<context>' hook has been removed. You can now use the 'register', 'menu:filter:filter' hook to
add/remove items from the same place.

The all, mine and friends tabs will automaticly generate if routes are available for pages similar to the current
route. For example if the current route is collection:object:blog:all the tabs will be generated for the route
collection:object:blog:owner and collection:object:blog:friends.

Title menu

The title menu will now be populated with the entity menu if the entity is provided to the layout. This is mostly
useful on the detail page of an entity (eg. blog/view). Most of the entries for the entity menu will be added to a
dropdown menu, except the edit menu item (when available) this item will be presented next to the dropdown menu.

echo elgg_view_page('title', [
'content' => elgg_view_entity($entity),
'entity' => $entity, // <= will make sure the entity menu is available in the␣

→˓title menu
]);

Registering tag metadatanames

Because of various limitations of this implementation it has been removed from the system. The following related API
functions have been removed:

• elgg_get_registered_tag_metadata_names()

• elgg_register_tag_metadata_name()

• elgg_unregister_tag_metadata_name()

If you need specific fields to be searchable you need to register them with the related search:fields hooks. The
related tagnames:xxx tag language keys are no longer registered in the system.

The function ElggEntity::getTags() will now return only tag metadata with the name tags by default. If you want
to check extra fields containing tags, you need to request this specifically.

342 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Default widgets

The magic handling the creation of default widgets has been reduced. You now need to register the Elgg\Widgets\
CreateDefaultWidgetsHandler callback to the event when you want default widgets to be created. The configura-
tion default_widget_info is no longer present in the system. Use the get_list, default_widgets hook to get
the value.

You also need to update the data in your get_list, default_widgets hook handler to return event_name (pre-
viously event) and event_type.

Container permissions

The function parameters for ElggEntity::canWriteToContainer() now require a $type and $subtype to be
passed. This is to give more information to the resulting hook in order to be able to determine if a user is allowed write
access to the container.

Plugins

Activity plugin

This plugin received a much needed rewrite. The different pages (all/owner/friends) now have their own resource and
listing views.

Diagnostics Plugin

This plugin has been removed, but the action to generate a report is still available. You can find it on the Information/
Server admin page.

Discussions Plugin

• This plugin no longer adds a tab to the filter menu on the groups pages

• The discussions site menu item is now always present

Search Plugin

The output of search results no longer uses the helper class Elgg\Search\Formatter for the preparation of the result
contents. This logic has been moved entirely into views.

The related functions prepareEntity and getSearchView in the Elgg\Search\Service class have been removed.

The hook search:format, entity has been removed.

3.7. Appendix 343

Elgg Documentation, Release master

Web services Plugin

The Web Services plugin received a complete rewrite, this is mostly related to the internals of the plugin.

Removed classes

• ElggHMACCache has been replaced by _elgg_services()->hmacCacheTable (for internal use only)

• Elgg\Notifications\Event has been replaced by Elgg\Notifications\
SubscriptionNotificationEvent

Removed functions

• create_api_user() has been replaced by _elgg_services()->apiUsersTable->createApiUser()

• create_user_token() has been replaced by _elgg_services()->usersApiSessions->createToken()

• get_api_user() has been replaced by _elgg_services()->apiUsersTable->getApiUser()

• get_standard_api_key_array() use \Elgg\WebServices\ElggApiClient::setApiKeys()

• get_user_tokens() has been replaced by _elgg_services()->usersApiSessions->getUserTokens()

• pam_auth_session()

• remove_api_user() has been replaced by _elgg_services()->apiUsersTable->removeApiUser()

• remove_expired_user_tokens() has been replaced by _elgg_services()->usersApiSessions->removeExpiresTokens()

• remove_user_token() has been replaced by _elgg_services()->usersApiSessions->removeToken()

• send_api_call() use \Elgg\WebServices\ElggApiClient

• send_api_get_call() use \Elgg\WebServices\ElggApiClient

• send_api_post_call() use \Elgg\WebServices\ElggApiClient

• service_handler()

• validate_user_token() has been replaced by _elgg_services()->usersApiSessions->validateToken()

• ws_page_handler()

• ws_rest_handler() has been replaced by \Elgg\WebServices\RestServiceController

Miscellaneous changes

• The config value for servicehandler has been removed

• In certain edge cases the default value of an API parameter will not be applied

344 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Type hinted functions

The following functions now have their arguments type-hinted, this can cause TypeError errors. Also some class
functions have their return value type hinted and you should update your function definition.

Class function parameters

• ElggEntity::setLatLong() now requires a float for $lat and $long

• ElggUser::setNotificationSetting() now requires a string for $method and a bool for $enabled

• Elgg\Database\Seeds\Seed::__construct() now requires an int for $limit

• Elgg\Http\ErrorResponse::__construct() now requires an int for $status_code

• Elgg\Http\OkResponse::__construct() now requires an int for $status_code

• Elgg\Http\RedirectResponse::__construct() now requires an int for $status_code

• Elgg\I18n\Translator::getInstalledTranslations() now requires a bool for
$calculate_completeness

• SiteNotification::setActor() now requires an ElggEntity for $entity

• SiteNotification::setURL() now requires a string for $url

• SiteNotification::setRead() now requires a bool for $read

Class function return type

• Elgg\Upgrade\Batch::getVersion() now requires an int return value

• Elgg\Upgrade\Batch::shouldBeSkipped() now requires an bool return value

• Elgg\Upgrade\Batch::needsIncrementOffset() now requires an bool return value

• Elgg\Upgrade\Batch::countItems() now requires an int return value

• Elgg\Upgrade\Batch::run() now requires an Elgg\Upgrade\Result return value

Lib function parameters

• add_user_to_access_collection() now requires an int for $user_guid and $collection_id

• can_edit_access_collection() now requires an int for $collection_id and $user_guid

• create_access_collection() now requires an string for $name and int for $owner_guid

• delete_access_collection() now requires an int for $collection_id

• elgg_action_exists() now requires a string for $action

• elgg_add_admin_notice() now requires a string for $id and $message

• elgg_admin_notice_exists() now requires a string for $id

• elgg_annotation_exists() now requires a int for $entity_guid, a string for $name and int for
$owner_guid

• elgg_delete_admin_notice() now requires a string for $id

• elgg_delete_annotation_by_id() now requires a int for $id

3.7. Appendix 345

Elgg Documentation, Release master

• elgg_deprecated_notice() now requires a string for $msg and $dep_version

• elgg_error_response() now requires an int for $status_code

• elgg_get_access_collections() now requires an array for $options

• elgg_get_annotation_from_id() now requires an int for $id

• elgg_get_subscriptions_for_container() now requires an int for $container_guid

• elgg_get_plugin_from_id() now requires a string for $plugin_id

• elgg_get_plugin_setting() now requires a string for $name and $plugin_id

• elgg_get_plugin_user_setting() now requires a string for $name and $plugin_id and int for
$user_guid

• elgg_get_plugins() now requires a string for $status

• elgg_get_river_item_from_id() now requires a int for $id

• elgg_list_annotations() now requires an array for $options

• elgg_ok_response() now requires an int for $status_code

• elgg_plugin_exists() now requires a string for $plugin_id

• elgg_redirect_response() now requires an int for $status_code

• elgg_register_action() now requires a string for $action and $access

• elgg_send_email() now requires an \Elgg\Email for $email

• elgg_set_plugin_user_setting() now requires a string for $name and $plugin_id and int for
$user_guid

• elgg_unregister_action() now requires a string for $action

• get_access_array() now requires an int for $user_guid

• get_access_collection() now requires an int for $collection_id

• get_entity_statistics() now requires an int for $owner_guid

• get_members_of_access_collection() now requires an int for $collection_id and bool for
$guids_only

• get_readable_access_level() now requires an int for $entity_access_id

• get_write_access_array() now requires an int for $user_guid and bool for $flush

• has_access_to_entity() now requires an ElggEntity for $entity and ElggUser for $user

• remove_user_from_access_collection() now requires an int for $user_guid and $collection_id

• system_log_get_log() now requires an array for $options

• messageboard_add() now requires an ElggUser, ElggUser, string and an int

• elgg_register_external_file() now requires all arguments to be of the type string

• elgg_unregister_external_file() now requires all arguments to be of the type string

• elgg_load_external_file() now requires all arguments to be of the type string

• elgg_get_loaded_external_files() now requires all arguments to be of the type string

346 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Change in function parameters

Class functions

• Elgg\Http\ResponseBuilder::setStatusCode() no longer has a default value

• ElggEntity::canWriteToContainer() no longer has a default value for $type and $subtype but these are
required

Lib functions

• elgg_get_page_owner_guid() no longer accepts $guid as a parameter

• get_access_array() no longer accepts $flush as a parameter

• elgg_register_external_file() no longer accepts $priority as a parameter

Renamed hook/event handler callbacks

Special attention is required if you unregister the callbacks in your plugins as you might need to update your code.

Core

• access_friends_acl_get_name() changed to Elgg\Friends\AclNameHandler::class

• access_friends_acl_add_friend() changed to Elgg\Friends\AddToAclHandler::class

• access_friends_acl_create() changed to Elgg\Friends\CreateAclHandler::class

• access_friends_acl_remove_friend() changed to Elgg\Friends\RemoveFromAclHandler::class

• _elgg_add_admin_widgets() changed to Elgg\Widgets\CreateAdminWidgetsHandler::class

• _elgg_admin_check_admin_validation() changed to Elgg\Users\Validation::checkAdminValidation()

• _elgg_admin_header_menu() changed to Elgg\Menus\AdminHeader::register() and Elgg\Menus\
AdminHeader::registerMaintenance()

• _elgg_admin_footer_menu() changed to Elgg\Menus\AdminFooter::registerHelpResources()

• _elgg_admin_notify_admins_pending_user_validation() changed to Elgg\Users\
Validation::notifyAdminsAboutPendingUsers()

• _elgg_admin_page_menu() changed to Elgg\Menus\Page::registerAdminAdminister() and Elgg\
Menus\Page::registerAdminConfigure() and Elgg\Menus\Page::registerAdminInformation()

• _elgg_admin_page_menu_plugin_settings() changed to Elgg\Menus\
Page::registerAdminPluginSettings()

• _elgg_admin_prepare_admin_notification_make_admin() changed to Elgg\Notifications\
MakeAdminUserEventHandler

• _elgg_admin_prepare_admin_notification_remove_admin() changed to Elgg\Notifications\
RemoveAdminUserEventHandler

• _elgg_admin_prepare_user_notification_make_admin() changed to Elgg\Notifications\
MakeAdminUserEventHandler

3.7. Appendix 347

Elgg Documentation, Release master

• _elgg_admin_prepare_user_notification_remove_admin() changed to Elgg\Notifications\
RemoveAdminUserEventHandler

• _elgg_admin_save_notification_setting() changed to Elgg\Users\
Settings::setAdminValidationNotification()

• _elgg_admin_set_registration_forward_url() changed to Elgg\Users\
Validation::setRegistrationForwardUrl()

• _elgg_admin_user_unvalidated_bulk_menu() changed to Elgg\Menus\
UserUnvalidatedBulk::registerActions()

• _elgg_admin_user_validation_login_attempt() changed to Elgg\Users\
Validation::preventUserLogin()

• _elgg_admin_user_validation_notification() changed to Elgg\Users\
Validation::notifyUserAfterValidation()

• _elgg_admin_upgrades_menu() changed to Elgg\Menus\Filter::registerAdminUpgrades()

• _elgg_cache_init() actions combined in Elgg\Application\SystemEventHandlers::ready()

• _elgg_clear_caches() changed to Elgg\Cache\EventHandlers::clear()

• _elgg_comments_access_sync() changed to Elgg\Comments\SyncContainerAccessHandler::class

• _elgg_comments_container_permissions_override() changed to Elgg\Comments\
ContainerPermissionsHandler::class

• _elgg_comments_permissions_override() changed to Elgg\Comments\
EditPermissionsHandler::class

• _elgg_comments_prepare_content_owner_notification() changed to Elgg\Notifications\
CreateCommentEventHandler

• _elgg_comments_prepare_notification() changed to Elgg\Notifications\
CreateCommentEventHandler

• _elgg_comments_social_menu_setup() changed to Elgg\Menus\Social::registerComments()

• _elgg_create_default_widgets() changed to Elgg\Widgets\CreateDefaultWidgetsHandler::class

• _elgg_create_notice_of_pending_upgrade() changed to Elgg\Upgrade\
CreateAdminNoticeHandler::class

• _elgg_db_register_seeds() changed to Elgg\Database\RegisterSeedsHandler::class

• _elgg_disable_caches() changed to Elgg\Cache\EventHandlers::disable()

• _elgg_default_widgets_permissions_override() changed to Elgg\Widgets\
DefaultWidgetsContainerPermissionsHandler::class

• _elgg_disable_password_autocomplete() changed to Elgg\Input\
DisablePasswordAutocompleteHandler::class

• _elgg_enable_caches() changed to Elgg\Cache\EventHandlers::enable()

• _elgg_filestore_move_icons() changed to Elgg\Icons\MoveIconsOnOwnerChangeHandler::class

• _elgg_filestore_touch_icons() changed to Elgg\Icons\TouchIconsOnAccessChangeHandler::class

• _elgg_head_manifest() changed to Elgg\Views\AddManifestLinkHandler::class

• _elgg_annotations_default_menu_items() changed to Elgg\Menus\
Annotation::registerDelete()

• _elgg_walled_garden_menu() changed to Elgg\Menus\WalledGarden::registerHome()

348 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• _elgg_site_menu_init() changed to Elgg\Menus\Site::registerAdminConfiguredItems()

• _elgg_site_menu_setup() changed to Elgg\Menus\Site::reorderItems()

• _elgg_entity_menu_setup() changed to Elgg\Menus\Entity::registerEdit() and Elgg\Menus\
Entity::registerDelete()

• _elgg_entity_navigation_menu_setup() changed to Elgg\Menus\EntityNavigation::registerPreviousNext()

• _elgg_enqueue_notification_event() changed to Elgg\Notifications\
EnqueueEventHandler::class

• _elgg_groups_container_override() changed to Elgg\Groups\MemberPermissionsHandler::class

• _elgg_groups_comment_permissions_override() changed to Elgg\Comments\
GroupMemberPermissionsHandler::class

• _elgg_htmlawed_filter_tags() changed to Elgg\Input\ValidateInputHandler::class

• _elgg_invalidate_caches() changed to Elgg\Cache\EventHandlers::invalidate()

• _elgg_widget_menu_setup() changed to Elgg\Menus\Widget::registerEdit() and Elgg\Menus\
Widget::registerDelete()

• _elgg_login_menu_setup() changed to Elgg\Menus\Login::registerRegistration() and Elgg\
Menus\Widget::registerResetPassword()

• _elgg_nav_public_pages() changed to Elgg\WalledGarden\ExtendPublicPagesHandler::class

• _elgg_notifications_cron() changed to Elgg\Notifications\ProcessQueueCronHandler::class

• _elgg_notifications_smtp_default_message_id_header() changed to Elgg\Email\
DefaultMessageIdHeaderHandler::class

• _elgg_notifications_smtp_thread_headers() changed to Elgg\Email\
ThreadHeadersHandler::class

• _elgg_rebuild_public_container() changed to Elgg\Cache\EventHandlers::rebuildPublicContainer()

• _elgg_river_update_object_last_action() changed to Elgg\River\
UpdateLastActionHandler::class

• _elgg_rss_menu_setup() changed to Elgg\Menus\Footer::registerRSS()

• _elgg_plugin_entity_menu_setup() changed to Elgg\Menus\Entity::registerPlugin()

• _elgg_purge_caches() changed to Elgg\Cache\EventHandlers::purge()

• _elgg_river_menu_setup() changed to Elgg\Menus\River::registerDelete()

• _elgg_save_notification_user_settings() changed to Elgg\Notifications\
SaveUserSettingsHandler::class

• _elgg_session_cleanup_persistent_login() changed to Elgg\Users\
CleanupPersistentLoginHandler::class

• _elgg_set_lightbox_config() changed to Elgg\Javascript\SetLightboxConfigHandler::class

• _elgg_set_user_default_access() changed to Elgg\Users\Settings::setDefaultAccess()

• _elgg_set_user_email() changed to Elgg\Users\Settings::setEmail()

• _elgg_set_user_password() changed to Elgg\Users\Settings::setPassword()

• _elgg_set_user_language() changed to Elgg\Users\Settings::setLanguage()

• _elgg_set_user_name() changed to Elgg\Users\Settings::setName()

3.7. Appendix 349

Elgg Documentation, Release master

• _elgg_set_user_username() changed to Elgg\Users\Settings::setUsername()

• _elgg_send_email_notification() changed to Elgg\Notifications\SendEmailHandler::class

• _elgg_upgrade_completed() changed to Elgg\Upgrade\UpgradeCompletedAdminNoticeHandler::class

• _elgg_upgrade_entity_menu() changed to Elgg\Menus\Entity::registerUpgrade()

• _elgg_user_ban_notification() changed to Elgg\Users\BanUserNotificationHandler::class

• _elgg_user_get_subscriber_unban_action() changed to Elgg\Notifications\
UnbanUserEventHandler

• _elgg_user_prepare_unban_notification() changed to Elgg\Notifications\
UnbanUserEventHandler

• _elgg_user_settings_menu_register() changed to Elgg\Menus\Page::registerUserSettings()
and Elgg\Menus\Page::registerUserSettingsPlugins()

• _elgg_user_settings_menu_prepare() changed to Elgg\Menus\Page::cleanupUserSettingsPlugins()

• elgg_user_hover_menu() changed to Elgg\Menus\UserHover::registerAvatarEdit() and Elgg\
Menus\UserHover::registerAdminActions()

• _elgg_user_set_icon_file() changed to Elgg\Icons\SetUserIconFileHandler::class

• _elgg_user_title_menu() changed to Elgg\Menus\Title::registerAvatarEdit()

• _elgg_user_page_menu() changed to Elgg\Menus\Page::registerAvatarEdit()

• _elgg_user_topbar_menu() changed to Elgg\Menus\Topbar::registerUserLinks()

• _elgg_user_unvalidated_menu() changed to Elgg\Menus\UserUnvalidated::register()

• _elgg_views_amd() changed to Elgg\Views\AddAmdModuleNameHandler::class

• _elgg_views_file_help_upload_limit() changed to Elgg\Input\AddFileHelpTextHandler::class

• _elgg_views_init() combined into Elgg\Application\SystemEventHandlers::init()

• _elgg_views_minify() changed to Elgg\Views\MinifyHandler::class

• _elgg_views_prepare_favicon_links() changed to Elgg\Page\AddFaviconLinksHandler::class

• _elgg_views_preprocess_css() changed to Elgg\Views\PreProcessCssHandler::class

• _elgg_views_send_header_x_frame_options() changed to Elgg\Page\
SetXFrameOptionsHeaderHandler::class

• _elgg_walled_garden_init() merged into Elgg\Application\SystemEventHandlers::initLate()

• _elgg_walled_garden_remove_public_access() changed to Elgg\WalledGarden\
RemovePublicAccessHandler::class

• _elgg_widgets_widget_urls() changed to Elgg\Widgets\EntityUrlHandler::class

• elgg_prepare_breadcrumbs() changed to Elgg\Page\PrepareBreadcrumbsHandler::class

• Elgg\Profiler::handleOutput changed to Elgg\Debug\Profiler::class

• users_init combined into Elgg\Application\SystemEventHandlers::initLate()

350 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Plugins

• _developers_entity_menu changed to Elgg\Developers\Menus\Entity::registerEntityExplorer

• _developers_page_menu changed to Elgg\Developers\Menus\Page::register

• _elgg_activity_owner_block_menu changed to Elgg\Activity\Menus\
OwnerBlock::registerUserItem and Elgg\Activity\Menus\OwnerBlock::registerGroupItem

• blog_archive_menu_setup changed to Elgg\Blog\Menus\BlogArchive::register

• blog_owner_block_menu changed to Elgg\Blog\Menus\OwnerBlock::registerUserItem and Elgg\
Blog\Menus\OwnerBlock::registerGroupItem

• blog_prepare_notification changed to Elgg\Blog\Notifications\PublishBlogEventHandler

• blog_register_db_seeds changed to Elgg\Blog\Database::registerSeeds

• bookmarks_footer_menu changed to Elgg\Bookmarks\Menus\Footer::register

• bookmarks_owner_block_menu changed to Elgg\Bookmarks\Menus\OwnerBlock::registerUserItem
and Elgg\Bookmarks\Menus\OwnerBlock::registerGroupItem

• bookmarks_page_menu changed to Elgg\Bookmarks\Menus\Page::register

• bookmarks_prepare_notification changed to Elgg\Bookmarks\Notifications\
CreateBookmarksEventHandler

• bookmarks_register_db_seeds changed to Elgg\Bookmarks\Database::registerSeeds

• ckeditor_longtext_id changed to Elgg\CKEditor\Views::setInputLongTextIDViewVar

• ckeditor_longtext_menu changed to Elgg\CKEditor\Menus\LongText::registerToggler

• dashboard_default_widgets changed to Elgg\Dashboard\Widgets::extendDefaultWidgetsList

• developers_log_events changed to Elgg\Developers\HandlerLogger::trackEvent and Elgg\
Developers\HandlerLogger::trackHook

• diagnostics_basic_hook changed to Elgg\Diagnostics\Reports::getBasic

• diagnostics_globals_hook changed to Elgg\Diagnostics\Reports::getGlobals

• diagnostics_phpinfo_hook changed to Elgg\Diagnostics\Reports::getPHPInfo

• diagnostics_sigs_hook changed to Elgg\Diagnostics\Reports::getSigs

• discussion_comment_permissions changed to Elgg\Discussions\Permissions::preventCommentOnClosedDiscussion

• discussion_get_subscriptions changed to Elgg\Discussions\Notifications::addGroupSubscribersToCommentOnDiscussionSubscriptions

• discussion_owner_block_menu changed to Elgg\Discussions\Menus\
OwnerBlock::registerGroupItem

• discussion_prepare_comment_notification changed to Elgg\Discussions\
Notifications::prepareCommentOnDiscussionNotification

• discussion_prepare_notification changed to Elgg\Discussions\Notifications\
CreateDiscussionEventHandler

• discussion_register_db_seeds changed to Elgg\Discussions\Database::registerSeeds

• Elgg\DevelopersPlugins* changed to Elgg\Developers*

• Elgg\Discussions\Menus::registerSiteMenuItem changed to Elgg\Discussions\Menus\
Site::register

3.7. Appendix 351

Elgg Documentation, Release master

• Elgg\Discussions\Menus::filterTabs changed to Elgg\Discussions\Menus\
Filter::filterTabsForDiscussions

• embed_longtext_menu changed to Elgg\Embed\Menus\LongText::register

• embed_select_tab changed to Elgg\Embed\Menus\Embed::selectCorrectTab

• embed_set_thumbnail_url changed to Elgg\Embed\Icons::setThumbnailUrl

• expages_menu_register_hook changed to Elgg\ExternalPages\Menus\ExPages::register

• file_handle_object_delete changed to Elgg\File\Icons::deleteIconOnElggFileDelete

• file_prepare_notification changed to Elgg\File\Notifications\CreateFileEventHandler

• file_register_db_seeds changed to Elgg\File\Database::registerSeeds

• file_set_custom_icon_sizes changed to Elgg\File\Icons::setIconSizes

• file_set_icon_file changed to Elgg\File\Icons::setIconFile

• file_set_icon_url changed to Elgg\File\Icons::setIconUrl

• file_owner_block_menu changed to Elgg\File\Menus\OwnerBlock::registerUserItem and Elgg\
File\Menus\OwnerBlock::registerGroupItem

• _elgg_friends_filter_tabs changed to Elgg\Friends\Menus\Filter::registerFilterTabs

• _elgg_friends_page_menu changed to Elgg\Friends\Menus\Page::register

• _elgg_friends_register_access_type changed to Elgg\Friends\Access::registerAccessCollectionType

• _elgg_friends_setup_title_menu changed to Elgg\Friends\Menus\Title::register

• _elgg_friends_setup_user_hover_menu changed to Elgg\Friends\Menus\UserHover::register

• _elgg_friends_topbar_menu changed to Elgg\Friends\Menus\Topbar::register

• _elgg_friends_widget_urls changed to Elgg\Friends\Widgets::setWidgetUrl

• _elgg_send_friend_notification changed to Elgg\Friends\Notifications::sendFriendNotification

• Elgg\Friends\FilterMenu::addFriendRequestTabs changed to Elgg\Friends\Menus\
Filter::addFriendRequestTabs

• Elgg\Friends\RelationshipMenu::addPendingFriendRequestItems changed to Elgg\Friends\
Menus\Relationship::addPendingFriendRequestItems

• Elgg\Friends\RelationshipMenu::addPendingFriendRequestItems changed to Elgg\Friends\
Menus\Relationship::addPendingFriendRequestItems

• Elgg\Friends\Relationships::createFriendRelationship changed to Elgg\Friends\
Relationships::removePendingFriendRequest

• _groups_gatekeeper_allow_profile_page changed to Elgg\Groups\Access::allowProfilePage

• _groups_page_menu changed to Elgg\Groups\Menus\Page::register

• _groups_page_menu_group_profile changed to Elgg\Groups\Menus\Page::registerGroupProfile

• _groups_relationship_invited_menu changed to Elgg\Groups\Menus\
Relationship::registerInvitedItems

• _groups_relationship_member_menu changed to Elgg\Groups\Menus\
Relationship::registerRemoveUser

• _groups_relationship_membership_request_menu changed to Elgg\Groups\Menus\
Relationship::registerMembershipRequestItems

352 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• _groups_title_menu changed to Elgg\Groups\Menus\Title::register

• _groups_topbar_menu_setup changed to Elgg\Groups\Menus\Topbar::register

• groups_access_default_override changed to Elgg\Groups\Access::overrideDefaultAccess

• groups_create_event_listener changed to Elgg\Groups\Group::createAccessCollection

• groups_default_page_owner_handler changed to Elgg\Groups\PageOwner::detectPageOwner

• groups_entity_menu_setup changed to Elgg\Groups\Menus\Entity::register and Elgg\Groups\
Menus\Entity::registerFeature

• groups_fields_setup changed to Elgg\Groups\FieldsHandler

• groups_members_menu_setup changed to Elgg\Groups\Menus\GroupsMembers::register

• groups_set_access_collection_name changed to Elgg\Groups\Access::getAccessCollectionName

• groups_set_url changed to Elgg\Groups\Group::getEntityUrl

• groups_setup_filter_tabs changed to Elgg\Groups\Menus\Filter::registerGroupsAll

• groups_update_event_listener changed to Elgg\Groups\Group::updateGroup

• groups_user_join_event_listener changed to Elgg\Groups\Group::joinGroup

• groups_user_leave_event_listener changed to Elgg\Groups\Group::leaveGroup

• groups_write_acl_plugin_hook changed to Elgg\Groups\Access::getWriteAccess

• invitefriends_add_friends changed to Elgg\InviteFriends\Users::addFriendsOnRegister

• invitefriends_register_page_menu changed to Elgg\InviteFriends\Menus\Page::register

• likes_permissions_check changed to Elgg\Likes\Permissions::allowLikedEntityOwner

• likes_permissions_check_annotate changed to Elgg\Likes\Permissions::allowLikeOnEntity

• likes_social_menu_setup changed to Elgg\Likes\Menus\Social::register

• members_register_filter_menu changed to Elgg\Members\Menus\Filter::register

• messages_can_edit changed to Elgg\Messages\Permissions::canEdit

• messages_can_edit_container changed to Elgg\Messages\Permissions::canEditContainer

• messages_purge changed to Elgg\Messages\User::purgeMessages

• messages_register_topbar changed to Elgg\Messages\Menus\Topbar::register

• messages_user_hover_menu changed to Elgg\Messages\Menus\UserHover::register and Elgg\
Messages\Menus\Title::register

• notifications_update_collection_notify changed to Elgg\Notifications\
Relationships::updateUserNotificationsPreferencesOnACLChange

• notifications_update_friend_notify changed to Elgg\Friends\Relationships::applyFriendNotificationsSettings

• notifications_relationship_remove changed to Elgg\Friends\Relationships::deleteFriendNotificationSubscription
and Elgg\Groups\Relationships::removeGroupNotificationSubscriptions

• _notifications_page_menu changed to Elgg\Notifications\Menus\Page::register

• _notification_groups_title_menu changed to Elgg\Notifications\Menus\Title::register

• pages_container_permission_check changed to Elgg\Pages\Permissions::allowContainerWriteAccess

• pages_entity_menu_setup changed to Elgg\Pages\Menus\Entity::register

3.7. Appendix 353

Elgg Documentation, Release master

• pages_icon_url_override changed to Elgg\Pages\Icons::getIconUrl

• pages_owner_block_menu changed to Elgg\Pages\Menus\OwnerBlock::registerUserItem and Elgg\
Pages\Menus\OwnerBlock::registerGroupItem

• pages_prepare_notification changed to Elgg\Pages\Notifications\CreatePageEventHandler

• pages_register_db_seeds changed to Elgg\Pages\Database::registerSeeds

• pages_set_revision_url changed to Elgg\Pages\Extender::setRevisionUrl

• pages_write_access_options_hook changed to Elgg\Pages\Views::removeAccessPublic

• pages_write_access_vars changed to Elgg\Pages\Views::preventAccessPublic

• pages_write_permission_check changed to Elgg\Pages\Permissions::allowWriteAccess

• Elgg\Pages\Menus::registerPageMenuItems changed to Elgg\Pages\Menus\PagesNav::register

• _profile_admin_page_menu changed to Elgg\Profile\Menus\Page::registerAdminProfileFields

• _profile_fields_setup changed to Elgg\Profile\FieldsHandler

• _profile_title_menu changed to Elgg\Profile\Menus\Title::register

• _profile_topbar_menu changed to Elgg\Profile\Menus\Topbar::register

• _profile_user_hover_menu changed to Elgg\Profile\Menus\UserHover::register

• _profile_user_page_menu changed to Elgg\Profile\Menus\Page::registerProfileEdit

• profile_default_widgets_hook changed to Elgg\Profile\Widgets::getDefaultWidgetsList

• reportedcontent_user_hover_menu changed to Elgg\ReportedContent\Menus\
UserHover::register

• search_exclude_robots changed to Elgg\Search\Site::preventSearchIndexing

• search_output_tag changed to Elgg\Search\Views::setSearchHref

• site_notifications_register_entity_menu changed to Elgg\SiteNotifications\Menus\
Entity::register

• site_notifications_send changed to Elgg\SiteNotifications\Notifications::createSiteNotifications

• _uservalidationbyemail_user_unvalidated_bulk_menu changed to Elgg\UserValidationByEmail\
Menus\UserUnvalidatedBulk::register

• _uservalidationbyemail_user_unvalidated_menu changed to Elgg\UserValidationByEmail\
Menus\UserUnvalidated::register

• uservalidationbyemail_after_registration_url changed to Elgg\UserValidationByEmail\
Response::redirectToEmailSent

• uservalidationbyemail_check_manual_login changed to Elgg\UserValidationByEmail\
User::preventLogin

• uservalidationbyemail_disable_new_user changed to Elgg\UserValidationByEmail\
User::disableUserOnRegistration

• system_log_archive_cron changed to Elgg\SystemLog\Cron::rotateLogs

• system_log_default_logger changed to Elgg\SystemLog\Logger::log

• system_log_delete_cron changed to Elgg\SystemLog\Cron::deleteLogs

• system_log_listener changed to Elgg\SystemLog\Logger::listen

• system_log_user_hover_menu changed to Elgg\SystemLog\Menus\UserHover::register

354 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• thewire_add_original_poster changed to Elgg\TheWire\Notifications\
CreateTheWireEventHandler

• thewire_owner_block_menu changed to Elgg\TheWire\Menus\OwnerBlock::register

• thewire_prepare_notification changed to Elgg\TheWire\Notifications\
CreateTheWireEventHandler

• thewire_setup_entity_menu_items changed to Elgg\TheWire\Menus\Entity::register

Reworked exceptions

All exceptions in the Elgg system now extend the Elgg\Exceptions\Exception and are in the namespace Elgg\
Exceptions

Moved exceptions

• ClassException use Elgg\Exceptions\ClassException

• ConfigurationException use Elgg\Exceptions\ConfigurationException

• CronException use Elgg\Exceptions\CronException

• DatabaseException use Elgg\Exceptions\DatabaseException

• DataFormatException use Elgg\Exceptions\DataFormatException

• InstallationException use Elgg\Exceptions\Configuration\InstallationException

• InvalidParameterException use Elgg\Exceptions\InvalidParameterException

• IOException use Elgg\Exceptions\FileSystem\IOException

• LoginException use Elgg\Exceptions\LoginException

• PluginException use Elgg\Exceptions\PluginException

• RegistrationException use Elgg\Exceptions\Configuration\RegistrationException

• SecurityException use Elgg\Exceptions\SecurityException

• Elgg\Database\EntityTable\UserFetchFailureException use Elgg\Exceptions\Database\
UserFetchFailureException

• Elgg\Di\FactoryUncallableException use Elgg\Exceptions\Di\FactoryUncallableException

• Elgg\Di\MissingValueException use Elgg\Exceptions\Di\MissingValueException

• Elgg\Http\Exception\AdminGatekeeperException use Elgg\Exceptions\Http\Gatekeeper\
AdminGatekeeperException

• Elgg\Http\Exception\AjaxGatekeeperException use Elgg\Exceptions\Http\Gatekeeper\
AjaxGatekeeperException

• Elgg\Http\Exception\GroupToolGatekeeperException use Elgg\Exceptions\Http\Gatekeeper\
GroupToolGatekeeperException

• Elgg\Http\Exception\LoggedInGatekeeperException use Elgg\Exceptions\Http\Gatekeeper\
LoggedInGatekeeperException

• Elgg\Http\Exception\LoggedOutGatekeeperException use Elgg\Exceptions\Http\Gatekeeper\
LoggedOutGatekeeperException

3.7. Appendix 355

Elgg Documentation, Release master

• Elgg\Http\Exception\UpgradeGatekeeperException use Elgg\Exceptions\Http\Gatekeeper\
UpgradeGatekeeperException

• Elgg\I18n\InvalidLocaleException use Elgg\Exceptions\I18n\InvalidLocaleException

• Elgg\BadRequestException use Elgg\Exceptions\Http\BadRequestException

• Elgg\CsrfException use Elgg\Exceptions\Http\CsrfException

• Elgg\EntityNotFoundException use Elgg\Exceptions\Http\EntityNotFoundException

• Elgg\EntityPermissionsException use Elgg\Exceptions\Http\EntityPermissionsException

• Elgg\GatekeeperException use Elgg\Exceptions\Http\GatekeeperException

• Elgg\GroupGatekeeperException use Elgg\Exceptions\Http\Gatekeeper\
GroupGatekeeperException

• Elgg\HttpException use Elgg\Exceptions\HttpException

• Elgg\PageNotFoundException use Elgg\Exceptions\Http\PageNotFoundException

• Elgg\ValidationException use Elgg\Exceptions\Http\ValidationException

• Elgg\WalledGardenException use Elgg\Exceptions\Http\Gatekeeper\WalledGardenException

Removed exceptions

• CallException

• ClassNotFoundException

• IncompleteEntityException

• InvalidClassException

• NotificationException

• NotImplementedException from the Web Services plugin

Reworked Traits

In order to better organize the Elgg namespace all Traits have been moved to the Elgg\Traits namespace

• Elgg\Cacheable moved to Elgg\Traits\Cacheable

• Elgg\Cli\PluginsHelper moved to Elgg\Traits\Cli\PluginsHelper

• Elgg\Cli\Progressing moved to Elgg\Traits\Cli\Progressing

• Elgg\Database\Seeds\Seeding\GroupHelpers moved to Elgg\Traits\Seeding\GroupHelpers

• Elgg\Database\Seeds\Seeding\TimeHelpers moved to Elgg\Traits\Seeding\TimeHelpers

• Elgg\Database\Seeds\Seeding moved to Elgg\Traits\Seeding

• Elgg\Database\LegacyQueryOptionsAdapter moved to Elgg\Traits\Database\
LegacyQueryOptionsAdapter

• Elgg\Debug\Profilable moved to Elgg\Traits\Debug\Profilable

• Elgg\Di\ServiceFacade moved to Elgg\Traits\Di\ServiceFacade

• Elgg\Entity\ProfileData moved to Elgg\Traits\Entity\ProfileData

356 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• Elgg\Loggable moved to Elgg\Traits\Loggable

• Elgg\Notifications\EventSerialization moved to Elgg\Traits\Notifications\
EventSerialization

• Elgg\TimeUsing moved to Elgg\Traits\TimeUsing

Miscellaneous API changes

• The defaults for ignore_empty_body and prevent_double_submitwhen using elgg_view_form have been
changed to true.

• The plugin settings forms (plugins/{$plugin_id}/settings) no longer receive $vars['plugin'] use
$vars['entity']

• Elgg\Router\Middleware\WalledGarden::isPublicPage() can no longer be called statically

• Elgg\Cli\PluginsHelper::getDependents() is no longer publically available

• ElggPlugin::getLanguagesPath() is no longer publically available

• An \ElggBatch no longer implements the interface Elgg\BatchResult but still has the same features

• An \ElggEntity no longer implements the interface Locatable but still has the same features

• An \Elgg\Event no longer implements the interfaces \Elgg\ObjectEvent and \Elgg\UserEvent but still
has the same features

• The view output/icon no longer uses the convert view var

• ElggData::save() now always returns a bool as documented. All extending classes have been updated (eg.
ElggEntity, ElggMetadata, ElggRelationship, etc.)

• Elgg\Email::getTo() now always returns an array

• ElggPlugin::activate() and ElggPlugin::deactivate() now can throw an Elgg\Exceptions\
PluginException with more details about the failure

• \ElggRelationship::RELATIONSHIP_LIMIT has been removed use ElggDatabaseRelationshipsTa-
ble::RELATIONSHIP_COLUMN_LENGTH``

• The constants ORIGIN_SUBSCRIPTIONS and ORIGIN_INSTANT in \Elgg\Notifications\Notification
have been removed

• You can no longer use the delete, <entity_type> event to prevent deletion of an entity. Use the
delete:before, <entity_type> event

• External Files are no longer ordered by priority but will be returned in the same order as they are registered

• The interface Friendable has been removed. Implemented functions in ElggUser have been moved to Elgg\
Traits\Entity\Friends

• The config flag profile_using_custom is no longer available

• The return value of elgg_create_river_item() will be false in the case the creation was prevented by the
'create:before', 'river' event

• The constant ELGG_PLUGIN_USER_SETTING_PREFIX has been removed use the helper function \
ElggUser::getNamespacedPluginSettingName()

• The constant ELGG_PLUGIN_INTERNAL_PREFIX has been removed to get the plugin priority private setting name
use \ElggPlugin::PRIORITY_SETTING_NAME

• The class SiteNotificationFactory was removed use SiteNotification::factory()

3.7. Appendix 357

Elgg Documentation, Release master

• The class Elgg\Email\Address no longer throws Laminas\Mail\Exception\
InvalidArgumentException but now throws Elgg\Exceptions\InvalidArgumentException

Deprecated APIs

Class functions

• ElggPlugin::getUserSetting() use ElggUser::getPluginSetting()

• ElggPlugin::setUserSetting() use ElggUser::setPluginSetting()

Lib functions

• forward() use Elgg\Exceptions\HttpException instances or elgg_redirect_response()

Plugin hooks

• 'usersettings', 'plugin' use the hook 'plugin_setting', '<entity type>'

Removed functions

Class functions

• Elgg\Config::getEntityTypes() use Elgg\Config::ENTITY_TYPES constant

• ElggFile::setDescription() use $file->description = $new_description

• ElggGroup::addObjectToGroup()

• ElggGroup::removeObjectFromGroup()

• ElggPlugin::getAllUserSettings()

• ElggPlugin::getDependencyReport()

• ElggPlugin::getError()

• ElggPlugin::unsetAllUserSettings()

• ElggPlugin::unsetAllUserAndPluginSettings() use ElggPlugin::unsetAllEntityAndPluginSettings()

• ElggWidget::getContext() use $entity->context

• ElggWidget::setContext() use $entity->context = $context

• Elgg\Notifications\NotificationsService::getDeprecatedHandler()

• Elgg\Notifications\NotificationsService::getMethodsAsDeprecatedGlobal() use
elgg_get_notification_methods()

• Elgg\Notifications\NotificationsService::registerDeprecatedHandler()

• Elgg\Notifications\NotificationsService::setDeprecatedNotificationSubject()

• Elgg\Email::getRecipient() use Elgg\Email::getTo()

• Elgg\Email::setRecipient()

358 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• Elgg\Entity::getLocation() use $entity->location

• Elgg\Entity::setLocation() use $entity->location = $location

Lib functions

• access_get_show_hidden_status() use elgg()->session->getDisabledEntityVisibility()

• diagnostics_md5_dir()

• elgg_add_subscription() use \ElggEntity::addSubscription()

• elgg_get_available_languages() use elgg()->translator->getAvailableLanguages()

• elgg_get_all_plugin_user_settings()

• elgg_get_entities_from_plugin_user_settings() use elgg_get_entities() with private settings
parameters and prefix your setting name with plugin:user_setting:

• elgg_get_filter_tabs() use menu hooks on 'register', 'menu:filter:<filter_id>'

• elgg_get_loaded_css() use elgg_get_loaded_external_files('css', 'head')

• elgg_get_loaded_js() use elgg_get_loaded_external_files('js', $location)

• elgg_get_system_messages() use elgg()->system_messages->loadRegisters()

• elgg_prepend_css_urls()

• elgg_remove_subscription() use \ElggEntity::removeSubscription()

• elgg_set_plugin_setting() use $plugin->setSetting($name, $value)

• elgg_set_plugin_user_setting() use ElggUser::setPluginSetting()

• elgg_set_system_messages() use elgg()->system_messages->saveRegisters()

• elgg_unset_plugin_setting() use $plugin->unsetSetting($name)

• elgg_unset_plugin_user_setting() use ElggUser::removePluginSetting()

• get_language_completeness() use elgg()->translator->getLanguageCompleteness()

• get_installed_translations() use elgg()->translator->getInstalledTranslations()

• group_access_options()

• pages_is_page()

• system_log_get_log()

• system_log_get_log_entry()

• system_log_get_object_from_log_entry()

• system_log_get_seconds_in_period()

• system_log_archive_log()

• system_log_browser_delete_log()

• thewire_get_parent() use \ElggWire::getParent()

• validate_email_address() use elgg()->accounts->assertValidEmail()

• validate_password() use elgg()->accounts->assertValidPassword()

• validate_username() use elgg()->accounts->assertValidUsername()

3.7. Appendix 359

Elgg Documentation, Release master

Removed views / resources

• admin/develop_tools/inspect/webservices

• elgg/thewire.js

• input/urlshortener

• messages/js moved to forms/messages/process.js

• navigation/menu/elements/item_deps the functionality has been merged into navigation/menu/
elements/item

• object/plugin/elements/contributors

• notifications/groups

• notifications/personal use notifications/settings or notifications/users

• notifications/settings/personal moved to notifications/settings/records

• notifications/settings/collections

• notifications/settings/other extend notifications/settings/records

• notifications/subscriptions/groups use forms/notifications/subscriptions/groups

• notifications/subscriptions/users use forms/notifications/subscriptions/users

• resources/comments/view use \Elgg\Controllers\CommentEntityRedirector

• resources/river use resources/activity/all or resources/activity/owner or resources/
activity/friends

• reportedcontent/admin_css

• thewire/previous

Removed hooks / events

• Event created, river has been removed. Use the create:after, river event.

• Hook creating, river has been removed. Use the create:before, river event if you want to block the
creation of a river item.

• Hook filter_tabs, <context> has been removed. Use the register, menu:filter:<filter_id> hook

• Hook output, ajax has been removed. Use the ajax_response hook if you want to influence the results.

• Hook reportedcontent:add has been removed. Use the create, object event to prevent creation.

• Hook reportedcontent:archive has been removed. Use the permissions_check, object hook.

• Hook reportedcontent:delete has been removed. Use the delete, object event to prevent deletion.

360 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Removed actions

• The action reportedcontent/delete has been replaced with a generic entity delete action

From 3.2 to 3.3

Contents

• PHP Version

• Simpler use of ‚default‘ layout

• Deprecated layout names

• Plugin Manifest changes

• Deprecated APIs

• Deprecated Config values

• Deprecated CLI commands

• Deprecated Hooks

PHP Version

PHP 7.1 has reached end of life in December 2019. To ensure that Elgg sites are secure, we now require PHP 7.2 for
new installations.

If upgrading from a previous Elgg installation make sure you have the correct PHP version installed.

In order to be able to test Elgg on PHP 7.4 we had to update the PHPUnit testsuite to version 8.5. This may require
some rewrites of your own unit/integration tests.

Simpler use of ‚default‘ layout

Currently a common pattern is to do the following:

$title = 'All blogs';

$content = elgg_list_entities([
'type' => 'object',
'subtype' => 'blog',

]);

$layout = elgg_view_layout('default', [
'title' => $title,
'content' => $content,

]);

echo elgg_view_page($title, $layout);

3.7. Appendix 361

https://www.php.net/eol.php

Elgg Documentation, Release master

We made this kind of pattern simpler. You can now pass an array of layout options to the second parameter of
elgg_view_page. The elgg_view_page function will use this array to wrap it in the ‚default‘ layout. It also adds the
page title to the layout.

The new way to do it is:

echo elgg_view_page('All blogs', [
'content' => elgg_list_entities([

'type' => 'object',
'subtype' => 'blog',

]),
]);

Deprecated layout names

For an easy transition from Elgg 2.x to 3.x we kept some old layout names (‚one_sidebar‘, ‚one_column‘, ‚two_sidebar‘
and ‚content‘) intact when used in the elgg_view_layout function. As of Elgg 3.3 these layout names are deprecated
and you should update your code to use the new ‚default‘ layout.

When changing the use of the ‚content‘ layout name you should take into consideration that the ‚content‘ generates
a filter menu. This menu is slightly different from the regular ‚filter‘ menu generated in the ‚default‘ layout. It uses
different hook names. If you already disabled the filter in your layout you can change the layout without any issues.

Plugin Manifest changes

We are working towards the removal of the plugin manifest file. Some features of the manifest will be replaced and some
will be dropped. To make this transition a bit easier we have already deprecated the following ElggPluginManifest
api functions:

• getCopyright()

• getDonationsPageURL()

• getSuggests() use suggestions in composer

Deprecated APIs

• elgg_disable_query_cache()

• elgg_enable_query_cache()

• elgg_format_attributes() use elgg_format_element()

• elgg_flush_caches() use elgg_clear_caches()

• elgg_get_menu_item()

• elgg_get_ordered_event_handlers() use elgg()->events->getOrderedHandlers()

• elgg_get_ordered_hook_handlers() use elgg()->hooks->getOrderedHandlers()

• elgg_invalidate_simplecache() use elgg_clear_caches()

• elgg_is_menu_item_registered()

• elgg_view_entity_annotations()

• execute_delayed_write_query() use elgg()->db->registerDelayedQuery()

362 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• execute_delayed_read_query() use elgg()->db->registerDelayedQuery()

• run_sql_script()

• elgg_unset_all_plugin_settings() use \ElggPlugin::unsetAllSettings()

• elgg_get_file_simple_type() use elgg()->mimetype->getSimpleType()

• ElggFile::detectMimeType() use elgg()->mimetype->getMimeType()

• generate_action_token() use elgg()->csrf->generateActionToken()

• elgg_split()

Deprecated Config values

• simplecache_lastupdate use lastcache

Deprecated CLI commands

• elgg-cli flush use elgg-cli cache:clear

Deprecated Hooks

• entity:annotate, <entity_type>

From 3.1 to 3.2

Contents

• User write access

• River items enabled state

User write access

To fix an issue where user owned access collections like Friends or Friend Collections would still show in the access
drop down when creating content, even if related plugins are disabled, we needed to change some internal logic. If you
want to have an access collection subtype available in the write access you now need to register the subtype with a
plugin hook. See the plugin hook reference for ‚access:collections:write:subtypes‘ for more details.

3.7. Appendix 363

Elgg Documentation, Release master

River items enabled state

The enabled state of river items has been deprecated. You should no longer use this property when working with river
items.

From 3.0 to 3.1

Contents

• PHP Version

• Plugin screenshots

• Loading external files

• Setting page owner

• Simpletests

• Hook and event callbacks

• Deprecated Routes

• Deprecated CSS libraries

• Deprecated JS libraries

• Deprecated APIs

• Deprecated actions

PHP Version

PHP 7.0 has reached end of life in January 2019. To ensure that Elgg sites are secure, we now require PHP 7.1 for new
installations.

If upgrading from a previous Elgg installation make sure you have the correct PHP version installed.

Plugin screenshots

Screenshots added to plugins are no longer supported and will no longer be shown in the plugin details.

Loading external files

The usage of elgg_register_js, elgg_unregister_js and elgg_load_js is discouraged. Make sure your javas-
cript is an AMD module and use elgg_require_js to include it.

The usage of elgg_register_css, elgg_unregister_css and elgg_load_css is discouraged. You can register
and include css with the new elgg_require_css function.

364 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Setting page owner

Setting the page owner via the elgg_get_page_owner_guid function parameter is deprecated. Use
elgg_set_page_owner_guid.

Simpletests

The core simpletests have been removed from the system. They are all replaced by PHP unit tests or integration tests.
The simpletest cli command has been deprecated.

Hook and event callbacks

The legacy style hook and event callback arguments are deprecated. You should switch to the new style as soon as
possible.

// old style hook callback
function hook_callback($name, $type, $return_value, $params) {

}

// new style hook callback
function hook_callback(\Elgg\Hook $hook) {

// now you can use a few new functions
$params = $hook->getParams();
$return = $hook->getValue();

$specific_param = $hook->getParam('specific_param', 'default')
$entity = $hook->getEntityParam();
$user = $hook->getUserParam();

}

// old style event callback
function event_callback($name, $type, $object) {

}

// new style event callback
function event_callback(\Elgg\Event $event) {

// now you can use a few new functions
$object = $event->getObject();

}

3.7. Appendix 365

Elgg Documentation, Release master

Deprecated Routes

• previous:object:thewire This route was not in use. It now has been marked as deprecated.

Deprecated CSS libraries

• jquery.imgareaselect Do not use this external css file.

• jquery.treeview Do not use this external css file.

Deprecated JS libraries

• elgg.avatar_cropper Do not depend on this external javascript library.

• jquery.imgareaselect Do not depend on this external javascript library.

• jquery.treeview Do not depend on this external javascript library.

Deprecated APIs

• access_show_hidden_entities() Use elgg_call() with ELGG_SHOW_DISABLED_ENTITIES flag.

• autoregister_views()

• count_messages() Use elgg()->system_messages->count().

• disable_user_entities()

• elgg_enable_entity() Use ElggEntity::enable().

• elgg_get_file_list() Use a PHP directory iterator.

• elgg_instanceof() Use PHP instanceof type operator.

• elgg_is_admin_user() Use ElggUser::isAdmin().

• elgg_set_ignore_access() Use elgg_call() with ELGG_IGNORE_ACCESS flag.

• elgg_sort_3d_array_by_value()

• get_access_list() Use get_access_array().

• get_language() Use get_current_language().

• get_number_users() Use elgg_count_entities().

• pages_register_navigation_tree()

• ini_get_bool()

• is_not_null()

• update_access_collection()

366 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Deprecated actions

• admin/delete_admin_notice Replaced by generic entity/delete action.

• avatar/crop Handled in avatar/upload action.

• avatar/remove Handled in avatar/upload action.

• blog/delete Replaced by generic entity/delete action.

• messages/delete Replaced by generic entity/delete action.

• site_notifications/delete Replaced by generic entity/delete action.

From 2.x to 3.0

Contents

• PHP 7.0 is now required

• $CONFIG is removed!

• Removed views

• Removed functions/methods

• Deprecated APIs

• Removed global vars

• Removed classes/interfaces

• Schema changes

• Changes in elgg_get_entities, elgg_get_metadata and elgg_get_annotations getter functions

• Boolean entity properties

• Metadata Changes

• Permissions and Access

• Multi Site Changes

• Entity Subtable Changes

• Friends and Group Access Collection

• Subtypes no longer have an ID

• Custom class loading

• Dependency Injection Container

• Search changes

• Form and field related changes

• Entity and River Menu Changes

• Removed libraries

• Removed pagehandling

• Removed actions

3.7. Appendix 367

Elgg Documentation, Release master

• Inheritance changes

• Removed JavaScript APIs

• Removed hooks/events

• Removed forms/actions

• APIs that now accept only an $options array

• Plugin functions that now require an explicit $plugin_id

• Class constructors that now accept only a stdClass object or null

• Miscellaneous API changes

• View extension behaviour changed

• JavaScript hook calling order may change

• Widget layout related changes

• Routing

• Labelling

• Request value filtering

• Action responses

• HtmLawed is no longer a plugin

• New approach to page layouts

• Likes plugin

• Notifications plugin

• Pages plugin

• Profile plugin

• Data Views plugin

• Twitter API plugin

• Legacy URLs plugin

• User validation by email plugin

• Email delivery

• Theme and styling changes

• Comments

• Object listing views

• Menu changes

• Entity icons

• Icon glyphs

• Autocomplete (user and friends pickers)

• Friends collections

• Layout of .elgg-body elements

368 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• Delete river items

• Discussion replies moved to comments

• Translations cleanup

• System Log

• Error logging

• Composer asset plugin no longer required

• Cron logs

• Removed / changed language keys

• New MySQL schema features are not applied

• Miscellaneous changes

• Twitter API plugin

• Unit and Integration Testing

PHP 7.0 is now required

5.6 is reaching it’s end of life. PHP 7.0 is now required to install and run Elgg.

$CONFIG is removed!

Not exactly, however you must audit its usage and should replace it with elgg_get_config() and
elgg_set_config(), as recommended since Elgg 1.9.

The global $CONFIG is now a proxy for Elgg’s configuration container, and modifications will fail if you try to alter array
properties directly. E.g. $CONFIG->cool_fruit[] = 'Pear';. The silver lining is that failures will emit NOTICEs.

Removed views

• forms/account/settings: usersettings extension can now extend the view forms/usersettings/save

• forms/admin/site/advanced/system

• resources/file/download

• output/checkboxes: use output/tags if you want the same behaviour

• input/write_access: mod/pages now uses the access:collections:write plugin hook.

• invitefriends/form

• page/layouts/content: use page/layouts/default

• page/layouts/one_column: use page/layouts/default

• page/layouts/one_sidebar: use page/layouts/default

• page/layouts/two_sidebar: use page/layouts/default

• page/layouts/walled_garden: use page/layouts/default

• page/layouts/walled_garden/cancel_button

3.7. Appendix 369

Elgg Documentation, Release master

• page/layouts/two_column_left_sidebar

• page/layouts/widgets/add_panel

• page/elements/topbar_wrapper: update your use of page/elements/topbar to include a check for a log-
ged in user

• pages/icon

• groups/group_sort_menu: use register, filter:menu:groups/all plugin hook

• groups/my_status

• groups/profile/stats

• subscriptions/form/additions: extend notifications/settings/other instead

• likes/count: modifications can now be done to the likes_count menu item

• likes/css: likes now uses elgg/likes.css

• resources/members/index

• messageboard/css

• notifications/subscriptions/personal

• notifications/subscriptions/collections

• notifications/subscriptions/form

• notifications/subscriptions/jsfuncs

• notifications/subscriptions/forminternals

• notifications/css

• pages/input/parent

• river/item: use elgg_view_river_item() to render river items

• river/user/default/profileupdate

• admin.js

• aalborg_theme/homepage.png

• aalborg_theme/css

• resources/avatar/view: Use entity icon API

• ajax_loader.gif

• button_background.gif

• button_graduation.png

• elgg_toolbar_logo.gif

• header_shadow.png

• powered_by_elgg_badge_drk_bckgnd.gif

• powered_by_elgg_badge_light_bckgnd.gif

• sidebar_background.gif

• spacer.gif

• toptoolbar_background.gif

370 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• two_sidebar_background.gif

• ajax_loader_bw.gif: use graphics/ajax_loader_bw.gif

• elgg_logo.png: use graphics/elgg_logo.png

• favicon-128.png: use graphics/favicon-128.png

• favicon-16.png: use graphics/favicon-16.png

• favicon-32.png: use graphics/favicon-32.png

• favicon-64.png: use graphics/favicon-64.png

• favicon.ico: use graphics/favicon.ico

• favicon.svg: use graphics/favicon.svg

• friendspicker.png: use graphics/friendspicker.png

• walled_garden.jpg: use graphics/walled_garden.jpg

• core/friends/collection

• core/friends/collections

• core/friends/collectiontabs

• core/friends/tablelist

• core/friends/talbelistcountupdate

• lightbox/elgg-colorbox-theme/colorbox-images/*`

• navigation/menu/page: now uses navigation/menu/default and a prepare hook

• navigation/menu/site: now uses default view

• page/elements/by_line: Use object/elements/imprint

• forms/admin/site/advanced/security: the site secret information has been moved to forms/admin/
security/settings

• river/object/file/create: check River

• river/object/page/create: check River

• river/object/page_top/create: check River

• river/relationship/member: check River

• object/page_top: use object/page

• ajax/discussion/reply/edit: See Discussion replies moved to comments

• discussion/replies: See Discussion replies moved to comments

• object/discussion_reply: See Discussion replies moved to comments

• resources/discussion/reply/edit: See Discussion replies moved to comments

• resources/elements/discussion_replies: See Discussion replies moved to comments

• river/elements/discussion_replies: See Discussion replies moved to comments

• river/object/discussion/create

• river/object/discussion_reply/create: See Discussion replies moved to comments

• search/object/discussion_reply/entity: See Discussion replies moved to comments

3.7. Appendix 371

Elgg Documentation, Release master

• rss/discussion/replies: See Discussion replies moved to comments

• search/header

• search/layout in both default and rss viewtypes

• search/no_results

• search/object/comment/entity

• search/css: Moved to search/search.css

• search/startblurb

• bookmarks/bookmarklet.gif

• blog_get_page_content_list

• blog_get_page_content_archive

• blog_get_page_content_edit

• forms/invitefriends/invite: use forms/friends/invite

• resources/invitefriends/invite: use resources/friends/invite

• resources/reportedcontent/add

• resources/reportedcontent/add_form

• resources/site_notifications/view: Use resources/site_notifications/owner

• resources/site_notifications/everyone: Use resources/site_notifications/all

Removed functions/methods

All the functions in engine/lib/deprecated-1.9.php were removed. See https://github.com/Elgg/Elgg/blob/2.0/
engine/lib/deprecated-1.9.php for these functions. Each @deprecated declaration includes instructions on what to use
instead. All the functions in engine/lib/deprecated-1.10.php were removed. See https://github.com/Elgg/Elgg/
blob/2.0/engine/lib/deprecated-1.10.php for these functions. Each @deprecated declaration includes instructions on
what to use instead.

• elgg_register_library: require your library files so they are available globally to other plugins

• elgg_load_library

• activity_profile_menu

• can_write_to_container: Use ElggEntity->canWriteToContainer()

• create_metadata_from_array

• metadata_array_to_values

• datalist_get

• datalist_set

• detect_extender_valuetype

• developers_setup_menu

• elgg_disable_metadata

• elgg_enable_metadata

• elgg_get_class_loader

372 Kapitel 3. Continue Reading

https://github.com/Elgg/Elgg/blob/2.0/engine/lib/deprecated-1.9.php
https://github.com/Elgg/Elgg/blob/2.0/engine/lib/deprecated-1.9.php
https://github.com/Elgg/Elgg/blob/2.0/engine/lib/deprecated-1.10.php
https://github.com/Elgg/Elgg/blob/2.0/engine/lib/deprecated-1.10.php

Elgg Documentation, Release master

• elgg_get_metastring_id

• elgg_get_metastring_map

• elgg_register_class

• elgg_register_classes

• elgg_register_viewtype

• elgg_is_registered_viewtype

• file_delete: Use ElggFile->deleteIcon()

• file_get_type_cloud

• file_type_cloud_get_url

• get_default_filestore

• get_site_entity_as_row

• get_group_entity_as_row

• get_missing_language_keys

• get_object_entity_as_row

• get_user_entity_as_row

• update_river_access_by_object

• garbagecollector_orphaned_metastrings

• groups_access_collection_override

• groups_get_group_tool_options: Use elgg()->group_tools->all()

• groups_join_group: Use ElggGroup::join

• groups_prepare_profile_buttons: Use register, menu:title hook

• groups_register_profile_buttons: Use register, menu:title hook

• groups_setup_sidebar_menus

• groups_set_icon_url

• groups_setup_sidebar_menus

• messages_notification_msg

• set_default_filestore

• generate_user_password: Use ElggUser::setPassword

• row_to_elggrelationship

• run_function_once: Use Elgg\Upgrade\Batch interface

• system_messages

• notifications_plugin_pagesetup

• elgg_format_url: Use elgg_format_element() or the „output/text“ view for HTML escaping.

• get_site_by_url

• elgg_override_permissions: No longer used as handler for permissions_check and
container_permissions_check hooks

3.7. Appendix 373

Elgg Documentation, Release master

• elgg_check_access_overrides

• AttributeLoader became obsolete and was removed

• Application::loadSettings

• ElggEntity::addToSite

• ElggEntity::disableMetadata

• ElggEntity::enableMetadata

• ElggEntity::getSites

• ElggEntity::removeFromSite

• ElggEntity::isFullyLoaded

• ElggEntity::clearAllFiles

• ElggPlugin::getFriendlyName: Use ElggPlugin::getDisplayName()

• ElggPlugin::setID

• ElggPlugin::unsetAllUsersSettings

• ElggFile::setFilestore: ElggFile objects can no longer use custom filestores.

• ElggFile::size: Use getSize

• ElggDiskFilestore::makeFileMatrix: Use Elgg\EntityDirLocator

• ElggData::get: Usually can be replaced by property read

• ElggData::getClassName: Use get_class()

• ElggData::set: Usually can be replaced by property write

• ElggEntity::setURL: See getURL for details on the plugin hook

• ElggMenuBuilder::compareByWeight: Use compareByPriority

• ElggMenuItem::getWeight: Use getPriority

• ElggMenuItem::getContent: Use elgg_view_menu_item()

• ElggMenuItem::setWeight: Use setPriority

• ElggRiverItem::getPostedTime: Use getTimePosted

• ElggSession has removed all deprecated methods

• ElggSite::addEntity

• ElggSite::addObject

• ElggSite::addUser

• ElggSite::getEntities: Use elgg_get_entities()

• ElggSite::getExportableValues: Use toObject

• ElggSite::getMembers: Use elgg_get_entities()

• ElggSite::getObjects: Use elgg_get_entities()

• ElggSite::listMembers: Use elgg_list_entities()

• ElggSite::removeEntity

• ElggSite::removeObject

374 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• ElggSite::removeUser

• ElggSite::isPublicPage: Logic moved to the router and should not be accessed directly

• ElggSite::checkWalledGarden: Logic moved to the router and should not be accessed directly

• ElggUser::countObjects: Use elgg_get_entities()

• Logger::getClassName: Use get_class()

• Elgg\Application\Database::getTablePrefix: Read the prefix property

• elgg_view_access_collections()

• ElggSession::get_ignore_access: Use getIgnoreAccess

• ElggSession::set_ignore_access: Use setIgnoreAccess

• profile_pagesetup

• pages_can_delete_page: Use $entity->canDelete()

• pages_search_pages

• pages_is_page: use $entity instanceof ElggPage

• discussion_comment_override: See Discussion replies moved to comments

• discussion_can_edit_reply: See Discussion replies moved to comments

• discussion_reply_menu_setup: See Discussion replies moved to comments

• discussion_reply_container_logic_override: See Discussion replies moved to comments

• discussion_reply_container_permissions_override: See Discussion replies moved to comments

• discussion_update_reply_access_ids: See Discussion replies moved to comments

• discussion_search_discussion: See Discussion replies moved to comments

• discussion_add_to_river_menu: See Discussion replies moved to comments

• discussion_prepare_reply_notification: See Discussion replies moved to comments

• discussion_redirect_to_reply: See Discussion replies moved to comments

• discussion_ecml_views_hook: See Discussion replies moved to comments

• search_get_where_sql

• search_get_ft_min_max

• search_get_order_by_sql

• search_consolidate_substrings

• search_remove_ignored_words

• search_get_highlighted_relevant_substrings

• search_highlight_words

• search_get_search_view

• search_custom_types_tags_hook

• search_tags_hook

• search_users_hook

• search_groups_hook

3.7. Appendix 375

Elgg Documentation, Release master

• search_objects_hook

• members_list_popular

• members_list_newest

• members_list_online

• members_list_alpha

• members_nav_popular

• members_nav_newest

• members_nav_online

• members_nav_alpha

• uservalidationbyemail_generate_code

All functions around entity subtypes table:
• add_subtype: Use elgg_set_entity_class at runtime

• update_subtype: Use elgg_set_entity_class at runtime

• remove_subtype

• get_subtype_id

• get_subtype_from_id

• get_subtype_class: Use elgg_get_entity_class

• get_subtype_class_from_id

All caches have been consolidated into a single API layer. The following functions and methods have been
removed:

• is_memcache_available

• _elgg_get_memcache

• _elgg_invalidate_memcache_for_entity

• ElggMemcache

• ElggFileCache

• ElggStaticVariableCache

• ElggSharedMemoryCache

• Elgg\Cache\Pool interface and all extending classes

As a result of system log changes:
• system_log_default_logger: moved to system_log plugin

• system_log_listener: moved to system_log plugin

• system_log: moved to system_log plugin

• get_system_log: renamed to system_log_get_log and moved to system_log plugin

• get_log_entry: renamed to system_log_get_log_entry and moved to system_log plugin

• get_object_from_log_entry: renamed to system_log_get_object_from_log_entry and moved
to system_log plugin

• archive_log: renamed to system_log_archive_log and moved to system_log plugin

376 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• logbrowser_user_hover_menu: renamed to system_log_user_hover_menu and moved to
system_log plugin

• logrotate_archive_cron: renamed to system_log_archive_cron and moved to system_log plugin

• logrotate_delete_cron: renamed to system_log_delete_cron and moved to system_log plugin

• logrotate_get_seconds_in_period: renamed to system_log_get_seconds_in_period and mo-
ved to system_log plugin

• log_browser_delete_log: renamed to system_log_browser_delete_log and moved to
system_log plugin

Deprecated APIs

• ban_user: Use ElggUser->ban()

• create_metadata: Use ElggEntity setter or ElggEntity->setMetadata()

• update_metadata: Use ElggMetadata->save()

• get_metadata_url

• create_annotation: Use ElggEntity->annotate()

• update_metadata: Use ElggAnnotation->save()

• elgg_get_user_validation_status: Use ElggUser->isValidated()

• make_user_admin: Use ElggUser->makeAdmin()

• remove_user_admin: Use ElggUser->removeAdmin()

• unban_user: Use ElggUser->unban()

• elgg_get_entities_from_attributes: Use elgg_get_entities()

• elgg_get_entities_from_metadata: Use elgg_get_entities()

• elgg_get_entities_from_relationship: Use elgg_get_entities()

• elgg_get_entities_from_private_settings: Use elgg_get_entities()

• elgg_get_entities_from_access_id: Use elgg_get_entities()

• elgg_list_entities_from_metadata: Use elgg_list_entities()

• elgg_list_entities_from_relationship: Use elgg_list_entities()

• elgg_list_entities_from_private_settings: Use elgg_list_entities()

• elgg_list_entities_from_access_id: Use elgg_list_entities()

• elgg_list_registered_entities: Use elgg_list_entities()

• elgg_batch_delete_callback

• \Elgg\Project\Paths::sanitize: Use \Elgg\Project\Paths::sanitize()

• elgg_group_gatekeeper: Use elgg_entity_gatekeeper()

• get_entity_dates: Use elgg_get_entity_dates()

• messages_set_url: Use ElggEntity::getURL()

3.7. Appendix 377

Elgg Documentation, Release master

Removed global vars

• $CURRENT_SYSTEM_VIEWTYPE

• $DEFAULT_FILE_STORE

• $ENTITY_CACHE

• $SESSION: Use the API provided by elgg_get_session()

• $CONFIG->site_id: Use 1

• $CONFIG->search_info

• $CONFIG->input: Use set_input and get_input

Removed classes/interfaces

• FilePluginFile: replace with ElggFile (or load with get_entity())

• Elgg_Notifications_Notification

• Elgg\Database\EntityTable\UserFetchResultException.php

• Elgg\Database\MetastringsTable

• Elgg\Database\SubtypeTable

• Exportable and its methods export and getExportableValues: Use toObject

• ExportException

• Importable and its method import.

• ImportException

• ODD and all classes beginning with ODD*.

• XmlElement

• Elgg_Notifications_Event: Use \Elgg\Notifications\Event

• Elgg\Mail\Address: use Elgg\Email\Address

• ElggDiscussionReply: user ElggComment see Discussion replies moved to comments

Schema changes

The storage engine for the database tables has been changed from MyISAM to InnoDB. You maybe need to optimize
your database settings for this change. The datalists table has been removed. All settings from datalists table have
been merged into the config table.

Metastrings in the database have been denormalized for performance purposes. We removed the metastrings table and
put all the string values directly in the metadata and annotation tables. You need to update your custom queries to reflect
these changes. Also the msv and msn table aliases are no longer available. It is best practice not to rely on the table
aliases used in core queries. If you need to use custom clauses you should do your own joins.

From the „users_entity“ table, the password and hash columns have been removed.

The geocode_cache table has been removed as it was no longer used.

subtype column in entities table no longer holds a subtype ID, but a subtype string entity_subtypes table has
been dropped.

378 Kapitel 3. Continue Reading

Elgg Documentation, Release master

type, subtype and access_id columns in river table have been dropped. For queries without elgg_get_river()
join the entities table on object_guid to check the type and the subtype of the entity. Access column hasn’t been
in use for some time: queries are built to ensure access to all three entities (subject, object and target).

Changes in elgg_get_entities, elgg_get_metadata and elgg_get_annotations getter functions

elgg_get_entities now accepts all options that were previously distributed bet-
ween elgg_get_entities_from_metadata, elgg_get_entities_from_annotations,
elgg_get_entities_from_relationship, elgg_get_entities_from_private_settings and
elgg_get_entities_from_access_id. The latter have been been deprecated.

Passing raw MySQL statements to options is deprecated. Plugins are advised to use closures that receive an instance of
\Elgg\Database\QueryBuilder and prepare the statement using database abstraction layer. On one hand this will
ensure that all statements are properly sanitized using the database driver, on the other hand it will allow us to transition
to testable object-oriented query building.

wheres statements should not use raw SQL strings, instead pass an instance of \Elgg\Database\
Clauses\WhereClause or a closure that returns an instance of \Doctrine\DBAL\Query\Expression\
CompositeExpression:

elgg_get_entities([
'wheres' => [

function(\Elgg\Database\QueryBuilder $qb, $alias) {
$joined_alias = $qb->joinMetadataTable($alias, 'guid', 'status');
return $qb->compare("$joined_alias.name", 'in', ['draft', 'unsaved_draft'],␣

→˓ELGG_VALUE_STRING);
}

]
]);

joins, order_by, group_by, selects clauses should not use raw SQL strings. Use closures that receive an instance
of \Elgg\Database\QueryBuilder and return a prepared statement.

The reverse_order_by option has been removed.

Plugins should not rely on joined and selected table aliases. Closures passed to the options array will receive a second
argument that corresponds to the selected table alias. Plugins must perform their own joins and use joined aliases
accordingly.

Note that all of the private API around building raw SQL strings has also been removed. If you were relying on them
in your plugins, be advised that anything marked as @access private or @internal in core can be modified and
removed at any time, and we do not guarantee any backward compatibility for those functions. DO NOT USE THEM.
If you find yourself needing to use them, open an issue on Github and we will consider adding a public equivalent.

Boolean entity properties

Storage of metadata, annotation and private setting values has been aligned.

Boolean values are cast to integers when saved: false is stored as 0 and true is stored as 1. This has brea-
king implications for private settings, which were previously stored as empty strings for false values. Plug-
ins should write their own migration scripts to alter DB values from empty strings to 0 (for private settings
that are expected to store boolean values) to ensure that elgg_get_entities() can retrieve these values with
private_setting_name_value_pairs containing false values. This applies to plugin settings, as well as any pri-
vate settings added to entities.

3.7. Appendix 379

Elgg Documentation, Release master

Metadata Changes

Metadata is no longer access controlled. If your plugin created metadata with restricted access, those restrictions will
not be honored. You should use annotations or entities instead, which do provide access control.

Do not read or write to the access_id property on ElggMetadata objects.

Metadata is no longer enabled or disabled. You can no longer perform the enable and disable API calls on metadata.

Metadata no longer has an owner_guid. It is no longer possible to query metadata based on owner_guids. Sub-
sequently, ElggMetadata::canEdit() will always return true regardless of the logged in user, unless explicitly
overriden by a plugin hook.

Permissions and Access

User capabilities service will no longer trigger permission check hooks when:

• permissions are checked for an admin user

• permissions are checked when access is ignored with elgg_set_ignore_access()

This means that plugins can no longer alter permissions in aforementioned cases.

elgg_check_access_overrides() has been removed, as plugins will no longer need to validate access overrides.

The translations for the default Elgg access levels have new translation language keys.

Multi Site Changes

Pre 3.0 Elgg has some (partial) support for having multiple sites in the same database. This Multi Site concept has been
completely removed in 3.0. Entities no longer have the site_guid attribute. This means there is no longer the ability to
have entities on different sites. If you currently have multiple sites in your database, upgrading Elgg to 3.0 will fail.
You need to separate the different sites into separate databases/tables.

Related to the removal of the Multi Site concept in Elgg, there is no longer a need for entities having a ‚member_of_site‘
relationship with the Site Entity. All functions related to adding/removing this relationship has been removed. All
existing relationships will be removed as part of this upgrade.

Setting ElggSite::$url has no effect. Reading the site URL always pulls from the $CONFIG->wwwroot set in set-
tings.php, or computed by Symphony Request.

ElggSite::save() will fail if it isn’t the main site.

Entity Subtable Changes

The subtable sites_entity for ElggSite no longer exists. All attributes have been moved to metadata. The sub-
table groups_entity for ElggGroup no longer exists. All attributes have been moved to metadata. The subta-
ble objects_entity for ElggObject no longer exists. All attributes have been moved to metadata. The subtable
users_entity for ElggUser no longer exists. All attributes have been moved to metadata.

If you have custom queries referencing this table you need to update them. If you have function that rely on
Entity->getOriginalAttributes() be advised that this will only return the base attributes of an ElggEntity
and no longer contain the secondary attributes.

380 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Friends and Group Access Collection

The access collections table now has a subtype column. This extra data helps identifying the purpose of the ACL. The
user owned access collections are assumed to be used as Friends Collections and now have the ‚friends_collection‘ sub-
type. The groups access collection information was previously stored in the group_acl metadata. With the introduction
of the ACL subtype this information has been moved to the ACL subtype attribute.

The ACCESS_FRIENDS access_id has been migrated to an actual access collection (with the subtype friends). All
entities and annotations have been updated to use the new access collection id. The access collection is created when
a user is created. When a relationship of the type friends is created, the related guid will also be added to the access
collection. You can no longer save or update entities with the access id ACCESS_FRIENDS.

Subtypes no longer have an ID

Entity subtypes have been denormalized. entity_subtypes table has been removed and subtype column in entities
table simply holds the string representation of the subtype.

Consequently, all API around adding/updating entity subtypes and classes have been removed.

Plugins can now use elgg_set_entity_class() and elgg_get_entity_class() to register a custom entity class
at runtime (e.g. in system init handler).

All entities now MUST have a subtype. By default, the following subtypes are added and reserved:

• user for users

• group for groups

• site for sites

Custom class loading

Elgg no longer provides API functions to register custom classes. If you need custom classes you can use PSR-0 classes
in the /classes folder of your plugin or use composer for autoloading of additional classes.

The following class registration related functions have been removed:

• elgg_get_class_loader

• elgg_register_class

• elgg_register_classes

Dependency Injection Container

Plugins can now define their services and attach them to Elgg’s public DI container by providing definitions in
elgg-services.php in the root of the plugin directory.

elgg() no longer returns an instance of Elgg application, but a DI container instance.

3.7. Appendix 381

Elgg Documentation, Release master

Search changes

We have added a search service into core, consequently the search plugin now only provides a user interface for
displaying forms and listing search results. Many of the views in the search plugin have been affected by this change.

The FULLTEXT indices have been removed on various tables. The search plugin will now always use a like query
when performing a search.

See Search Service and Search hooks documentation for detailed information about new search capabilities.

Form and field related changes

• input/password: by default this field will no longer show a value passed to it, this can be overridden by passing
the view var always_empty and set it to false

• input/submit, input/reset and input/button are now rendered with a <button> instead of the <input>
tag. These input view also accept text and icon parameters.

• output/url now sets .elgg-anchor class on anchor elements and accepts icon parameter. If no text is set,
the href parameter used as a label will be restricted to 100 characters.

• output/url now supports a badge parameter, which can be used where a counter, a badge, or similar is required
as a postfix (mainly in menu items that have counters).

• output/tags no longer uses tags with floats and instead it relies on inherently inline elements such as
 and <a>

Entity and River Menu Changes

The Entity and River menu now shows all the items in a dropdown. Social actions like liking or commenting are moved
to an alternate menu called the social menu, which is meant for social actions.

Removed libraries

elgg_register_library and elgg_load_library have been removed. These functions had little impact on per-
formance (especially with OPCache enabled), and made it difficult for other plugins to work with APIs contained in
libraries. Additionally it was difficult for developers to know that APIs were contained in a library while there being
autocompleted by IDE.

If you are concerned with performance, move the logic to classes and let PHP autoload them as necessary, otherwise
use require_once and require your libraries.

Removed pagehandling

• file/download

• file/search

• groupicon

• twitterservice

• collections/pickercallback

• discussion/reply: See Discussion replies moved to comments

382 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• expages

• invitefriends: Use friends/{username}/invite

• messages/compose: Use messages/add

• reportedcontent

Removed actions

• file/download: Use elgg_get_inline_url or elgg_get_download_url

• file/delete: Use entity/delete action

• import/opendd

• discussion/reply/save: See Discussion replies moved to comments

• discussion/reply/delete: See Discussion replies moved to comments

• comment/delete: Use entity/delete action

• uservalidationbyemail/bulk_action: use admin/user/bulk/validate or admin/user/bulk/
delete

• uservalidationbyemail/delete: use admin/user/bulk/delete

• uservalidationbyemail/validate: use admin/user/bulk/validate

• invitefriends/invite: use friends/invite

Inheritance changes

• ElggData (and hence most Elgg domain objects) no longer implements Exportable

• ElggEntity no longer implements Importable

• ElggGroup no longer implements Friendable

• ElggRelationship no longer implements Importable

• ElggSession no longer implements ArrayAccess

• Elgg\Application\Database no longer extends Elgg\Database

Removed JavaScript APIs

• admin.js

• elgg.widgets: Use the elgg/widgets module. The „widgets“ layouts do this module automatically

• lightbox.js: Use the elgg/lightbox module as needed

• lightbox/settings.js: Use the getOptions, ui.lightbox JS hook or the data-colorbox-opts attri-
bute

• elgg.ui.popupClose: Use the elgg/popup module

• elgg.ui.popupOpen: Use the elgg/popup module

• elgg.ui.initAccessInputs

• elgg.ui.river

3.7. Appendix 383

Elgg Documentation, Release master

• elgg.ui.initDatePicker: Use the input/date module

• elgg.ui.likesPopupHandler

• elgg.embed: Use the elgg/embed module

• elgg.discussion: Use the elgg/discussion module

• embed/custom_insert_js: Use the embed, editor JS hook

• elgg/ckeditor.js: replaced by elgg-ckeditor.js

• elgg/ckeditor/set-basepath.js

• elgg/ckeditor/insert.js

• jQuery.cookie: Use elgg.session.cookie

• jquery.jeditable

• likes.js: The elgg/likes module is loaded automatically

• messageboard.js

• elgg.autocomplete is no longer defined.

• elgg.messageboard is no longer defined.

• jQuery.fn.friendsPicker

• elgg.ui.toggleMenu is no longer defined

• elgg.ui.toggleMenuItems: Use data-toggle attribute when registering toggleable menu items

• uservalidationbyemail/js.php: Use the elgg/uservalidationbyemail module

• discussion.js: See Discussion replies moved to comments

Removed hooks/events

• Event login, user: Use login:before or login:after. Note the user is not logged in during the login:before event

• Event delete, annotations: Use delete, annotation
• Event pagesetup, system: Use the menu or page shell hooks instead

• Event upgrade, upgrade: Use upgrade, system instead

• Hook index, system: Override the resources/index view

• Hook object:notifications, <type>: Use the hook send:before, notifications
• Hook output:before, layout: Use view_vars, page/layout/<layout_name>
• Hook output:after, layout: Use view, page/layout/<layout_name>
• Hook email, system: Use more granular <hook>, system:email hooks

• Hook email:message, system: Use zend:message, system:email hook

• Hook members:list, <page>: Use your own pagehandler or route hook

• Hook members:config, <page>: Use register, menu:filter:members
• Hook profile_buttons, group: Use register, menu:title

384 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Removed forms/actions

• notificationsettings/save form and action

• notificationsettings/groupsave form and action

• discussion/reply/save form and action

APIs that now accept only an $options array

• ElggEntity::getAnnotations

• ElggEntity::getEntitiesFromRelationship

• ElggGroup::getMembers

• ElggUser::getGroups

• ElggUser::getFriends (as part of Friendable)

• ElggUser::getFriendsOf (as part of Friendable)

• ElggUser::getFriendsObjects (as part of Friendable)

• ElggUser::getObjects (as part of Friendable)

• find_active_users

• elgg_get_admin_notices

Plugin functions that now require an explicit $plugin_id

• elgg_get_all_plugin_user_settings

• elgg_set_plugin_user_setting

• elgg_unset_plugin_user_setting

• elgg_get_plugin_user_setting

• elgg_set_plugin_setting

• elgg_get_plugin_setting

• elgg_unset_plugin_setting

• elgg_unset_all_plugin_settings

Class constructors that now accept only a stdClass object or null

• ElggAnnotation: No longer accepts an annotation ID

• ElggGroup: No longer accepts a GUID

• ElggMetadata: No longer accepts a metadata ID

• ElggObject: No longer accepts a GUID

• ElggRelationship: No longer accepts a relationship ID or null

• ElggSite: No longer accepts a GUID or URL

• ElggUser: No longer accepts a GUID or username

3.7. Appendix 385

Elgg Documentation, Release master

• ElggPlugin: No longer accepts a GUID or path. Use ElggPlugin::fromId to construct a plugin from its path

Miscellaneous API changes

• ElggBatch: You may only access public properties

• ElggEntity: The tables_split and tables_loaded properties were removed

• ElggEntity: Empty URLs will no longer be normalized. This means entities without URLs will no longer result
in the site URL

• ElggGroup::removeObjectFromGroup requires passing in an ElggObject (no longer accepts a GUID)

• ElggUser::$salt no longer exists as an attribute, nor is it used for authentication

• ElggUser::$password no longer exists as an attribute, nor is it used for authentication

• elgg_get_widget_types no longer supports $exact as the 2nd argument

• elgg_instanceof no longer supports the fourth class argument

• elgg_view: The 3rd and 4th (unused) arguments have been removed. If you use the $viewtype argument, you
must update your usage.

• elgg_view_icon no longer supports true as the 2nd argument

• elgg_list_entities no longer supports the option view_type_toggle

• elgg_list_registered_entities no longer supports the option view_type_toggle

• elgg_log no longer accepts the level "DEBUG"

• elgg_dump no longer accepts a $to_screen argument.

• elgg_gatekeeper and elgg_admin_gatekeeper no longer report login or admin as forward reason, but
403

• Application::getDb() no longer returns an instance of Elgg\Database, but rather a Elgg\Application\
Database

• $CONFIG is no longer available as a local variable inside plugin start.php files.

• elgg_get_config('siteemail') is no longer available. Use elgg_get_site_entity()->email.

• ElggEntity::saveIconFromUploadedFile only saves master size, the other sizes are created when requested
by ElggEntity::getIcon() based on the master size

• ElggEntity::saveIconFromLocalFile only saves master size, the other sizes are created when requested
by ElggEntity::getIcon() based on the master size

• ElggEntity::saveIconFromElggFile only saves master size, the other sizes are created when requested by
ElggEntity::getIcon() based on the master size

• Group entities do no longer have the magic username attribute.

• Pagehandling will no longer detect group:<guid> in the URL

• The CRON interval reboot is removed.

• The URL endpoints js/ and css/ are no longer supported. Use elgg_get_simplecache_url().

• The generic comment save action no longer sends the notification directly, this has been offloaded to the notifi-
cation system.

• The script engine/start.php is removed.

386 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• The functions set_config, unset_config and get_config have been deprecated and replaced by
elgg_set_config, elgg_remove_config and elgg_get_config.

• Config values path, wwwroot, and dataroot are not read from the database. The settings.php file values are
always used.

• Config functions like elgg_get_config no longer trim keys.

• If you override the view navigation/menu/user_hover/placeholder, you must change the config key
lazy_hover:menus to elgg_lazy_hover_menus.

• The config value entity_types is no longer present or used.

• Uploaded images are autorotated based on their orientation metadata.

• The view object/widget/edit/num_display now uses an input/number field instead of input/select;
you might need to update your widget edit views accordingly.

• Annotation names are no longer trimmed during save

View extension behaviour changed

An extended view now will receive all the regular hooks (like the view_vars hook). It now is also possible to extend
view extensions. With this change in behaviour all view rendering will behave the same. It no longer matters if it was
used as an extension or not.

JavaScript hook calling order may change

When registering for hooks, the all keyword for wildcard matching no longer has any effect on the order that handlers
are called. To ensure your handler is called last, you must give it the highest priority of all matching handlers, or to
ensure your handler is called first, you must give it the lowest priority of all matching handlers.

If handlers were registered with the same priority, these are called in the order they were registered.

To emulate prior behavior, Elgg core handlers registered with the all keyword have been raised in priority. Some of
these handlers will most likely be called in a different order.

Widget layout related changes

The widget layout usage has been changed. Content is no longer drawn as part of the layout. You need to wrap you
content in another layout and use the widgets layout as part of your content. If you want some special content to show
if there are no widgets in the layout, you can now pass a special no_widgets parameter (as String or as a Closure).

When registering widgets you can no longer omit passing a context as the all context is no longer supported. You need
to explicitely pass the contexts for which the widget is intended.

3.7. Appendix 387

Elgg Documentation, Release master

Routing

Page handling using elgg_register_page_handler() has been deprecated.

We have added new routing API using elgg_register_route(), which allows plugins to define named routes, sub-
sequently using route names to generate URLs using elgg_generate_url().

See routing docs for details.

As a result of this change all core page handlers have been removed, and any logic contained within these page handlers
has been moved to respective resource views.

elgg_generate_entity_url() has been added as shortcut way to generate URLs from named routes that depend
on entity type and subtype.

Use of handler parameter in entity menus has been deprecated in favour of named entity routes.

Gatekeeper function have been refactored to serve as middleware in the routing process, and as such they no longer
return values. These functions throw HTTP exceptions that are then routed to error pages and can be redirected to other
pages via hooks.

Labelling

Entity and collection labelling conventions have changed to comply with the new routing patterns:

return [
'item:object:blog' => 'Blog',
'collection:object:blog' => 'Blogs',
'collection:object:blog:all' => 'All site blogs',
'collection:object:blog:owner' => '%s\'s blogs',
'collection:object:blog:group' => 'Group blogs',
'collection:object:blog:friends' => 'Friends\' blogs',
'add:object:blog' => 'Add blog post',
'edit:object:blog' => 'Edit blog post',

];

These conventions are used across the routing and navigation systems, so plugins are advised to follow them.

Request value filtering

set_input() and get_input() no longer trim values.

Action responses

All core and core plugin actions now all use the new Http Response functions like elgg_ok_response and
elgg_error_response instead of forward(). The effect of this change is that is most cases the ‚forward‘, ‚system‘ hook is
no longer triggered. If you like to influence the responses you now can use the ‚response‘, ‚action:<name/of/action>‘
hook. This gives you more control over the response and allows to target a specific action very easily.

388 Kapitel 3. Continue Reading

Elgg Documentation, Release master

HtmLawed is no longer a plugin

• Do not call elgg_load_library('htmlawed').

• In the hook params for 'config', 'htmlawed', the hook_tag function name changed.

New approach to page layouts

one_column, one_sidebar, two_sidebar and content layouts have been removed - instead layout rendering has
been centralized in the default. Updated default layout provides full control over the layout elements via $vars. For
maximum backwards compatibility, calls to elgg_view_layout() with these layout names will still yield expected
output, but the plugins should start using the default layout with an updated set of parameters.

Page layouts have been decomposed into smaller elements, which should make it easier for themes to target specific
layout elements without having to override layouts at large.

As a result of these changes:

• all layouts are consistent in how they handle title and filter menus, breadcrumbs and layout subviews

• all layouts can now be easily extended to have multiple tabs. Plugins can pass filter_id parameter that
will allow other plugins to hook into register, menu:filter:<filter_id> hook and add new tabs. If no
filter_id is provided, default register, menu:filter hook can be used.

• layout views and subviews now receive identifier and segments of the page being rendered

• layout parameters are available to title and filter menu hooks, which allows resources to provide additional context
information, for example, an $entity in case of a profile resource

Plugins and themes should:

• Update calls to elgg_view_layout() to use default layout

• Update replace nav parameter in layout views with breadcrumbs parameter

• Update their use of filter parameter in layout views by either providing a default set of filter tabs, or setting a
filter_id parameter and using hooks

• Remove page/layouts/one_column view

• Remove page/layouts/one_sidebar view

• Remove page/layouts/two_sidebar view

• Remove page/layouts/content view

• Update their use of page/layouts/default

• Update their use of page/layouts/error

• Update their use of page/layouts/elements/filter

• Update their use of page/layouts/elements/header

• Update their use of page/layouts/elements/footer

• Update their use of page/elements/title

• Update their use of navigation/breadcrumbs to pass $vars['breadcrumbs'] to
elgg_get_breadcrumbs()

• Update hook registrations for output:before, layout to view_vars, page/layout/<layout_name>

• Update hook registrations for output:after, layout to view, page/layout/<layout_name>

3.7. Appendix 389

Elgg Documentation, Release master

Likes plugin

Likes no longer uses Elgg’s toggle API, so only a single likes menu item is used. The add/remove actions no longer
return Ajax values directly, as likes status data is now returned with every Ajax request that sends a „guid“. When the
number of likes is zero, the likes_count menu item is now hidden by adding .hidden to the LI element, instead of
the anchor. Also the likes_count menu item is a regular link, and is no longer created by the likes/count view.

Notifications plugin

Notifications plugin has been rewritten dropping many views and actions. The purpose of this rewrite was to implement
a more efficient, extendable and scalable interface for managing notifications preferences. We have implemented a much
simpler markup and removed excessive styling and javascript that was required to make the old interface work.

If your plugin is extending any of the views or relies on any actions in the notifications plugin, it has to be updated.

Pages plugin

The suptype page_top has been migrated into the subtype page. The subtype page has it’s own class namely
ElggPage. In order to check if an ElggPage is a top page the class function ElggPage->isTopPage() was added.

All pages have a metadata value for parent_guid, for top pages this contains 0.

Profile plugin

All profile related functionality has been moved out of core into this plugin. Most noteable are the profile field admin
utility and the hook to set up the profile fields config data.

Data Views plugin

The Data Views plugin no longer comes bundled.

Twitter API plugin

The twitter_api plugin has been removed from the Elgg core. The plugin is still available as the Composer package
elgg/twitter_api, in order to install it add the following to you composer.json require section:

{
"require": {

"elgg/twitter_api": "~1.9"
}

}

390 Kapitel 3. Continue Reading

https://packagist.org/packages/elgg/twitter_api

Elgg Documentation, Release master

Legacy URLs plugin

The legacy_urls plugin has been removed from the Elgg core. The plugin is still available as the Composer package
elgg/legacy_urls, in order to install it add the following to you composer.json require section:

{
"require": {

"elgg/legacy_urls": "~2.3"
}

}

User validation by email plugin

The listing view of unvalidated users has been moved from the plugin to Elgg core. Some generic action (eg. validate
and delete) have also been moved to Elgg core.

Email delivery

To provide for more granularity in email handling and delivery, email, system hook has been removed. New email
service provides for several other replacement hooks that allow plugins to control email content, format, and transport
used for delivery.

elgg_set_email_transport() can now be used to replace the default Sendmail transport with another instance of
\Zend\Mail\Transport\TransportInterface, e.g. SMTP, in-memory, or file transport. Note that this function
must be called early in the boot process. Note that if you call this function on each request, using plugin settings to
determine transport config may not be very efficient - store these settings in as datalist or site config values, so they are
loaded from boot cache.

Theme and styling changes

Aalborg theme is no longer bundled with Elgg. Default core theme is now based on Aalboard, but it has undergone
major changes.

Notable changes in plugins:

• Topbar, navbar and header have been combined into a single responsive topbar component

• Default inner width is now 1280px (80rem * 16px/1rem)

• Preferred unit of measurement is now rem and not px

• The theme uses 8-point grid system <https://builttoadapt.io/intro-to-the-8-point-grid-system-d2573cde8632>

• Menus, layout elements and other components now use flexbox

• Reset is done using 8-point grid system <https://necolas.github.io/normalize.css/>

• Media queries have been rewritten for mobile-first experience

• Form elements (text inputs, buttons and selects) now have an equal height of 2.5rem

• Layout header is now positioned outside of the layout columns, which have been wrapped into
elgg-layout-columns

• z-index properties have been reviewed and stacked with simple iteration instead of 9999999
<https://hackernoon.com/my-approach-to-using-z-index-eca67feb079c>.

3.7. Appendix 391

https://packagist.org/packages/elgg/legacy_urls

Elgg Documentation, Release master

• Color scheme has been changed to highlight actionable elements and reduce abundance of gray shades

• search plugin no longer extends page/elements/header and instead page/elements/topbar renders
search/search_box view

• .elgg-icon no longer has a global font-size, line-height or color: these values will be inherited from
parent items

• Support for .elgg-icon-hover has been dropped

• User „hover“ icons are no longer covered with a „caret“ icon

Read more about Theming Principles

Also note, CSS views served via /cache URLs are pre-processed using CSS Crush <http://the-
echoplex.net/csscrush/>. If you make references to CSS variables or other elements, the definition must be
located within the same view output. E.g. A variable defined in elgg.css cannot be referenced in a separate CSS file
like colorbox.css.

Comments

Submitting comments is now AJAXed. After a succesful submission the comment list will be updated automatically.

The following changes have been made to the comment notifications.

• The language keys related to comment notifications have changed. Check the
generic_comment:notification:owner: language keys

• The action for creating a comment (action/comment/save) was changed. If your plugin overruled this action
you should have a look at it in order to prevent double notifications

Object listing views

• object/elements/full/body now wraps the full listing body in a .elgg-listing-full-body wrapper

• object/elements/full now supports attachments and responses which are rendered after listing body

• In core plugins, resource views no longer render comments/replies - instead they pass a show_responses flag
to the entity view, which renders the responses and passes them to the full listing view. Third party plugins will
need to update their uses of object/<subtype> and resources/<handler>/view views.

• Full discussion view is now rendered using object/elements/full view

• object/file now passes image (specialcontent) view as an attachment to the full listing view

Menu changes

Default sorting of menu items has been changed from text to priority.

Note that register and prepare hooks now use collections API. For the most part, all hooks should continue working,
as long as they are not performing complex operations with arrays.

Support for icon and badge parameters was added. Plugins should start using these parameters and prefer them to a
single text parameter. CSS should be used to control visibility of the label, icon and badge, instead of conditionals in
preparing menu items.

All menus are now wrapped with nav.elgg-menu-container to ensure that multiple menu sections have a single
parent element, and can be styled using flexbox or floats.

392 Kapitel 3. Continue Reading

Elgg Documentation, Release master

All menu items are now identified with with data-menu-item attribute, sections - with data-menu-section, con-
tainers with - data-menu-name attributes.

topbar menu:

• account menu item with priority 800 added to alt section

• site_notifications menu item is now a child of account with priority 100

• usersettings menu item is now a child of account with priority 300

• administration menu item is now a child of account with priority 800

• logout menu item is now a child of account with priority 900

• dashboard menu item now is now a child of acount has priority of 100

• In default section (profile, friends, messages), core menu items now use icon parameter and use CSS to
hide the label. Plugins that register items to this section and expect a visible label need to update their CSS.

• profile menu item is now a child of account

• friends menu item is now a child of account

entity menu:

• access menu item has been removed. Access information is now rendered in the entity byline.

user_hover menu:

• All items use the icon parameter.

• The layout of the dropdown has been changed. If you have modified the look and feel of this dropdown, you
might need to update your HTML/CSS.

widget menu:

• collapse menu item has been removed and CSS updated accordingly

title menu:

The profile plugin no longer uses the actions section of the user_hover menu, but registers regulare title menu
items.

extras menu:

This menu has been removed from the page layout. Menu items that registered for this menu have been moved to other
menus.

groups:my_status menu:

This menu has been removed from the group profile page.

site_notifications menu:

This menu has been removed. Site Notification objects now use the entity menu for actions.

site menu:

Registration of custom menu item defined in admin interface has been moved to register, menu:site hook.
navigation/menu/site view has been removed. Site menu now adds a more` menu item directly to the
``default section.

3.7. Appendix 393

Elgg Documentation, Release master

Entity icons

Default icon image files have been moved and re-mapped as follows:

• Default icons: views/default/icon/default/$size.png

• User icons: views/default/icon/user/default/$size.gif

• Group icons: views/default/icon/group/default/$size.gif in the groups plugin

Groups icon files have been moved from groups/<guid><size>.jpg relative to group owner’s directory on filestore
to a location prescribed by the entity icon service. Plugins should stop accessing files on the filestore directly and use
the entity icon API. Upgrade script is available via admin interface.

The generation of entity icons has ben changed. No longer will all the configured sizes be generated when calling one of
the entity icon functions (ElggEntity::saveIconFromUploadedFile, ElggEntity::saveIconFromLocalFile
or ElggEntity::saveIconFromElggFile), but only the master size. The other configured sizes will be generated
when requesting that size based of the master icon.

Icon glyphs

FontAwesome has been upgraded to version 5.0+. There were certain changes to how FontAwesome glyphs are rende-
red. The core will take care of most changes (e.g. mapping old icon names to new ones, and using the correct prefix for
brand and solid icons).

Autocomplete (user and friends pickers)

Friends Picker input is now rendered using input/userpicker.

Plugins should:

• Update overriden input/userpicker to support new only_friends parameter

• Remove friends picker CSS from their stylesheets

Friends collections

Friends collections UI has been moved to its own plugins - friends_collections.

Layout of .elgg-body elements

In 3.0, these elements by default no longer stretch to fill available space in a block context. They still clear floats and
allow breaking words to wrap text.

Core modules and layouts that relied on space-filling have been reworked for Flexbox and we encourage devs to do the
same, rather than use the problematic overflow: hidden.

394 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Delete river items

The function elgg_delete_river() which was deprecated in 2.3, has been reinstated. Notable changes between the
internals of this function are;

• It accepts all $options from elgg_get_river() but requires at least one of the following params to be set
id(s), annotation_id(s), subject_guid(s), object_guid(s), target_guid(s) or view(s)

• Since elgg_get_river by default has a limit on the number of river items it fetches, if you wish to remove all
river items you need to set limit to false

• Access is ignored when deleting river items

• Events are fired just before and after a river item has been deleted

Discussion replies moved to comments

Since discussion replies where mostly a carbon copy of comments, all discussion replies have been migrated to com-
ments. All related action, hooks, event, language keys etc. have been removed.

Bemerkung: Discussion comments will now show up in the Comments section of Search, no longer under the Dis-
cussion section.

Translations cleanup

All plugins have been scanned for unused translation keys. The unused keys have been removed. If there was a generic
translation available for the custom translation key, these have also been updated.

System Log

System log API has been moved out of core into a system_log plugin. logbrowser and logrotate plugins have
been merged into the system_log plugin.

Error logging

Sending elgg_log() and PHP error messages to page output is now only possible via the developers plugin „Log to
the screen“ setting. See the settings.example.php file for more information on using $CONFIG->debug in your
settings.php file. Debugging should generally be done via the xdebug extension or tail -f /path/to/error.
log on your server.

3.7. Appendix 395

Elgg Documentation, Release master

Composer asset plugin no longer required

Assets are now loaded from https://asset-packagist.org. FXP composer asset plugin is no longer required when installing
Elgg or updating composer dependencies.

Cron logs

The cron logs are no longer stored in the database, but on the filesystem (in dataroot). This will allow longer output to
be stored. A migration script was added to migrate the old database settings to the new location and remove the old
values from the database.

Removed / changed language keys

• The language keys related to comment notifications have changed. Check the
generic_comment:notification:owner: language keys

New MySQL schema features are not applied

New 3.0 installations require MySQL 5.5.3 (or higher) and use the utf8mb4 character set and LONGTEXT content
columns (notably allowing storing longer content and extended characters like emoji).

Miscellaneous changes

The settings „Allow visitors to register“ and „Restrict pages to logged-in users“ now appear on the Basic Settings admin
page.

Twitter API plugin

The twitter_api plugin no longer comes bundled with Elgg.

Unit and Integration Testing

Elgg’s PHPUnit bootstrap can now handle both unit and integration tests. Please note that you shouldn’t run tests
on a production site, as it may damage data integrity. To prevent data loss, you need to specify database settings via
environment variables. You can do so via the phpunit.xml bootstrap.

Plugins can now implement their own PHPUnit tests by extending \Elgg\UnitTestCase and \Elgg\
IntegrationTestCase classes. plugins test suite will automatically autoload PHPUnit tests from mod/
<plugin_id>/tests/phpunit/unit and mod/<plugin_id>/tests/phpunit/integration.

Prior to running integration tests, you need to enable the plugins that you wish to test alongside core API.

\Elgg\IntegrationTestCase uses \Elgg\Seeding trait, which can be used to conveniently build new entities and
write them to the database.

\Elgg\UnitTestCase does not use the database, but provides a database mocking interface, which allows tests to
define query specs with predefined returns.

396 Kapitel 3. Continue Reading

https://asset-packagist.org

Elgg Documentation, Release master

By default, both unit and integration tests will be run whenever phpunit is called. You can use --testsuite flag
to only run a specific suite: phpunit --testsuite unit or phpunit --testsuite integration or phpunit
--testsuite plugins.

For integration testing to run properly, plugins are advised to not put any logic into the root of start.php, and instead
return a Closure. This allows the testsuite to build a new Application instance without loosing plugin initialization
logic.

Plugins with simpletests will continue working as perviously. However, method signatures in the ElggCoreUnitTest
abstract class have changed and you will need to update your tests accordingly. Namely, it’s discouraged to use
__construct and __desctruct methods. setUp and tearDown have been marked as private and are used for con-
sistent test boostrapping and asserting pre and post conditions, your test case should use up and down methods instead.

Simpletests can no longer be executed from the admin interface of the developers plugin. Use Elgg cli command:
elgg-cli simpletest

From 2.2 to 2.3

Contents

• PHP Version

• Deprecated APIs

• Deprecated Views

• New API for page and action handling

• New API for working with file uploads

• New API for manipulating images

• New API for events

• New API for signing URLs

• Extendable form views

• Metadata access_id

• New API for extracting class names from arrays

• Notifications

• Entity list functions can output tables

• Inline tabs components

• API to alter registration and login URL

• Support for fieldsets in forms

• Lightbox

3.7. Appendix 397

Elgg Documentation, Release master

PHP Version

PHP 5.5 has reached end of life in July 2016. To ensure that Elgg sites are secure, we now require PHP 5.6 for new
installations.

Existing installations can continue using PHP 5.5 until Elgg 3.0.

In order to upgrade Elgg to 2.3 using composer while using PHP 5.5, you may need to use --ignore-platform-reqs
flag.

Deprecated APIs

• Registering for to:object hook by the extender name: Use to:object, annotation and to:object,
metadata hooks instead.

• ajax_forward_hook(): No longer used as handler for ‚forward‘,‘all‘ hook. Ajax response is now wrapped by
the ResponseFactory

• ajax_action_hook(): No longer used as handler for ‚action‘,‘all‘ hook. Output buffering now starts before
the hook is triggered in ActionsService

• elgg_error_page_handler(): No longer used as a handler for ‚forward‘,<error_code> hooks

• get_uploaded_file(): Use new file uploads API instead

• get_user_notification_settings(): Use ElggUser::getNotificationSettings()

• set_user_notification_setting(): Use ElggUser::setNotificationSetting()

• pagesetup, system event: Use the menu or page shell hooks instead.

• elgg.walled_garden JavaScript is deprecated: Use elgg/walled_garden AMD module instead.

• elgg()->getDb()->getTableprefix(): Use elgg_get_config('dbprefix').

• Private update_entity_last_action(): Refrain from manually updating last action timestamp.

• Setting non-public access_id on metadata is deprecated. See below.

• get_resized_image_from_existing_file(): Use elgg_save_resized_image().

• get_resized_image_from_uploaded_file(): Use elgg_save_resized_image() in combination with
upload API.

• get_image_resize_parameters() will be removed.

• elgg_view_input(): Use elgg_view_field(). Apologies for the API churn.

Deprecated Views

• resources/file/world: Use the resources/file/all view instead.

• resources/pages/world: Use the resources/pages/all view instead.

• walled_garden.js: Use the elgg/walled_garden module instead.

398 Kapitel 3. Continue Reading

Elgg Documentation, Release master

New API for page and action handling

Page handlers and action script files should now return an instance of \Elgg\Http\ResponseBuilder. Plugins should
use the following convenience functions to build responses:

• elgg_ok_response() sends a 2xx response with HTML (page handler) or JSON data (actions)

• elgg_error_response() sends a 4xx or 5xx response without content/data

• elgg_redirect_response() silently redirects the request

New API for working with file uploads

• elgg_get_uploaded_files() - returns an array of Symfony uploaded file objects

• ElggFile::acceptUploadedFile() - moves an uploaded file to Elgg’s filestore

New API for manipulating images

New image manipulation service implements a more efficient approach to cropping and resizing images.

• elgg_save_resized_image() - crops and resizes an image to preferred dimensions

New API for events

• elgg_clear_event_handlers() - similar to elgg_clear_plugin_hook_handlers this functions removes
all registered event handlers

New API for signing URLs

URLs can now be signed with a SHA-256 HMAC key and validated at any time before URL expiry. This feature can
be used to tokenize action URLs in email notifications, as well as other uses outside of the Elgg installation.

• elgg_http_get_signed_url() - signs the URL with HMAC key

• elgg_http_validate_signed_url() - validates the signed URL

• elgg_signed_request_gatekeeper() - gatekeeper that validates the signature of the current request

Extendable form views

Form footer rendering can now be deferred until the form view and its extensions have finished rendering. This allows
plugins to collaborate on form views without breaking the markup logic.

• elgg_set_form_footer() - sets form footer for deferred rendering

• elgg_get_form_footer() - returns currently set form footer

3.7. Appendix 399

Elgg Documentation, Release master

Metadata access_id

It’s now deprecated to create metadata with an explicit access_id value other than ACCESS_PUBLIC.

In Elgg 3.0, metadata will not be access controlled, and will be available in all contexts. If your plugin relies on access
control of metadata, it would be wise to migrate storage to annotations or entities instead.

New API for extracting class names from arrays

Similar to elgg_extract(), elgg_extract_class() extracts the „class“ key (if present), merges into existing class
names, and always returns an array.

Notifications

• A high level 'prepare','notification' hook is now triggered for instant and subscription notifications and
can be used to alter notification objects irrespective of their type.

• 'format','notification:<method>' hook is now triggered for instant and subscription notifications and
can be used to format the notification (e.g. strip HTML tags, wrap the notification body in a template etc).

• Instant notifications are now handled by the notifications service, hence almost all hooks applicable to subscrip-
tion notifications also apply to instant notifications.

• elgg_get_notification_methods() can be used to obtain registered notification methods

• Added ElggUser::getNotificationSettings() and ElggUser::setNotificationSetting()

Entity list functions can output tables

In functions like elgg_list_entities($options), table output is possible by setting $options['list_type']
= 'table' and providing an array of table columns as $options['columns']. Each column is an Elgg\Views\
TableColumn object, usually created via methods on the service elgg()->table_columns.

Plugins can provide or alter these factory methods (see Elgg\Views\TableColumn\ColumnFactory). See the view
admin/users/newest for a usage example.

Inline tabs components

Inline tabs component can now be rendered with page/components/tabs view. The components allows to switch bet-
ween pre-populated and ajax-loaded. See page/components/tabs in core views and theme_sandbox/components/
tabs in developers plugin for usage instructions and examples.

API to alter registration and login URL

• elgg_get_registration_url() should be used to obtain site’s registration URL

• elgg_get_login_url() should be used to obtain site’s login URL

• registration_url, site hook can be used to alter the default registration URL

• login_url, site hook can be used to alter the default login URL

400 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Support for fieldsets in forms

• elgg_view_field() replaces elgg_view_input(). It has a similar API, but accepts a single array.

• elgg_view_field() supports #type, #label, #help and #class, allowing unprefixed versions to be sent to
the input view $vars.

• The new view input/fieldset can be used to render a set of fields, each rendered with elgg_view_field().

Lightbox

• Lightbox css is no longer loaded as an external CSS file. Lightbox theme now extends elgg.css and admin.css

• Default lightbox config is now defined via 'elgg.data','site' server-side hook

From 2.1 to 2.2

Contents

• Deprecated APIs

• Deprecated Views

• Added elgg/popup module

• Added elgg/lightbox module

• Added elgg/embed module

• New API for handling entity icons

• Removed APIs

• Improved elgg/ckeditor module

Deprecated APIs

• elgg.ui.river JavaScript library: Remove calls to elgg_load_js('elgg.ui.river') from plugin code.
Update core/river/filter and forms/comment/save, if overwritten, to require component AMD modules

• elgg.ui.popupOpen() and elgg.ui.popupClose() methods in elgg.ui JS library: Use elgg/popup mo-
dule instead.

• lightbox.js library: Do not use elgg_load_js('lightbox.js'); unless your code references deprecated
elgg.ui.lightbox namespace. Use elgg/lightbox AMD module instead.

• elgg.embed library and elgg.embed object: Do not use elgg_load_js('elgg.embed'). Use elgg/embed
AMD module instead

• Accessing icons_sizes config value directly: Use elgg_get_icon_sizes()

• can_write_to_container(): Use ElggEntity::canWriteToContainer()

3.7. Appendix 401

Elgg Documentation, Release master

Deprecated Views

• elgg/ui.river.js is deprecated: Do not rely on simplecache URLs to work.

• groups/js is deprecated: Use groups/navigation AMD module as a menu item dependency for „feature“
and „unfeature“ menu items instead.

• lightbox/settings.js is deprecated: Use getOptions, ui.lightbox JS plugin hook or
data-colorbox-opts attribute.

• elgg/ckeditor/insert.js is deprecated: You no longer need to include it, hook registration takes place in
elgg/ckeditor module

• embed/embed.js is deprecated: Use elgg/embed AMD module.

Added elgg/popup module

New elgg/popup module can be used to build out more complex trigger-popup interactions, including binding custom
anchor types and opening/closing popups programmatically.

Added elgg/lightbox module

New elgg/lightbox module can be used to open and close the lightbox programmatically.

Added elgg/embed module

Even though rarely necessary, elgg/embed AMD module can be used to access the embed methods programmatically.
The module bootstraps itself when necessary and is unlikely to require further decoration.

New API for handling entity icons

• ElggEntity now implements \Elgg\EntityIcon interface

• elgg_get_icon_sizes() - return entity type/subtype specific icon sizes

• ElggEntity::saveIconFromUploadedFile() - creates icons from an uploaded file

• ElggEntity::saveIconFromLocalFile() - creates icons from a local file

• ElggEntity::saveIconFromElggFile() - creates icons from an instance of ElggFile

• ElggEntity::getIcon() - returns an instanceof ElggIcon that points to entity icon location on filestore (this
may be just a placeholder, use ElggEntity::hasIcon() to validate if file has been written)

• ElggEntity::deleteIcon() - deletes entity icons

• ElggEntity::getIconLastChange() - return modified time of the icon file

• ElggEntity::hasIcon() - checks if an icon with given size has been created

• elgg_get_embed_url() - can be used to return an embed URL for an entity’s icon (served via /serve-icon
handler)

User avatars are now served via serve-file handler. Plugins should start using elgg_get_inline_url() and note
that:

• /avatar/view page handler and resource view have been deprecated

402 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• /mod/profile/icondirect.php file has been deprecated

• profile_set_icon_url() is no longer registered as a callback for "entity:icon:url","user" plugin hook

Group avatars are now served via serve-file handler. Plugins should start using elgg_get_inline_url() and note
that:

• groupicon page handler (groups_icon_handler()) has been deprecated

• /mod/groups/icon.php file has been deprecated

File entity thumbs and downloads are now served via serve-file handler. Plugins should start using
elgg_get_inline_url() and elgg_get_download_url() and note that:

• file/download page handler and resource view have been deprecated

• mod/file/thumbnail.php file has been deprecated

• Several views have been updated to use new download URLs, including:

– mod/file/views/default/file/specialcontent/audio/default.php

– mod/file/views/default/file/specialcontent/image/default.php

– mod/file/views/default/resources/file/view.php

– mod/file/views/rss/file/enclosure.php

Removed APIs

Just a warning that the private entity cache functions (e.g. _elgg_retrieve_cached_entity) have been removed.
Some plugins may have been using them. Plugins should not use private APIs as they will more often be removed
without notice.

Improved elgg/ckeditor module

elgg/ckeditor module can now be used to add WYSIWYG to a textarea programmatically with elgg/ckeditor#bind.

From 2.0 to 2.1

Contents

• Deprecated APIs

• Application::getDb() changes

• Added elgg/widgets module

3.7. Appendix 403

Elgg Documentation, Release master

Deprecated APIs

• ElggFile::setFilestore

• get_default_filestore

• set_default_filestore

• elgg_get_config('siteemail'): Use elgg_get_site_entity()->email

• URLs starting with /css/ and /js/: Use elgg_get_simplecache_url()

• elgg.ui.widgets JavaScript object is deprecated by elgg/widgets AMD module

Application::getDb() changes

If you’re using this low-level API, do not expect it to return an Elgg\Database instance in 3.0. It now returns an
Elgg\Application\Database with many deprecated. These methods were never meant to be made public API, but
we will do our best to support them in 2.x.

Added elgg/widgets module

If your plugin code calls elgg.ui.widgets.init(), instead use the elgg/widgets module.

From 1.x to 2.0

Contents

• Elgg can be now installed as a composer dependency instead of at document root

• Cacheable views must have a file extension in their names

• Dropped jquery-migrate and upgraded jquery to ^2.1.4

• JS and CSS views have been moved out of the js/ and css/ directories

• fxp/composer-asset-plugin is now required to install Elgg from source

• List of deprecated views and view arguments that have been removed

• All scripts moved to bottom of page

• Attribute formatter removes keys with underscores

• Breadcrumbs

• Callbacks in Queries

• Comments plugin hook

• Container permissions hook

• Creating or deleting a relationship triggers only one event

• Discussion feature has been pulled from groups into its own plugin

• Dropped login-over-https feature

• Elgg has migrated from ext/mysql to PDO MySQL

404 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• Event/Hook calling order may change

• export/ URLs are no longer available

• Icons migrated to Font Awesome

• Increase of z-index value in elgg-menu-site class

• input/autocomplete view

• Introduced third-party library for sending email

• Label elements

• Plugin Aalborg Theme

• Plugin Likes

• Plugin Messages

• Plugin Blog

• Plugin Bookmarks

• Plugin File

• Removed Classes

• Removed keys available via elgg_get_config()

• Removed Functions

• Removed methods

• Removed Plugin Hooks

• Removed Actions

• Removed Views

• Removed View Variables

• Removed libraries

• Specifying View via Properties

• Viewtype is static after the initial elgg_get_viewtype() call

• Deprecations

Elgg can be now installed as a composer dependency instead of at document root

That means an Elgg site can look something like this:

settings.php
vendor/
elgg/
elgg/
engine/
start.php

_graphics/
elgg_sprites.png

mod/
(Fortsetzung auf der nächsten Seite)

3.7. Appendix 405

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

blog
bookmarks
...

elgg_get_root_path and $CONFIG->path will return the path to the application root directory, which is not ne-
cessarily the same as Elgg core’s root directory (which in this case is vendor/elgg/elgg/).

Do not attempt to access the core Elgg from your plugin directly, since you cannot rely on its location on the filesystem.

In particular, don’t try load engine/start.php.

// Don't do this!
dirname(__DIR__) . "/engine/start.php";

To boot Elgg manually, you can use the class Elgg\Application.

// boot Elgg in mod/myplugin/foo.php
require_once dirname(dirname(__DIR__)) . '/vendor/autoload.php';
\Elgg\Application::start();

However, use this approach sparingly. Prefer Routing instead whenever possible as that keeps your public URLs and
your filesystem layout decoupled.

Also, don’t try to access the _graphics files directly.

readfile(elgg_get_root_path() . "_graphics/elgg_sprites.png");

Use Views instead:

echo elgg_view('elgg_sprites.png');

Cacheable views must have a file extension in their names

This requirement makes it possibile for us to serve assets directly from disk for performance, instead of serving them
through PHP.

It also makes it much easier to explore the available cached resources by navigating to dataroot/views_simplecache and
browsing around.

• Bad: my/cool/template

• Good: my/cool/template.html

We now cache assets by "$viewtype/$view", not md5("$viewtype|$view"), which can result in conflicts between
cacheable views that don’t have file extensions to disambiguate files from directories.

406 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Dropped jquery-migrate and upgraded jquery to ^2.1.4

jQuery 2.x is API-compatible with 1.x, but drops support for IE8-, which Elgg hasn’t supported for some time anyways.

See http://jquery.com/upgrade-guide/1.9/ for how to move off jquery-migrate.

If you’d prefer to just add it back, you can use this code in your plugin’s init:

elgg_register_js('jquery-migrate', elgg_get_simplecache_url('jquery-migrate.js'), 'head
→˓');
elgg_load_js('jquery-migrate');

Also, define a jquery-migrate.js view containing the contents of the script.

JS and CSS views have been moved out of the js/ and css/ directories

They also have been given .js and .css extensions respectively if they didn’t already have them:

Old view New view
js/view view.js
js/other.js other.js
css/view view.css
css/other.css other.css
js/img.png img.png

The main benefit this brings is being able to co-locate related assets. So a template (view.php) can have its CSS/JS
dependencies right next to it (view.css, view.js).

Care has been taken to make this change as backwards-compatible as possible, so you should not need to update any view
references right away. However, you are certainly encouraged to move your JS and CSS views to their new, canonical
locations.

Practically speaking, this carries a few gotchas:

The view_vars, $view_name and view, $view_name hooks will operate on the canonical view name:

elgg_register_plugin_hook_handler('view', 'css/elgg', function($hook, $view_name) {
assert($view_name == 'elgg.css') // not "css/elgg"

});

Using the view, all hook and checking for individual views may not work as intended:

elgg_register_plugin_hook_handler('view', 'all', function($hook, $view_name) {
// Won't work because "css/elgg" was aliased to "elgg.css"
if ($view_name == 'css/elgg') {
// Never executed...

}

// Won't work because no canonical views start with css/* anymore
if (strpos($view_name, 'css/') === 0) {
// Never executed...

}
});

3.7. Appendix 407

http://jquery.com/upgrade-guide/1.9/

Elgg Documentation, Release master

Please let us know about any other BC issues this change causes. We’d like to fix as many as possible to make the
transition smooth.

fxp/composer-asset-plugin is now required to install Elgg from source

We use fxp/composer-asset-plugin to manage our browser assets (js, css, html) with Composer, but it must be
installed globally before installing Elgg in order for the bower-asset/* packages to be recognized. To install it, run:

composer global require fxp/composer-asset-plugin

If you don’t do this before running composer install or composer create-project, you will get an error mes-
sage:

[InvalidArgumentException]
Package fxp/composer-asset-plugin not found

List of deprecated views and view arguments that have been removed

We dropped support for and/or removed the following views:

• canvas/layouts/*

• categories

• categories/view

• core/settings/tools

• embed/addcontentjs

• footer/analytics (Use page/elements/foot instead)

• groups/left_column

• groups/right_column

• groups/search/finishblurb

• groups/search/startblurb

• input/calendar (Use input/date instead)

• input/datepicker (Use input/date instead)

• input/pulldown (Use input/select instead)

• invitefriends/formitems

• js/admin (Use AMD and elgg_require_js instead of extending JS views)

• js/initialise_elgg (Use AMD and elgg_require_js instead of extending JS views)

• members/nav

• metatags (Use the ‚head‘, ‚page‘ plugin hook instead)

• navigation/topbar_tools

• navigation/viewtype

• notifications/subscriptions/groupsform

• object/groupforumtopic

408 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• output/calendar (Use output/date instead)

• output/confirmlink (Use output/url instead)

• page_elements/contentwrapper

• page/elements/shortcut_icon (Use the ‚head‘, ‚page‘ plugin hook instead)

• page/elements/wrapper

• profile/icon (Use elgg_get_entity_icon)

• river/object/groupforumtopic/create

• settings/{plugin}/edit (Use plugins/{plugin}/settings instead)

• user/search/finishblurb

• user/search/startblurb

• usersettings/{plugin}/edit (Use plugins/{plugin}/usersettings instead)

• widgets/{handler}/view (Use widgets/{handler}/content instead)

We also dropped the following arguments to views:

• „value“ in output/iframe (Use „src“ instead)

• „area2“ and „area3“ in page/elements/sidebar (Use „sidebar“ or view extension instead)

• „js“ in icon views (e.g. icon/user/default)

• „options“ to input/radio and input/checkboxes which aren’t key-value pairs will no longer be acceptable.

All scripts moved to bottom of page

You should test your plugin with the JavaScript error console visible. For performance reasons, Elgg no longer
supports script elements in the head element or in HTML views. elgg_register_js will now load all scripts at
the end of the body element.

You must convert inline scripts to AMD or to external scripts loaded with elgg_load_js.

Early in the page, Elgg provides a shim of the RequireJS require() function that simply queues code until the AMD
elgg and jQuery modules are defined. This provides a straightforward way to convert many inline scripts to use
require().

Inline code which will fail because the stack is not yet loaded:

<script>
$(function () {

// code using $ and elgg
});
</script>

This should work in Elgg 2.0:

<script>
require(['elgg', 'jquery'], function (elgg, $) {

$(function () {
// code using $ and elgg

});
(Fortsetzung auf der nächsten Seite)

3.7. Appendix 409

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

});
</script>

Attribute formatter removes keys with underscores

elgg_format_attributes() (and all APIs that use it) now filter out attributes whose name contains an underscore.
If the attribute begins with data-, however, it will not be removed.

Breadcrumbs

Breadcrumb display now removes the last item if it does not contain a link. To restore the previous behavior, replace
the plugin hook handler elgg_prepare_breadcrumbs with your own:

elgg_unregister_plugin_hook_handler('prepare', 'breadcrumbs', 'elgg_prepare_breadcrumbs
→˓');
elgg_register_plugin_hook_handler('prepare', 'breadcrumbs', 'myplugin_prepare_breadcrumbs
→˓');

function myplugin_prepare_breadcrumbs($hook, $type, $breadcrumbs, $params) {
// just apply excerpt to titles
foreach (array_keys($breadcrumbs) as $i) {

$breadcrumbs[$i]['title'] = elgg_get_excerpt($breadcrumbs[$i]['title'], 100);
}
return $breadcrumbs;

}

Callbacks in Queries

Make sure to use only valid callable values for „callback“ argument/options in the API.

Querying functions will now will throw a RuntimeException if is_callable() returns false for the given callback
value. This includes functions such as elgg_get_entities(), get_data(), and many more.

Comments plugin hook

Plugins can now return an empty string from 'comments',$entity_type hook in order to override the default com-
ments component view. To force the default comments component, your plugin must return false. If you were using
empty strings to force the default comments view, you need to update your hook handlers to return false.

410 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Container permissions hook

The behavior of the container_permissions_check hook has changed when an entity is being created: Before 2.0,
the hook would be called twice if the entity’s container was not the owner. On the first call, the entity’s owner would
be passed in as $params['container'], which could confuse handlers.

In 2.0, when an entity is created in a container like a group, if the owner is the same as the logged in user (almost
always the case), this first check is bypassed. So the container_permissions_check hook will almost always be
called once with $params['container'] being the correct container of the entity.

Creating or deleting a relationship triggers only one event

The „create“ and „delete“ relationship events are now only fired once, with "relationship" as the object type.

E.g. Listening for the "create", "member" or "delete", "member" event(s) will no longer capture group mem-
bership additions/removals. Use the "create", "relationship" or "delete", "relationship" events.

Discussion feature has been pulled from groups into its own plugin

The object, groupforumtopic subtype has been replaced with the object, discussion subtype. If your plugin
is using or altering the old discussion feature, you should upgrade it to use the new subtype.

Nothing changes from the group owners‘ point of view. The discussion feature is still available as a group tool and all
old discussions are intact.

Dropped login-over-https feature

For the best security and performance, serve all pages over HTTPS by switching the scheme in your site’s wwwroot to
https at http://yoursite.tld/admin/settings/advanced

Elgg has migrated from ext/mysql to PDO MySQL

Elgg now uses a PDO_MYSQL connection and no longer uses any ext/mysql functions. If you use mysql_* functions,
implicitly relying on an open connection, these will fail.

If your code uses one of the following functions, read below.

• execute_delayed_write_query()

• execute_delayed_read_query()

If you provide a callable $handler to be called with the results, your handler will now receive a \Doctrine\DBAL\
Driver\Statement object. Formerly this was an ext/mysql result resource.

3.7. Appendix 411

http://yoursite.tld/admin/settings/advanced

Elgg Documentation, Release master

Event/Hook calling order may change

When registering for events/hooks, the all keyword for wildcard matching no longer has any effect on the order that
handlers are called. To ensure your handler is called last, you must give it the highest priority of all matching handlers,
or to ensure your handler is called first, you must give it the lowest priority of all matching handlers.

If handlers were registered with the same priority, these are called in the order they were registered.

To emulate prior behavior, Elgg core handlers registered with the all keyword have been raised in priority. Some of
these handlers will most likely be called in a different order.

export/ URLs are no longer available

Elgg no longer provides this endpoint for exposing resource data.

Icons migrated to Font Awesome

Elgg’s sprites and most of the CSS classes beginning with elgg-icon- have been removed.

Usage of elgg_view_icon() is backward compatible, but static HTML using the elgg-icon classes will have to be
updated to the new markup.

Increase of z-index value in elgg-menu-site class

The value of z-index in the elgg-menu-site class has been increased from 1 to 50 to allow for page elements in the content
area to use the z-index property without the „More“ site menu’s dropdown being displayed behind these elements. If
your plugin/theme overrides the elgg-menu-site class or views/default/elements/navigation.css please adjust the z-index
value in your modified CSS file accordingly.

input/autocomplete view

Plugins that override the input/autocomplete view will need to include the source URL in the data-source at-
tribute of the input element, require the new elgg/autocomplete AMD module, and call its init method. The 1.x
javascript library elgg.autocomplete is no longer used.

Introduced third-party library for sending email

We are using the excellent Zend\Mail library to send emails in Elgg 2.0. There are likely edge cases that the library
handles differently than Elgg 1.x. Take care to test your email notifications carefully when upgrading to 2.0.

412 Kapitel 3. Continue Reading

https://github.com/Elgg/Elgg/pull/8578/files#diff-b3912b37ca7bd6c53a2968ccb6c22a94L22

Elgg Documentation, Release master

Label elements

The following views received label elements around some of the input fields. If your plugin/theme overrides these
views please check for the new content.

• views/default/core/river/filter.php

• views/default/forms/admin/plugins/filter.php

• views/default/forms/admin/plugins/sort.php

• views/default/forms/login.php

Plugin Aalborg Theme

The view page/elements/navbar now uses a Font Awesome icon for the mobile menu selector instead of an image.
The bars.png image and supporting CSS for the 1.12 rendering has been removed, so update your theme accordingly.

Plugin Likes

Objects are no longer likable by default. To support liking, you can register a handler to permit the annotation, or more
simply register for the hook ["likes:is_likable", "<type>:<subtype>"] and return true. E.g.

elgg_register_plugin_hook_handler('likes:is_likable', 'object:mysubtype', 'Elgg\
→˓Values::getTrue');

Just as before, the permissions_check:annotate hook is still called and may be used to override default behavior.

Plugin Messages

If you’ve removed or replaced the handler function messages_notifier to hide/alter the inbox icon, you’ll instead
need to do the same for the topbar menu handler messages_register_topbar. messages_notifier is no longer
used to add the menu link.

Messages will no longer get the metadata ‚msg‘ for newly created messages. This means you can not rely on that
metadata to exist.

Plugin Blog

The blog pages showing ‚Mine‘ or ‚Friends‘ listings of blogs have been changed to list all the blogs owned by the users
(including those created in groups).

3.7. Appendix 413

Elgg Documentation, Release master

Plugin Bookmarks

The bookmark pages showing ‚Mine‘ or ‚Friends‘ listings of bookmarks have been changed to list all the bookmarks
owned by the users (including those created in groups).

Plugin File

The file pages showing ‚Mine‘ or ‚Friends‘ listings of files have been changed to list all the files owned by the users
(including those created in groups).

Removed Classes

• ElggInspector

• Notable

• FilePluginFile: replace with ElggFile (or load with get_entity())

Removed keys available via elgg_get_config()

• allowed_ajax_views

• dataroot_in_settings

• externals

• externals_map

• i18n_loaded_from_cache

• language_paths

• pagesetupdone

• registered_tag_metadata_names

• simplecache_enabled_in_settings

• translations

• viewpath

• views

• view_path

• viewtype

• wordblacklist

Also note that plugins should not be accessing the global $CONFIG variable except for in settings.php.

414 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Removed Functions

• blog_get_page_content_friends

• blog_get_page_content_read

• count_unread_messages()

• delete_entities()

• delete_object_entity()

• delete_user_entity()

• elgg_get_view_location()

• elgg_validate_action_url()

• execute_delayed_query()

• extend_view()

• get_db_error()

• get_db_link()

• get_entities()

• get_entities_from_access_id()

• get_entities_from_access_collection()

• get_entities_from_annotations()

• get_entities_from_metadata()

• get_entities_from_metadata_multi()

• get_entities_from_relationship()

• get_filetype_cloud()

• get_library_files()

• get_views()

• is_ip_in_array()

• list_entities()

• list_entities_from_annotations()

• list_group_search()

• list_registered_entities()

• list_user_search()

• load_plugins()

• menu_item()

• make_register_object()

• mysql_*(): Elgg no longer uses ext/mysql

• remove_blacklist()

• search_for_group()

• search_for_object()

3.7. Appendix 415

Elgg Documentation, Release master

• search_for_site()

• search_for_user()

• search_list_objects_by_name()

• search_list_groups_by_name()

• search_list_users_by_name()

• set_template_handler()

• test_ip()

Removed methods

• ElggCache::set_variable()

• ElggCache::get_variable()

• ElggData::initialise_attributes()

• ElggData::getObjectOwnerGUID()

• ElggDiskFilestore::make_directory_root()

• ElggDiskFilestore::make_file_matrix()

• ElggDiskFilestore::user_file_matrix()

• ElggDiskFilestore::mb_str_split()

• ElggEntity::clearMetadata()

• ElggEntity::clearRelationships()

• ElggEntity::clearAnnotations()

• ElggEntity::getOwner()

• ElggEntity::setContainer()

• ElggEntity::getContainer()

• ElggEntity::getIcon()

• ElggEntity::setIcon()

• ElggExtender::getOwner()

• ElggFileCache::create_file()

• ElggObject::addToSite(): parent function in ElggEntity still available

• ElggObject::getSites(): parent function in ElggEntity still available

• ElggSite::getCollections()

• ElggUser::addToSite(): parent function in ElggEntity still available

• ElggUser::getCollections()

• ElggUser::getOwner()

• ElggUser::getSites(): parent function in ElggEntity still available

• ElggUser::listFriends()

• ElggUser::listGroups()

416 Kapitel 3. Continue Reading

Elgg Documentation, Release master

• ElggUser::removeFromSite(): parent function in ElggEntity still available

The following arguments have also been dropped:

• ElggSite::getMembers() - 2: $offset

• elgg_view_entity_list() - 3: $offset - 4: $limit - 5: $full_view - 6: $list_type_toggle - 7:
$pagination

Removed Plugin Hooks

• [display, view]: See the new plugin hook.

Removed Actions

• widgets/upgrade

Removed Views

• forms/admin/plugins/change_state

Removed View Variables

During rendering, the view system no longer injects these into the scope:

• $vars['url']: replace with elgg_get_site_url()

• $vars['user']: replace with elgg_get_logged_in_user_entity()

• $vars['config']: use elgg_get_config() and elgg_set_config()

• $CONFIG: use elgg_get_config() and elgg_set_config()

Also several workarounds for very old views are no longer performed. Make these changes:

• Set $vars['full_view'] instead of $vars['full'].

• Set $vars['name'] instead of $vars['internalname'].

• Set $vars['id'] instead of $vars['internalid'].

Removed libraries

• elgg:markdown: Elgg no longer provides a markdown implementation. You must provide your own.

3.7. Appendix 417

Elgg Documentation, Release master

Specifying View via Properties

The metadata $entity->view no longer specifies the view used to render in elgg_view_entity().

Similarly the property $annotation->view no longer has an effect within elgg_view_annotation().

Viewtype is static after the initial elgg_get_viewtype() call

elgg_set_viewtype() must be used to set the viewtype at runtime. Although Elgg still checks the view input and
$CONFIG->view initially, this is only done once per request.

Deprecations

It’s deprecated to read or write to metadata keys starting with filestore:: on ElggFile objects. In Elgg 3.0 this
metadata will be deleted if it points to the current data root path, so few file objects will have it. Plugins should only
use ElggFile::setFilestore if files need to be stored in a custom location.

Bemerkung: This is not the only deprecation in Elgg 2.0. Plugin developers should watch their site error logs.

From 1.10 to 1.11

Contents

• Comment highlighting

Comment highlighting

If your theme is using the file views/default/css/elements/components.php, you must add the following style
definitions in it to enable highlighting for comments and discussion replies:

.elgg-comments .elgg-state-highlight {
-webkit-animation: comment-highlight 5s;
animation: comment-highlight 5s;

}
@-webkit-keyframes comment-highlight {

from {background: #dff2ff;}
to {background: white;}

}
@keyframes comment-highlight {

from {background: #dff2ff;}
to {background: white;}

}

418 Kapitel 3. Continue Reading

Elgg Documentation, Release master

From 1.9 to 1.10

Contents

• File uploads

File uploads

If your plugin is using a snippet copied from the file/upload action to fix detected mime types for Microsoft zipped
formats, it can now be safely removed.

If your upload action performs other manipulations on detected mime and simple types, it is recommended to make
use of available plugin hooks:

• 'mime_type','file' for filtering detected mime types

• 'simple_type','file' for filtering parsed simple types

From 1.8 to 1.9

Contents

• The manifest file

• $CONFIG and $vars[‚config‘]

• Language files

• Notifications

• Adding items to the Activity listing

• Entity URL handlers

• Web services

In the examples we are upgrading an imaginary „Photos“ plugin.

Only the key changes are included. For example some of the deprecated functions are not mentioned here separately.

Each section will include information whether the change is backwards compatible with Elgg 1.8.

The manifest file

No changes are needed if your plugin is compatible with 1.8.

It’s however recommended to add the <id> tag. It’s value should be the name of the directory where the plugin is
located inside the mod/ directory.

If you make changes that break BC, you must update the plugin version and the required Elgg release.

Example of (shortened) old version:

3.7. Appendix 419

Elgg Documentation, Release master

<?xml version="1.0" encoding="UTF-8"?>
<plugin_manifest xmlns="http://www.elgg.org/plugin_manifest/1.8">

<name>Photos</name>
<author>John Doe</author>
<version>1.0</version>
<description>Adds possibility to upload photos and arrange them into albums.</

→˓description>
<requires>

<type>elgg_release</type>
<version>1.8</version>

</requires>
</plugin_manifest>

Example of (shortened) new version:

<?xml version="1.0" encoding="UTF-8"?>
<plugin_manifest xmlns="http://www.elgg.org/plugin_manifest/1.8">

<name>Photos</name>
<id>photos</id>
<author>John Doe</author>
<version>2.0</version>
<description>Adds possibility to upload photos and arrange them into albums.</

→˓description>
<requires>

<type>elgg_release</type>
<version>1.9</version>

</requires>
</plugin_manifest>

$CONFIG and $vars[‚config‘]

Both the global $CONFIG variable and the $vars['config'] parameter have been deprecated. They should be replaced
with the elgg_get_config() function.

Example of old code:

// Using the global $CONFIG variable:
global $CONFIG;
$plugins_path = $CONFIG->plugins_path

// Using the $vars view parameter:
$plugins_path = $vars['plugins_path'];

Example of new code:

$plugins_path = elgg_get_config('plugins_path');

Bemerkung: Compatible with 1.8

Bemerkung: See how the community_plugins plugin was updated: https://github.com/Elgg/community_plugins/

420 Kapitel 3. Continue Reading

https://github.com/Elgg/community_plugins/commit/f233999bbd1478a200ee783679c2e2897c9a0483
https://github.com/Elgg/community_plugins/commit/f233999bbd1478a200ee783679c2e2897c9a0483

Elgg Documentation, Release master

commit/f233999bbd1478a200ee783679c2e2897c9a0483

Language files

In Elgg 1.8 the language files needed to use the add_translation() function. In 1.9 it is enough to just return the
array that was previously passed to the function as a parameter. Elgg core will use the file name (e.g. en.php) to tell
which language the file contains.

Example of the old way in languages/en.php:

$english = array(
'photos:all' => 'All photos',

);
add_translation('en', $english);

Example of new way:

return array(
'photos:all' => 'All photos',

);

Warnung: Not compatible with 1.8

Notifications

One of the biggest changes in Elgg 1.9 is the notifications system. The new system allows more flexible and scalable
way of sending notifications.

Example of the old way:

function photos_init() {
// Tell core that we want to send notifications about new photos
register_notification_object('object', 'photo', elgg_echo('photo:new'));

// Register a handler that creates the notification message
elgg_register_plugin_hook_handler('notify:entity:message', 'object', 'photos_notify_

→˓message');
}

/**
* Set the notification message body
*
* @param string $hook Hook name
* @param string $type Hook type
* @param string $message The current message body
* @param array $params Parameters about the photo
* @return string
*/
function photos_notify_message($hook, $type, $message, $params) {

$entity = $params['entity'];
(Fortsetzung auf der nächsten Seite)

3.7. Appendix 421

https://github.com/Elgg/community_plugins/commit/f233999bbd1478a200ee783679c2e2897c9a0483
https://github.com/Elgg/community_plugins/commit/f233999bbd1478a200ee783679c2e2897c9a0483

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

$to_entity = $params['to_entity'];
$method = $params['method'];
if (elgg_instanceof($entity, 'object', 'photo')) {

$descr = $entity->excerpt;
$title = $entity->title;
$owner = $entity->getOwnerEntity();
return elgg_echo('photos:notification', array(

$owner->name,
$title,
$descr,
$entity->getURL()

));
}
return null;

}

Example of the new way:

function photos_init() {
elgg_register_notification_event('object', 'photo', array('create'));
elgg_register_plugin_hook_handler('prepare', 'notification:publish:object:photo',

→˓'photos_prepare_notification');
}

/**
* Prepare a notification message about a new photo
*
* @param string $hook Hook name
* @param string $type Hook type
* @param Elgg_Notifications_Notification $notification The notification to prepare
* @param array $params Hook parameters
* @return Elgg_Notifications_Notification
*/
function photos_prepare_notification($hook, $type, $notification, $params) {

$entity = $params['event']->getObject();
$owner = $params['event']->getActor();
$recipient = $params['recipient'];
$language = $params['language'];
$method = $params['method'];

// Title for the notification
$notification->subject = elgg_echo('photos:notify:subject', array($entity->title),

→˓$language);

// Message body for the notification
$notification->body = elgg_echo('photos:notify:body', array(

$owner->name,
$entity->title,
$entity->getExcerpt(),
$entity->getURL()

), $language);

(Fortsetzung auf der nächsten Seite)

422 Kapitel 3. Continue Reading

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

// The summary text is used e.g. by the site_notifications plugin
$notification->summary = elgg_echo('photos:notify:summary', array($entity->title),

→˓$language);

return $notification;
}

Warnung: Not compatible with 1.8

Bemerkung: See how the community_plugins plugin was updated to use the new system: https://github.com/Elgg/
community_plugins/commit/bfa356cfe8fb99ebbca4109a1b8a1383b70ff123

Notifications can also be sent with the notify_user() function.

It has however been updated to support three new optional parameters passed inside an array as the fifth parameter.

The parameters give notification plugins more control over the notifications, so they should be included whenever
possible. For example the bundled site_notifications plugin won’t work properly if the parameters are missing.

Parameters:

• object The object that we are notifying about (e.g. ElggEntity or ElggAnnotation). This is needed so that notifi-
cation plugins can provide a link to the object.

• action String that describes the action that triggered the notification (e.g. „create“, „update“, etc).

• summary String that contains a summary of the notification. (It should be more informative than the notification
subject but less informative than the notification body.)

Example of the old way:

// Notify $owner that $user has added a $rating to an $entity created by him

$subject = elgg_echo('rating:notify:subject');
$body = elgg_echo('rating:notify:body', array(

$owner->name,
$user->name,
$entity->title,
$entity->getURL(),

));

notify_user($owner->guid,
$user->guid,
$subject,
$body

);

Example of the new way:

// Notify $owner that $user has added a $rating to an $entity created by him

$subject = elgg_echo('rating:notify:subject');
(Fortsetzung auf der nächsten Seite)

3.7. Appendix 423

https://github.com/Elgg/community_plugins/commit/bfa356cfe8fb99ebbca4109a1b8a1383b70ff123
https://github.com/Elgg/community_plugins/commit/bfa356cfe8fb99ebbca4109a1b8a1383b70ff123

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

$summary = elgg_echo('rating:notify:summary', array($entity->title));
$body = elgg_echo('rating:notify:body', array(

$owner->name,
$user->name,
$entity->title,
$entity->getURL(),

));

$params = array(
'object' => $rating,
'action' => 'create',
'summary' => $summary,

);

notify_user($owner->guid,
$user->guid,
$subject,
$body,
$params

);

Bemerkung: Compatible with 1.8

Adding items to the Activity listing

add_to_river('river/object/photo/create', 'create', $user_guid, $photo_guid);

elgg_create_river_item(array(
'view' => 'river/object/photo/create',
'action_type' => 'create',
'subject_guid' => $user_guid,
'object_guid' => $photo_guid,

));

You can also add the optional target_guid parameter which tells the target of the create action.

If the photo would had been added for example into a photo album, we could add it by passing in also:

'target_guid' => $album_guid,

Warnung: Not compatible with 1.8

424 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Entity URL handlers

The elgg_register_entity_url_handler() function has been deprecated. In 1.9 you should use the
'entity:url', 'object' plugin hook instead.

Example of the old way:

/**
* Initialize the photo plugin
*/
my_plugin_init() {

elgg_register_entity_url_handler('object', 'photo', 'photo_url_handler');
}

/**
* Returns the URL from a photo entity
*
* @param ElggEntity $entity
* @return string
*/
function photo_url_handler($entity) {

return "photo/view/{$entity->guid}";
}

Example of the new way:

/**
* Initialize the photo plugin
*/
my_plugin_init() {

elgg_register_plugin_hook_handler('entity:url', 'object', 'photo_url_handler');
}

/**
* Returns the URL from a photo entity
*
* @param string $hook 'entity:url'
* @param string $type 'object'
* @param string $url The current URL
* @param array $params Hook parameters
* @return string
*/
function photo_url_handler($hook, $type, $url, $params) {

$entity = $params['entity'];

// Check that the entity is a photo object
if ($entity->getSubtype() !== 'photo') {

// This is not a photo object, so there's no need to go further
return;

}

return "photo/view/{$entity->guid}";
}

3.7. Appendix 425

Elgg Documentation, Release master

Warnung: Not compatible with 1.8

Web services

In Elgg 1.8 the web services API was included in core and methods were exposed using expose_function().
To enable the same functionality for Elgg 1.9, enable the „Web services 1.9“ plugin and replace all calls to
expose_function() with elgg_ws_expose_function().

From 1.7 to 1.8

Contents

• Updating core

• Updating plugins

Elgg 1.8 is the biggest leap forward in the development of Elgg since version 1.0. As such, there is more work to update
core and plugins than with previous upgrades. There were a small number of API changes and following our standard
practice, the methods we deprecated have been updated to work with the new API. The biggest changes are in the
standardization of plugins and in the views system.

Updating core

Delete the following core directories (same level as _graphics and engine):

• _css

• account

• admin

• dashboard

• entities

• friends

• search

• settings

• simplecache

• views

Warnung: If you do not delete these directories before an upgrade, you will have problems!

426 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Updating plugins

Use standardized routing with page handlers

• All: /page_handler/all

• User’s content: /page_handler/owner/:username

• User’s friends‘ content: /page_handler/friends/:username

• Single entity: /page_handler/view/:guid/:title

• Added: /page_handler/add/:container_guid

• Editing: /page_handler/edit/:guid

• Group list: /page_handler/group/:guid/all

Include page handler scripts from the page handler

Almost every page handler should have a page handler script. (Example: bookmarks/all => mod/bookmarks/
pages/bookmarks/all.php)

• Call set_input() for entity guids in the page handler and use get_input() in the page handler scripts.

• Call gatekeeper() and admin_gatekeeper() in the page handler function if required.

• The group URL should use the pages/:handler/owner.php script.

• Page handlers should not contain HTML.

• Update the URLs throughout the plugin. (Don’t forget to remove /pg/!)

Use standardized page handlers and scripts

• Store page handler scripts in mod/:plugin/pages/:page_handler/:page_name.php

• Use the content page layout in page handler scripts:

$content = elgg_view_layout('content', $options);

• Page handler scripts should not contain HTML.

• Call elgg_push_breadcrumb() in the page handler scripts.

• No need to set page owner if the URLs are in the standardized format.

• For group content, check the container_guid by using elgg_get_page_owner_entity().

3.7. Appendix 427

Elgg Documentation, Release master

The object/:subtype view

• Make sure there are views for $vars['full_view'] == true and $vars['full_view'] == false.
$vars['full_view'] replaced $vars['full].

• Check for the object in $vars['entity']. Use elgg_instance_of() to make sure it’s the type of entity you
want.

• Return true to short circuit the view if the entity is missing or wrong.

• Use elgg_view('object/elements/summary', array('entity' => $entity)); and
elgg_view_menu('entity', array('entity' => $entity)); to help format. You should use very
little markup in these views.

Update action structure

• Namespace action files and action names (example: mod/blog/actions/blog/save.php => action/blog/
save)

• Use the following action URLs:

– Add: action/:plugin/save

– Edit: action/:plugin/save

– Delete: action/:plugin/delete

• Make the delete action accept action/:handler/delete?guid=:guid so the metadata entity menu has the
correct URL by default.

Update deprecated functions

• Functions deprecated in 1.7 will produce visible errors in 1.8.

• You can also update functions deprecated in 1.8.

– Many registration functions simply added an elgg_ prefix for consistency, and should be easy to update.

– See /engine/lib/deprecated-1.8.php for the full list.

– You can set the debug level to “warning” to get visual reminders of deprecated functions.

Update the widget views

See the blog or file widgets for examples.

Update the group profile module

Use the blog or file plugins for examples. This will help with making your plugin themeable by the new CSS framework.

428 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Update forms

• Move form bodies to the forms/:action view to use Evan’s new elgg_view_form.

• Use input views in form bodies rather than html. This helps with theming and future-proofing.

• Add a function that prepares the form (see mod/file/lib/file.php for an example)

• Make your forms sticky (see the file plugin’s upload action and form prepare function).

The forms API is discussed in more detail in Forms + Actions.

Clean up CSS/HTML

We have added many CSS patterns to the base CSS file (modules, image block, spacing primitives). We encourage you
to use these patterns and classes wherever possible. Doing so should:

1. Reduce maintenance costs, since you can delete most custom CSS.

2. Make your plugin more compatible with community themes.

Look for patterns that can be moved into core if you need significant CSS.

We use hyphens rather than underscores in classes/ids and encourage you do the same for consistency.

If you do need your own CSS, you should use your own namespace, rather than elgg-.

Update manifest.xml

• Use http://el.gg/manifest17to18 to automate this.

• Don’t use the „bundled“ category with your plugins. That is only for plugins distributed with Elgg.

Update settings and user settings views

• The view for settings is now plugins/:plugin/settings (previously settings/:plugin/edit).

• The view for user settings is now plugins/:plugin/usersettings (previously usersettings/:plugin/
edit).

3.7.2 FAQs and Other Troubleshooting

Below are some commonly asked questions about Elgg.

Contents

• General

– „Plugin cannot start and has been deactivated“ or „This plugin is invalid“

– White Page (WSOD)

– Page not found

– Login token mismatch

3.7. Appendix 429

http://el.gg/manifest17to18

Elgg Documentation, Release master

– Form is missing __token or __ts fields

– Maintenance mode

– Missing email

– Server logs

– How does registration work?

– User validation

– Manually add user

– I’m making or just installed a new theme, but graphics or other elements aren’t working

– Changing profile fields

– Changing registration

– How do I change PHP settings using .htaccess?

– HTTPS login turned on accidently

– Using a test site

– 500 - Internal Server Error

– When I upload a photo or change my profile picture I get a white screen

– CSS is missing

– Should I edit the database manually?

– Internet Explorer (IE) login problem

– Emails don’t support non-Latin characters

– Session length

– File is missing an owner

– No images

– Deprecation warnings

– Javascript not working

– IP addresses in the logs are wrong

• Security

– Is upgrade.php a security concern?

– Should I delete install.php?

– Filtering

• Development

– What should I use to edit php code?

– I don’t like the wording of something in Elgg. How do I change it?

– How do I find the code that does x?

– Debug mode

– What events are triggered on every page load?

430 Kapitel 3. Continue Reading

Elgg Documentation, Release master

– Copy a plugin

General

Siehe auch:
Getting Help

„Plugin cannot start and has been deactivated“ or „This plugin is invalid“

This error is usually accompanied by more details explaining why the plugin is invalid. This is usually caused by an
incorrectly installed plugin.

If you are installing a plugin called „test“, there will be a test directory under mod. In that test directory there needs to
be a composer.json file /mod/test/composer.json.

If this file does not exist, it could be caused by:
• installing a plugin to the wrong directory

• creating a directory under /mod that does not contain a plugin

• a bad ftp transfer

• unzipping a plugin into an extra directory (myplugin.zip unzips to myplugin/myplugin)

• incompatible plugin

If you are on a Unix-based host and the files exist in the correct directory, check the permissions. Elgg must have read
access to the files and read + execute access on the directories.

White Page (WSOD)

A blank, white page (often called a „white screen of death“) means there is a PHP syntax error. There are a few
possible causes of this:

• corrupted file - try transfering the code again to your server

• a call to a php module that was not loaded - this can happen after you install a plugin that requires a specific
module.

• bad plugin - not all plugins have been written to the same quality so you should be careful which ones you
install.

To find where the error is occurring, change the .htaccess file to display errors to the browser. Set display_errors to
1 and load the same page again. You should see a PHP error in your browser. Change the setting back once you’ve
resolved the problem.

Bemerkung: If you are using the Developer’s Tools plugin, go to its settings page and make sure you have „Display
fatal PHP errors“ enabled.

If the white screen is due to a bad plugin, remove the latest plugins that you have installed by deleting their directories
and then reload the page.

3.7. Appendix 431

Elgg Documentation, Release master

Bemerkung: You can temporarily disable all plugins by creating an empty file at mod/disabled. You can then disable
the offending module via the administrator tools panel.

If you are getting a WSOD when performing an action, like logging in or posting a blog, but there are no error messages,
it’s most likely caused by non-printable characters in plugin code. Check the plugin for white spaces/new lines characters
after finishing php tag (?>) and remove them.

Page not found

If you have recently installed your Elgg site, the most likely cause for a page not found error is that mod_rewrite is
not setup correctly on your server. There is information in the Install Troubleshooting page on fixing this. The second
most likely cause is that your site url in your database is incorrect.

If you’ve been running your site for a while and suddenly start getting page not found errors, you need to ask yourself
what has changed. Have you added any plugins? Did you change your server configuration?

To debug a page not found error:

• Confirm that the link leading to the missing page is correct. If not, how is that link being generated?

• Confirm that the .htaccess rewrite rules are being picked up.

Login token mismatch

If you have to log in twice to your site and the error message after the first attempt says there was a token mismatch
error, the URL in Elgg’s settings does not match the URL used to access it. The most common cause for this is adding
or removing the „www“ when accessing the site. For example, www.elgg.org vs elgg.org. This causes a problem with
session handling because of the way that web browsers save cookies.

To fix this, you can add rewrite rules. To redirect from www.elgg.org to elgg.org in Apache, the rules might look like:

RewriteCond %{HTTP_HOST} .
RewriteCond %{HTTP_HOST} !^elgg\.org
RewriteRule (.*) http://elgg.org/$1 [R=301,L]

Redirecting from non-www to www could look like this:

RewriteCond %{HTTP_HOST} ^elgg\.org
RewriteRule ^(.*)$ http://www.elgg.org/$1 [R=301,L]

If you don’t know how to configure rewrite rules, ask your host for more information.

Form is missing __token or __ts fields

All Elgg actions require a security token, and this error occurs when that token is missing. This is either a problem with
your server configuration or with a 3rd party plugin.

If you experience this on a new installation, make sure that your server is properly configured and your rewrite rules
are correct. If you experience this on an upgrade, make sure you have updated your rewrite rules either in .htaccess
(Apache) or in the server configuration.

If you are experiencing this, disable all 3rd party plugins and try again. Very old plugins for Elgg don’t use security
tokens. If the problem goes away when plugins are disabled, it’s due to a plugin that should be updated by its author.

432 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Maintenance mode

To take your site temporarily offline, go to Administration -> Utilities -> Maintenance Mode. Complete the form and
hit save to disable your site for everyone except admin users.

Missing email

If your users are reporting that validation emails are not showing up, have them check their spam folder. It is possible
that the emails coming from your server are being marked as spam. This depends on many factors such as whether your
hosting provider has a problem with spammers, how your PHP mail configuration is set up, what mail transport agent
your server is using, or your host limiting the number of email that you can send in an hour.

If no one gets email at all, it is quite likely your server is not configured properly for email. Your server needs a program
to send email (called a Mail Transfer Agent - MTA) and PHP must be configured to use the MTA.

To quickly check if PHP and an MTA are correctly configured, create a file on your server with the following content:

<?php
$address = "your_email@your_host.com";

$subject = 'Test email.';

$body = 'If you can read this, your email is working.';

echo "Attempting to email $address...
";

if (mail($address, $subject, $body)) {
echo 'SUCCESS! PHP successfully delivered email to your MTA. If you don\'t see␣

→˓the email in your inbox in a few minutes, there is a problem with your MTA.';
} else {

echo 'ERROR! PHP could not deliver email to your MTA. Check that your PHP␣
→˓settings are correct for your MTA and your MTA will deliver email.';
}

Be sure to replace „your_email@your_host.com“ with your actual email address. Take care to keep quotes around it!
When you access this page through your web browser, it will attempt to send a test email. This test will let you know
that PHP and your MTA are correctly configured. If it fails–either you get an error or you never receive the email–you
will need to do more investigating and possibly contact your service provider.

Fully configuring an MTA and PHP’s email functionality is beyond the scope of this FAQ and you should search the
Internet for more resources on this. Some basic information on php parameters can be found on PHP’s site

Server logs

Most likely you are using Apache as your web server. Warnings and errors are written to a log by the web server and can
be useful for debugging problems. You will commonly see two types of log files: access logs and error logs. Information
from PHP and Elgg is written to the server error log.

• Linux – The error log is probably in /var/log/httpd or /var/log/apache2.

• Windows - It is probably inside your Apache directory.

• Mac OS - The error log is probably in /var/log/apache2/error_log

3.7. Appendix 433

mailto:your_email@your_host.com
http://php.net/manual/en/mail.configuration.php

Elgg Documentation, Release master

If you are using shared hosting without ssh access, your hosting provider may provide a mechanism for obtaining access
to your server logs. You will need to ask them about this.

How does registration work?

With a default setup, this is how registration works:

1. User fills out registration form and submits it

2. User account is created and disabled until validated

3. Email is sent to user with a link to validate the account

4. When a user clicks on the link, the account is validated

5. The user can now log in

Failures during this process include the user entering an incorrect email address, the validation email being marked as
spam, or a user never bothering to validate the account.

User validation

By default, all users who self-register must validate their accounts through email. If a user has problems validating an
account, you can validate users manually by going to Administration -> Users -> Unvalidated.

You can remove this requirement by deactivating the User Validation by Email plugin.

Bemerkung: Removing validation has some consequences: There is no way to know that a user registered with a
working email address, and it may leave you system open to spammers.

Manually add user

To manually add a user, under the Administer controls go to Users. There you will see a link title „Add new User“.
After you fill out the information and submit the form, the new user will receive an email with username and password
and a reminder to change the password.

Bemerkung: Elgg does not force the user to change the password.

I’m making or just installed a new theme, but graphics or other elements aren’t working

Make sure the theme is at the bottom of the plugin list.

Clear your browser cache and reload the page. To lighten the load on the server, Elgg instructs the browser to rarely
load the CSS file. A new theme will completely change the CSS file and a refresh should cause the browser to request
the CSS file again.

If you’re building or modifying a theme, make sure you have disabled the simple and system caches. This can be done
by enabling the Developer Tools plugin, then browsing to Administration -> Develop -> Settings. Once you’re satisfied
with the changes, enable the caches or performance will suffer.

434 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Changing profile fields

Within the Administration settings of Elgg is a page for replacing the default profile fields. Elgg by default gives the
administrator two choices:

• Use the default profile fields

• Replace the default with a set of custom profile fields

You cannot add new profile fields to the default ones. Adding a new profile field through the replace profile fields option
clears the default ones. Before letting in users, it is best to determine what profile fields you want, what field types they
should be, and the order they should appear. You cannot change the field type or order or delete fields after they have
been created without wiping the entire profile blank.

More flexibility can be gained through plugins. There is at least two plugins on the community site that enable you to
have more control over profile fields. The Profile Manager plugin has become quite popular in the Elgg community. It
lets you add new profile fields whenever you want, change the order, group profile fields, and add them to registration.

Changing registration

The registration process can be changed through a plugin. Everything about registration can be changed: the look and
feel, different registration fields, additional validation of the fields, additional steps and so on. These types of changes
require some basic knowledge of HTML, CSS, PHP.

Another option is to use the Profile Manager plugin that lets you add fields to both user profiles and the registration
form.

Create the plugin skeleton
Plugin skeleton

Changing registration display
Override the account/forms/register view

Changing the registration action handler
You can write your own action to create the user’s account

How do I change PHP settings using .htaccess?

You may want to change php settings in your .htaccess file. This is especially true if your hosting provider does not
give you access to the server’s php.ini file. The variables could be related to file upload size limits, security, session
length, or any number of other php attributes. For examples of how to do this, see the PHP documentation on this.

HTTPS login turned on accidently

If you have turned on HTTPS login but do not have SSL configured, you are now locked out of your Elgg install. To
turn off this configuration parameter, you will need to edit your database. Use a tool like phpMyAdmin to view your
database. Select the config table and delete the row that has the name https_login.

3.7. Appendix 435

https://community.elgg.org/plugins/385114
https://community.elgg.org/plugins/385114
http://us2.php.net/configuration.changes

Elgg Documentation, Release master

Using a test site

It is recommended to always try out new releases or new plugins on a test site before running them on a production
site (a site with actual users). The easiest way to do this is to maintain a separate install of Elgg with dummy accounts.
When testing changes it is important to use dummy accounts that are not admins to test what your users will see.

A more realistic test is to mirror the content from your production site to your test site. Following the instructions for
duplicating a site. Then make sure you prevent emails from being sent to your users. You could write a small plugin
that redirects all email to your own account (be aware of plugins that include their own custom email sending code so
you’ll have to modify those plugins). After this is done you can view all of the content to make sure the upgrade or new
plugin is functioning as desired and is not breaking anything. If this process sounds overwhelming, please stick with
running a simple test site.

500 - Internal Server Error

What is it?

A 500 - Internal Server Error means the web server experienced a problem serving a request.

Siehe auch:
The Wikipedia page on HTTP status codes

Possible causes

Web server configuration
The most common cause for this is an incorrectly configured server. If you edited the .htaccess file and added
something incorrect, Apache will send a 500 error.

Permissions on files
It could also be a permissions problem on a file. Apache needs to be able to read Elgg’s files. Using permissions
755 on directories and 644 on files will allow Apache to read the files.

When I upload a photo or change my profile picture I get a white screen

Most likely you don’t have the PHP GD library installed or configured properly. You may need assistance from the
administrator of your server.

CSS is missing

Wrong URL

Sometimes people install Elgg so that the base URL is localhost and then try to view the site using a hostname. In
this case, the browser won’t be able to load the CSS file. Try viewing the source of the web page and copying the link
for the CSS file. Paste that into your browser. If you get a 404 error, it is likely this is your problem. You will need to
change the base URL of your site.

436 Kapitel 3. Continue Reading

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#5xx_Server_Error

Elgg Documentation, Release master

Syntax error

Elgg stores its CSS as PHP code to provide flexibility and power. If there is a syntax error, the CSS file served to the
browser may be blank. Disabling non-bundled plugins is the recommended first step.

Rewrite rules errors

A bad .htaccess file could also result in a 404 error when requesting the CSS file. This could happen when doing an
upgrade and forgetting to also upgrade .htaccess.

Should I edit the database manually?

Warnung: No, you should never manually edit the database!

Will editing the database manually break my site?

Yes.

Can I add extra fields to tables in the database?

(AKA: I don’t understand the Elgg data model so I’m going to add columns. Will you help?)

No, this is a bad idea. Learn the data model and you will see that unless it’s a very specific and highly customized
installation, you can do everything you need within Elgg’s current data model.

I want to remove users. Can’t I just delete them from the elgg_entities table?

No, it will corrupt your database. Delete them through the site.

I want to remove spam. Can’t I just search and delete it from the elgg_entities table?

No, it will corrupt your database. Delete it through the site.

Someone on the community site told me to edit the database manually. Should I?

Who was it? Is it someone experienced with Elgg, like one of the core developers or a well-known plugin author? Did
he or she give you clear and specific instructions on what to edit? If you don’t know who it is, or if you can’t understand
or aren’t comfortable following the instructions, do not edit the database manually.

3.7. Appendix 437

Elgg Documentation, Release master

I know PHP and MySQL and have a legitimate reason to edit the database. Is it okay to manually edit
the database?

Make sure you understand Elgg’s data model and schema first. Make a backup, edit carefully, then test copiously.

Internet Explorer (IE) login problem

Canonical URL

IE does not like working with sites that use both http://example.org and http://www.example.org. It stores multiple
cookies and this causes problems. Best to only use one base URL. For details on how to do this see Login token
mismatch error.

Chrome Frame

Using the chrome frame within IE can break the login process.

Emails don’t support non-Latin characters

In order to support non-Latin characters, (such as Cyrillic or Chinese) Elgg requires multibyte string support to be
compiled into PHP.

On many installs (e.g. Debian & Ubuntu) this is turned on by default. If it is not, you need to turn it on (or recompile
PHP to include it). To check whether your server supports multibyte strings, check phpinfo.

Session length

Session length is controlled by your php configuration. You will first need to locate your php.ini file. In that file will
be several session variables. A complete list and what they do can be found in the php manual.

File is missing an owner

There are three causes for this error. You could have an entity in your database that has an owner_guid of 0. This
should be extremely rare and may only occur if your database/server crashes during a write operation.

The second cause would be an entity where the owner no longer exists. This could occur if a plugin is turned off that was
involved in the creation of the entity and then the owner is deleted but the delete operation failed (because the plugin
is turned off). If you can figure out entity is causing this, look in your entities table and change the owner_guid to
your own and then you can delete the entity through Elgg.

Warnung: Reed the section „Should I edit the database manually?“. Be very carefull when editing the database
directly. It can break your site. Always make a backup before doing this.

438 Kapitel 3. Continue Reading

http://example.org
http://www.example.org
http://uk.php.net/manual/en/mbstring.installation.php
http://php.net/manual/en/function.phpinfo.php
http://php.net/manual/en/session.configuration.php

Elgg Documentation, Release master

Fixes

Database Validator plugin will check your database for these causes and provide an option to fix them. Be sure to
backup the database before you try the fix option.

No images

If profile images, group images, or other files have stopped working on your site it is likely due to a misconfiguration,
especially if you have migrated to a new server.

These are the most common misconfigurations that cause images and other files to stop working.

Wrong path for data directory

Make sure the data directory’s path is correct in the Site Administration admin area. It should have a trailing slash.

Wrong permissions on the data directory

Check the permissions for the data directory. The data directory should be readable and writeable by the web server
user.

Migrated installation with new data directory location

If you migrated an installation and need to change your data directory path, be sure to update the SQL for the filestore
location as documented in the Duplicate Installation instructions.

Deprecation warnings

If you are seeing many deprecation warnings that say things like

Deprecated in 1.7: extend_view() was deprecated by elgg_extend_view()!

then you are using a plugin that was written for an older version of Elgg. This means the plugin is using functions that
are scheduled to be removed in a future version of Elgg. You can ask the plugin developer if the plugin will be updated
or you can update the plugin yourself. If neither of those are likely to happen, you should not use that plugin.

Javascript not working

If the user hover menu stops working or you cannot dismiss system messages, that means JavaScript is broken on
your site. This usually due to a plugin having bad JavaScript code. You should find the plugin causing the problem
and disable it. You can do this be disabling non-bundled plugins one at a time until the problem goes away. Another
approach is disabling all non-bundled plugins and then enabling them one by one until the problem occurs again.

Most web browsers will give you a hint as to what is breaking the JavaScript code. They often have a console for
JavaScript errors or an advanced mode for displaying errors. Once you see the error message, you may have an easier
time locating the problem.

3.7. Appendix 439

https://community.elgg.org/plugins/438616

Elgg Documentation, Release master

IP addresses in the logs are wrong

When your Elgg installation is behind a proxy server or loadbalancer the IP addresses logged in the System Log plugin
can be wrong. It could show only the IP addresses for the proxy server.

In order to solve this you can configure the IP addresses of the proxy server as a trusted IP address and with that allow
the system access to the correct IP address of your users.

In the settings.php file you can configure settings for $CONFIG->http_request_trusted_proxy_ips and
$CONFIG->http_request_trusted_proxy_headers check the settings.php file for more information.

Security

Is upgrade.php a security concern?

Upgrade.php is a file used to run code and database upgrades. It is in the root of the directory and doesn’t require a
logged in account to access. On a fully upgraded site, running the file will only reset the caches and exit, so this is not
a security concern.

If you are still concerned, you can either delete, move, or change permissions on the file until you need to upgrade.

Should I delete install.php?

This file is used to install Elgg and doesn’t need to be deleted. The file checks if Elgg is already installed and forwards
the user to the front page if it is.

Filtering

Filtering is used in Elgg to make XSS attacks more difficult. The purpose of the filtering is to remove Javascript and
other dangerous input from users.

Filtering is performed through the function elgg_sanitize_input(). This function takes in a string and returns a
filtered string. It triggers a sanitize, input event. By default Elgg comes with the htmLawed filtering code as a plugin.
Developers can drop in any additional or replacement filtering code as a plugin.

The elgg_sanitize_input() function is called on any user input as long as the input is obtained through a call to
get_input(). If for some reason a developer did not want to perform the default filtering on some user input, the
get_input() function has a parameter for turning off filtering.

Development

What should I use to edit php code?

There are two main options: text editor or integrated development environment (IDE).

440 Kapitel 3. Continue Reading

http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Integrated_development_environment

Elgg Documentation, Release master

Text Editor

If you are new to software development or do not have much experience with IDEs, using a text editor will get you up
and running the quickest. At a minimum, you will want one that does syntax highlighting to make the code easier to
read. If you think you might submit patches to the bug tracker, you will want to make sure that your text editor does
not change line endings. If you are using Windows, Notepad++ is a good choice. If you are on a Mac, TextWrangler is
a popular choice. You could also give TextMate a try.

Integrated Development Environment

An IDE does just what its name implies: it includes a set of tools that you would normally use separately. Most IDEs
will include source code control which will allow you to directly commit and update your code from your cvs repository.
It may have an FTP client built into it to make the transfer of files to a remote server easier. It will have syntax checking
to catch errors before you try to execute the code on a server.

The two most popular free IDEs for PHP developers are Eclipse and NetBeans. Eclipse has two different plugins for
working with PHP code: PDT and PHPEclipse.

I don’t like the wording of something in Elgg. How do I change it?

The best way to do this is with a plugin.

Create the plugin skeleton

Plugin skeleton

Locate the string that you want to change

All the strings that a user sees should be in the /languages directory or in a plugin’s languages directory (/mod/
<plugin name>/languages). This is done so that it is easy to change what language Elgg uses. For more information
on this see the developer documentation on Internationalization .

To find the string use grep or a text editor that provides searching through files to locate the string. (A good text editor
for Windows is Notepad++) Let’s say we want to change the string „Add friend“ to „Make a new friend“. The grep
command to find this string would be grep -r "Add friend" *. Using Notepad++ , you would use the „Find in
files“ command. You would search for the string, set the filter to *.php, set the directory to the base directory of Elgg,
and make sure it searches all subdirectories. You might want to set it to be case sensitive also.

You should locate the string „Add friend“ in /languages/en.php. You should see something like this in the file:

'friend:add' => "Add friend",

This means every time Elgg sees friend:add it replaces it with „Add friend“. We want to change the definition of
friend:add.

3.7. Appendix 441

http://notepad-plus-plus.org/
http://www.barebones.com/products/textwrangler/index.html
http://macromates.com/
http://www.eclipse.org/
http://netbeans.org/
http://www.eclipse.org/pdt/
http://www.phpeclipse.com/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/

Elgg Documentation, Release master

Override the string

To override this definition, we will add a languages file to the plugin that we built in the first step.

1. Create a new directory: /mod/<your plugin name>/languages

2. Create a file in that directory called en.php

3. Add these lines to that file

<?php

return array(
'friend:add' => 'Make a new friend',

);

Make sure that you do not have any spaces or newlines before the <?php.

You’re done now and should be able to enable the plugin and see the change. If you are override the language of a
plugin, make sure your plugin is loaded after the one you are trying to modify. The loading order is determined in the
Tools Administration page of the admin section. As you find more things that you’d like to change, you can keep adding
them to this plugin.

How do I find the code that does x?

The best way to find the code that does something that you would like to change is to use grep or a similar search tool.
If you do not have grep as a part of your operating system, you will want to install a grep tool or use a text-editor/IDE
that has good searching in files. Notepad++ is a good choice for Windows users. Eclipse with PHP and NetBeans are
good choices for any platform.

String Example

Let’s say that you want to find where the Log In box code is located. A string from the Log In box that should be fairly
unique is Remember me. Grep for that string. You will find that it is only used in the en.php file in the /languages
directory. There it is used to define the Internationalization string user:persistent. Grep for that string now. You
will find it in two places: the same en.php language file and in /views/default/forms/login.php. The latter
defines the html code that makes up the Log In box.

Action Example

Let’s say that you want to find the code that is run when a user clicks on the Save button when arranging widgets on
a profile page. View the Profile page for a test user. Use Firebug to drill down through the html of the page until you
come to the action of the edit widgets form. You’ll see the url from the base is action/widgets/move.

Grep on widgets/move and two files are returned. One is the JavaScript code for the widgets : /js/
lib/ui.widgets.js. The other one, /engine/lib/widgets.php, is where the action is registered using
elgg_register_action('widgets/reorder'). You may not be familiar with that function in which case, you
should look it up at the API reference. Do a search on the function and it returns the documentation on the function.
This tells you that the action is in the default location since a file location was not specified. The default location for
actions is /actions so you will find the file at /actions/widgets/move.php.

442 Kapitel 3. Continue Reading

http://notepad-plus-plus.org/
http://www.eclipse.org/
http://netbeans.org/

Elgg Documentation, Release master

Debug mode

During the installation process you might have noticed a checkbox that controlled whether debug mode was turned on
or off. This setting can also be changed on the Site Administration page. Debug mode writes a lot of extra data to your
php log. For example, when running in this mode every query to the database is written to your logs. It may be useful
for debugging a problem though it can produce an overwhelming amount of data that may not be related to the problem
at all. You may want to experiment with this mode to understand what it does, but make sure you run Elgg in normal
mode on a production server.

Warnung: Because of the amount of data being logged, don’t enable this on a production server as it can fill up
the log files really quick.

What goes into the log in debug mode?

• All database queries

• Database query profiling

• Page generation time

• Number of queries per page

• List of plugin language files

• Additional errors/warnings compared to normal mode (it’s very rare for these types of errors to be related to any
problem that you might be having)

What does the data look like?

[07-Mar-2009 14:27:20] Query cache invalidated
[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and␣
→˓enabled='yes') results cached
[07-Mar-2009 14:27:20] SELECT guid from elggsites_entity where guid = 1 results cached
[07-Mar-2009 14:27:20] Query cache invalidated
[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and␣
→˓enabled='yes') results cached
[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and␣
→˓enabled='yes') results returned from cache
[07-Mar-2009 14:27:20] ** Sub part of GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggsites_entity where guid=1 results cached
[07-Mar-2009 14:27:20] Query cache invalidated
[07-Mar-2009 14:27:20] DEBUG: 2009-03-07 14:27:20 (MST): "Undefined index: user" in␣
→˓file /var/www/elgg/engine/lib/elgglib.php (line 62)
[07-Mar-2009 14:27:20] DEBUG: 2009-03-07 14:27:20 (MST): "Undefined index: pass" in␣
→˓file /var/www/elgg/engine/lib/elgglib.php (line 62)
[07-Mar-2009 14:27:20] ***************** DB PROFILING ********************
[07-Mar-2009 14:27:20] 1 times: 'SELECT * from elggentities where guid=1 and ((access_
→˓id in (2) or (owner_guid = -1) or (access_id = 0 and owner_guid = -1)) and enabled='yes
→˓')'

(Fortsetzung auf der nächsten Seite)

3.7. Appendix 443

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

...
[07-Mar-2009 14:27:20] 2 times: 'update elggmetadata set access_id = 2 where entity_guid␣
→˓= 1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggentities set owner_guid='0', access_id='2',␣
→˓container_guid='0', time_updated='1236461868' WHERE guid=1'
[07-Mar-2009 14:27:20] 1 times: 'SELECT guid from elggsites_entity where guid = 1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggsites_entity set name='3124/944',␣
→˓description='', url='http://example.org/' where guid=1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggusers_entity set prev_last_action = last_
→˓action, last_action = 1236461868 where guid = 2'
[07-Mar-2009 14:27:20] DB Queries for this page: 56
[07-Mar-2009 14:27:20] ***
[07-Mar-2009 14:27:20] Page /action/admin/site/update_basic generated in 0.36997294426␣
→˓seconds

What events are triggered on every page load?

There are 4 Elgg events that are triggered on every page load:

1. plugins_boot, system

2. init, system

3. ready, system

4. shutdown, system

The first three are triggered in Elgg\Application::bootCore. shutdown, system is triggered in \Elgg\
Application\ShutdownHandler after the response has been sent to the client. They are all documented.

There are other events triggered by Elgg occasionally (such as when a user logs in).

Copy a plugin

There are many questions asked about how to copy a plugin. Let’s say you want to copy the blog plugin in order to
run one plugin called blog and another called poetry. This is not difficult but it does require a lot of work. You would
need to

• change the directory name

• change the names of every function (having two functions causes PHP to crash)

• change the name of every view (so as not to override the views on the original plugin)

• change any data model subtypes

• change the language file

• change anything else that was specific to the original plugin

Bemerkung: If you are trying to clone the groups plugin, you will have the additional difficulty that the group plugin
does not set a subtype.

444 Kapitel 3. Continue Reading

Elgg Documentation, Release master

General

Siehe auch:
Getting Help

„Plugin cannot start and has been deactivated“ or „This plugin is invalid“

This error is usually accompanied by more details explaining why the plugin is invalid. This is usually caused by an
incorrectly installed plugin.

If you are installing a plugin called „test“, there will be a test directory under mod. In that test directory there needs to
be a composer.json file /mod/test/composer.json.

If this file does not exist, it could be caused by:
• installing a plugin to the wrong directory

• creating a directory under /mod that does not contain a plugin

• a bad ftp transfer

• unzipping a plugin into an extra directory (myplugin.zip unzips to myplugin/myplugin)

• incompatible plugin

If you are on a Unix-based host and the files exist in the correct directory, check the permissions. Elgg must have read
access to the files and read + execute access on the directories.

White Page (WSOD)

A blank, white page (often called a „white screen of death“) means there is a PHP syntax error. There are a few
possible causes of this:

• corrupted file - try transfering the code again to your server

• a call to a php module that was not loaded - this can happen after you install a plugin that requires a specific
module.

• bad plugin - not all plugins have been written to the same quality so you should be careful which ones you
install.

To find where the error is occurring, change the .htaccess file to display errors to the browser. Set display_errors to
1 and load the same page again. You should see a PHP error in your browser. Change the setting back once you’ve
resolved the problem.

Bemerkung: If you are using the Developer’s Tools plugin, go to its settings page and make sure you have „Display
fatal PHP errors“ enabled.

If the white screen is due to a bad plugin, remove the latest plugins that you have installed by deleting their directories
and then reload the page.

Bemerkung: You can temporarily disable all plugins by creating an empty file at mod/disabled. You can then disable
the offending module via the administrator tools panel.

3.7. Appendix 445

Elgg Documentation, Release master

If you are getting a WSOD when performing an action, like logging in or posting a blog, but there are no error messages,
it’s most likely caused by non-printable characters in plugin code. Check the plugin for white spaces/new lines characters
after finishing php tag (?>) and remove them.

Page not found

If you have recently installed your Elgg site, the most likely cause for a page not found error is that mod_rewrite is
not setup correctly on your server. There is information in the Install Troubleshooting page on fixing this. The second
most likely cause is that your site url in your database is incorrect.

If you’ve been running your site for a while and suddenly start getting page not found errors, you need to ask yourself
what has changed. Have you added any plugins? Did you change your server configuration?

To debug a page not found error:

• Confirm that the link leading to the missing page is correct. If not, how is that link being generated?

• Confirm that the .htaccess rewrite rules are being picked up.

Login token mismatch

If you have to log in twice to your site and the error message after the first attempt says there was a token mismatch
error, the URL in Elgg’s settings does not match the URL used to access it. The most common cause for this is adding
or removing the „www“ when accessing the site. For example, www.elgg.org vs elgg.org. This causes a problem with
session handling because of the way that web browsers save cookies.

To fix this, you can add rewrite rules. To redirect from www.elgg.org to elgg.org in Apache, the rules might look like:

RewriteCond %{HTTP_HOST} .
RewriteCond %{HTTP_HOST} !^elgg\.org
RewriteRule (.*) http://elgg.org/$1 [R=301,L]

Redirecting from non-www to www could look like this:

RewriteCond %{HTTP_HOST} ^elgg\.org
RewriteRule ^(.*)$ http://www.elgg.org/$1 [R=301,L]

If you don’t know how to configure rewrite rules, ask your host for more information.

Form is missing __token or __ts fields

All Elgg actions require a security token, and this error occurs when that token is missing. This is either a problem with
your server configuration or with a 3rd party plugin.

If you experience this on a new installation, make sure that your server is properly configured and your rewrite rules
are correct. If you experience this on an upgrade, make sure you have updated your rewrite rules either in .htaccess
(Apache) or in the server configuration.

If you are experiencing this, disable all 3rd party plugins and try again. Very old plugins for Elgg don’t use security
tokens. If the problem goes away when plugins are disabled, it’s due to a plugin that should be updated by its author.

446 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Maintenance mode

To take your site temporarily offline, go to Administration -> Utilities -> Maintenance Mode. Complete the form and
hit save to disable your site for everyone except admin users.

Missing email

If your users are reporting that validation emails are not showing up, have them check their spam folder. It is possible
that the emails coming from your server are being marked as spam. This depends on many factors such as whether your
hosting provider has a problem with spammers, how your PHP mail configuration is set up, what mail transport agent
your server is using, or your host limiting the number of email that you can send in an hour.

If no one gets email at all, it is quite likely your server is not configured properly for email. Your server needs a program
to send email (called a Mail Transfer Agent - MTA) and PHP must be configured to use the MTA.

To quickly check if PHP and an MTA are correctly configured, create a file on your server with the following content:

<?php
$address = "your_email@your_host.com";

$subject = 'Test email.';

$body = 'If you can read this, your email is working.';

echo "Attempting to email $address...
";

if (mail($address, $subject, $body)) {
echo 'SUCCESS! PHP successfully delivered email to your MTA. If you don\'t see␣

→˓the email in your inbox in a few minutes, there is a problem with your MTA.';
} else {

echo 'ERROR! PHP could not deliver email to your MTA. Check that your PHP␣
→˓settings are correct for your MTA and your MTA will deliver email.';
}

Be sure to replace „your_email@your_host.com“ with your actual email address. Take care to keep quotes around it!
When you access this page through your web browser, it will attempt to send a test email. This test will let you know
that PHP and your MTA are correctly configured. If it fails–either you get an error or you never receive the email–you
will need to do more investigating and possibly contact your service provider.

Fully configuring an MTA and PHP’s email functionality is beyond the scope of this FAQ and you should search the
Internet for more resources on this. Some basic information on php parameters can be found on PHP’s site

Server logs

Most likely you are using Apache as your web server. Warnings and errors are written to a log by the web server and can
be useful for debugging problems. You will commonly see two types of log files: access logs and error logs. Information
from PHP and Elgg is written to the server error log.

• Linux – The error log is probably in /var/log/httpd or /var/log/apache2.

• Windows - It is probably inside your Apache directory.

• Mac OS - The error log is probably in /var/log/apache2/error_log

3.7. Appendix 447

mailto:your_email@your_host.com
http://php.net/manual/en/mail.configuration.php

Elgg Documentation, Release master

If you are using shared hosting without ssh access, your hosting provider may provide a mechanism for obtaining access
to your server logs. You will need to ask them about this.

How does registration work?

With a default setup, this is how registration works:

1. User fills out registration form and submits it

2. User account is created and disabled until validated

3. Email is sent to user with a link to validate the account

4. When a user clicks on the link, the account is validated

5. The user can now log in

Failures during this process include the user entering an incorrect email address, the validation email being marked as
spam, or a user never bothering to validate the account.

User validation

By default, all users who self-register must validate their accounts through email. If a user has problems validating an
account, you can validate users manually by going to Administration -> Users -> Unvalidated.

You can remove this requirement by deactivating the User Validation by Email plugin.

Bemerkung: Removing validation has some consequences: There is no way to know that a user registered with a
working email address, and it may leave you system open to spammers.

Manually add user

To manually add a user, under the Administer controls go to Users. There you will see a link title „Add new User“.
After you fill out the information and submit the form, the new user will receive an email with username and password
and a reminder to change the password.

Bemerkung: Elgg does not force the user to change the password.

I’m making or just installed a new theme, but graphics or other elements aren’t working

Make sure the theme is at the bottom of the plugin list.

Clear your browser cache and reload the page. To lighten the load on the server, Elgg instructs the browser to rarely
load the CSS file. A new theme will completely change the CSS file and a refresh should cause the browser to request
the CSS file again.

If you’re building or modifying a theme, make sure you have disabled the simple and system caches. This can be done
by enabling the Developer Tools plugin, then browsing to Administration -> Develop -> Settings. Once you’re satisfied
with the changes, enable the caches or performance will suffer.

448 Kapitel 3. Continue Reading

Elgg Documentation, Release master

Changing profile fields

Within the Administration settings of Elgg is a page for replacing the default profile fields. Elgg by default gives the
administrator two choices:

• Use the default profile fields

• Replace the default with a set of custom profile fields

You cannot add new profile fields to the default ones. Adding a new profile field through the replace profile fields option
clears the default ones. Before letting in users, it is best to determine what profile fields you want, what field types they
should be, and the order they should appear. You cannot change the field type or order or delete fields after they have
been created without wiping the entire profile blank.

More flexibility can be gained through plugins. There is at least two plugins on the community site that enable you to
have more control over profile fields. The Profile Manager plugin has become quite popular in the Elgg community. It
lets you add new profile fields whenever you want, change the order, group profile fields, and add them to registration.

Changing registration

The registration process can be changed through a plugin. Everything about registration can be changed: the look and
feel, different registration fields, additional validation of the fields, additional steps and so on. These types of changes
require some basic knowledge of HTML, CSS, PHP.

Another option is to use the Profile Manager plugin that lets you add fields to both user profiles and the registration
form.

Create the plugin skeleton
Plugin skeleton

Changing registration display
Override the account/forms/register view

Changing the registration action handler
You can write your own action to create the user’s account

How do I change PHP settings using .htaccess?

You may want to change php settings in your .htaccess file. This is especially true if your hosting provider does not
give you access to the server’s php.ini file. The variables could be related to file upload size limits, security, session
length, or any number of other php attributes. For examples of how to do this, see the PHP documentation on this.

HTTPS login turned on accidently

If you have turned on HTTPS login but do not have SSL configured, you are now locked out of your Elgg install. To
turn off this configuration parameter, you will need to edit your database. Use a tool like phpMyAdmin to view your
database. Select the config table and delete the row that has the name https_login.

3.7. Appendix 449

https://community.elgg.org/plugins/385114
https://community.elgg.org/plugins/385114
http://us2.php.net/configuration.changes

Elgg Documentation, Release master

Using a test site

It is recommended to always try out new releases or new plugins on a test site before running them on a production
site (a site with actual users). The easiest way to do this is to maintain a separate install of Elgg with dummy accounts.
When testing changes it is important to use dummy accounts that are not admins to test what your users will see.

A more realistic test is to mirror the content from your production site to your test site. Following the instructions for
duplicating a site. Then make sure you prevent emails from being sent to your users. You could write a small plugin
that redirects all email to your own account (be aware of plugins that include their own custom email sending code so
you’ll have to modify those plugins). After this is done you can view all of the content to make sure the upgrade or new
plugin is functioning as desired and is not breaking anything. If this process sounds overwhelming, please stick with
running a simple test site.

500 - Internal Server Error

What is it?

A 500 - Internal Server Error means the web server experienced a problem serving a request.

Siehe auch:
The Wikipedia page on HTTP status codes

Possible causes

Web server configuration
The most common cause for this is an incorrectly configured server. If you edited the .htaccess file and added
something incorrect, Apache will send a 500 error.

Permissions on files
It could also be a permissions problem on a file. Apache needs to be able to read Elgg’s files. Using permissions
755 on directories and 644 on files will allow Apache to read the files.

When I upload a photo or change my profile picture I get a white screen

Most likely you don’t have the PHP GD library installed or configured properly. You may need assistance from the
administrator of your server.

CSS is missing

Wrong URL

Sometimes people install Elgg so that the base URL is localhost and then try to view the site using a hostname. In
this case, the browser won’t be able to load the CSS file. Try viewing the source of the web page and copying the link
for the CSS file. Paste that into your browser. If you get a 404 error, it is likely this is your problem. You will need to
change the base URL of your site.

450 Kapitel 3. Continue Reading

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#5xx_Server_Error

Elgg Documentation, Release master

Syntax error

Elgg stores its CSS as PHP code to provide flexibility and power. If there is a syntax error, the CSS file served to the
browser may be blank. Disabling non-bundled plugins is the recommended first step.

Rewrite rules errors

A bad .htaccess file could also result in a 404 error when requesting the CSS file. This could happen when doing an
upgrade and forgetting to also upgrade .htaccess.

Should I edit the database manually?

Warnung: No, you should never manually edit the database!

Will editing the database manually break my site?

Yes.

Can I add extra fields to tables in the database?

(AKA: I don’t understand the Elgg data model so I’m going to add columns. Will you help?)

No, this is a bad idea. Learn the data model and you will see that unless it’s a very specific and highly customized
installation, you can do everything you need within Elgg’s current data model.

I want to remove users. Can’t I just delete them from the elgg_entities table?

No, it will corrupt your database. Delete them through the site.

I want to remove spam. Can’t I just search and delete it from the elgg_entities table?

No, it will corrupt your database. Delete it through the site.

Someone on the community site told me to edit the database manually. Should I?

Who was it? Is it someone experienced with Elgg, like one of the core developers or a well-known plugin author? Did
he or she give you clear and specific instructions on what to edit? If you don’t know who it is, or if you can’t understand
or aren’t comfortable following the instructions, do not edit the database manually.

3.7. Appendix 451

Elgg Documentation, Release master

I know PHP and MySQL and have a legitimate reason to edit the database. Is it okay to manually edit
the database?

Make sure you understand Elgg’s data model and schema first. Make a backup, edit carefully, then test copiously.

Internet Explorer (IE) login problem

Canonical URL

IE does not like working with sites that use both http://example.org and http://www.example.org. It stores multiple
cookies and this causes problems. Best to only use one base URL. For details on how to do this see Login token
mismatch error.

Chrome Frame

Using the chrome frame within IE can break the login process.

Emails don’t support non-Latin characters

In order to support non-Latin characters, (such as Cyrillic or Chinese) Elgg requires multibyte string support to be
compiled into PHP.

On many installs (e.g. Debian & Ubuntu) this is turned on by default. If it is not, you need to turn it on (or recompile
PHP to include it). To check whether your server supports multibyte strings, check phpinfo.

Session length

Session length is controlled by your php configuration. You will first need to locate your php.ini file. In that file will
be several session variables. A complete list and what they do can be found in the php manual.

File is missing an owner

There are three causes for this error. You could have an entity in your database that has an owner_guid of 0. This
should be extremely rare and may only occur if your database/server crashes during a write operation.

The second cause would be an entity where the owner no longer exists. This could occur if a plugin is turned off that was
involved in the creation of the entity and then the owner is deleted but the delete operation failed (because the plugin
is turned off). If you can figure out entity is causing this, look in your entities table and change the owner_guid to
your own and then you can delete the entity through Elgg.

Warnung: Reed the section „Should I edit the database manually?“. Be very carefull when editing the database
directly. It can break your site. Always make a backup before doing this.

452 Kapitel 3. Continue Reading

http://example.org
http://www.example.org
http://uk.php.net/manual/en/mbstring.installation.php
http://php.net/manual/en/function.phpinfo.php
http://php.net/manual/en/session.configuration.php

Elgg Documentation, Release master

Fixes

Database Validator plugin will check your database for these causes and provide an option to fix them. Be sure to
backup the database before you try the fix option.

No images

If profile images, group images, or other files have stopped working on your site it is likely due to a misconfiguration,
especially if you have migrated to a new server.

These are the most common misconfigurations that cause images and other files to stop working.

Wrong path for data directory

Make sure the data directory’s path is correct in the Site Administration admin area. It should have a trailing slash.

Wrong permissions on the data directory

Check the permissions for the data directory. The data directory should be readable and writeable by the web server
user.

Migrated installation with new data directory location

If you migrated an installation and need to change your data directory path, be sure to update the SQL for the filestore
location as documented in the Duplicate Installation instructions.

Deprecation warnings

If you are seeing many deprecation warnings that say things like

Deprecated in 1.7: extend_view() was deprecated by elgg_extend_view()!

then you are using a plugin that was written for an older version of Elgg. This means the plugin is using functions that
are scheduled to be removed in a future version of Elgg. You can ask the plugin developer if the plugin will be updated
or you can update the plugin yourself. If neither of those are likely to happen, you should not use that plugin.

Javascript not working

If the user hover menu stops working or you cannot dismiss system messages, that means JavaScript is broken on
your site. This usually due to a plugin having bad JavaScript code. You should find the plugin causing the problem
and disable it. You can do this be disabling non-bundled plugins one at a time until the problem goes away. Another
approach is disabling all non-bundled plugins and then enabling them one by one until the problem occurs again.

Most web browsers will give you a hint as to what is breaking the JavaScript code. They often have a console for
JavaScript errors or an advanced mode for displaying errors. Once you see the error message, you may have an easier
time locating the problem.

3.7. Appendix 453

https://community.elgg.org/plugins/438616

Elgg Documentation, Release master

IP addresses in the logs are wrong

When your Elgg installation is behind a proxy server or loadbalancer the IP addresses logged in the System Log plugin
can be wrong. It could show only the IP addresses for the proxy server.

In order to solve this you can configure the IP addresses of the proxy server as a trusted IP address and with that allow
the system access to the correct IP address of your users.

In the settings.php file you can configure settings for $CONFIG->http_request_trusted_proxy_ips and
$CONFIG->http_request_trusted_proxy_headers check the settings.php file for more information.

Security

Is upgrade.php a security concern?

Upgrade.php is a file used to run code and database upgrades. It is in the root of the directory and doesn’t require a
logged in account to access. On a fully upgraded site, running the file will only reset the caches and exit, so this is not
a security concern.

If you are still concerned, you can either delete, move, or change permissions on the file until you need to upgrade.

Should I delete install.php?

This file is used to install Elgg and doesn’t need to be deleted. The file checks if Elgg is already installed and forwards
the user to the front page if it is.

Filtering

Filtering is used in Elgg to make XSS attacks more difficult. The purpose of the filtering is to remove Javascript and
other dangerous input from users.

Filtering is performed through the function elgg_sanitize_input(). This function takes in a string and returns a
filtered string. It triggers a sanitize, input event. By default Elgg comes with the htmLawed filtering code as a plugin.
Developers can drop in any additional or replacement filtering code as a plugin.

The elgg_sanitize_input() function is called on any user input as long as the input is obtained through a call to
get_input(). If for some reason a developer did not want to perform the default filtering on some user input, the
get_input() function has a parameter for turning off filtering.

Development

What should I use to edit php code?

There are two main options: text editor or integrated development environment (IDE).

454 Kapitel 3. Continue Reading

http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Integrated_development_environment

Elgg Documentation, Release master

Text Editor

If you are new to software development or do not have much experience with IDEs, using a text editor will get you up
and running the quickest. At a minimum, you will want one that does syntax highlighting to make the code easier to
read. If you think you might submit patches to the bug tracker, you will want to make sure that your text editor does
not change line endings. If you are using Windows, Notepad++ is a good choice. If you are on a Mac, TextWrangler is
a popular choice. You could also give TextMate a try.

Integrated Development Environment

An IDE does just what its name implies: it includes a set of tools that you would normally use separately. Most IDEs
will include source code control which will allow you to directly commit and update your code from your cvs repository.
It may have an FTP client built into it to make the transfer of files to a remote server easier. It will have syntax checking
to catch errors before you try to execute the code on a server.

The two most popular free IDEs for PHP developers are Eclipse and NetBeans. Eclipse has two different plugins for
working with PHP code: PDT and PHPEclipse.

I don’t like the wording of something in Elgg. How do I change it?

The best way to do this is with a plugin.

Create the plugin skeleton

Plugin skeleton

Locate the string that you want to change

All the strings that a user sees should be in the /languages directory or in a plugin’s languages directory (/mod/
<plugin name>/languages). This is done so that it is easy to change what language Elgg uses. For more information
on this see the developer documentation on Internationalization .

To find the string use grep or a text editor that provides searching through files to locate the string. (A good text editor
for Windows is Notepad++) Let’s say we want to change the string „Add friend“ to „Make a new friend“. The grep
command to find this string would be grep -r "Add friend" *. Using Notepad++ , you would use the „Find in
files“ command. You would search for the string, set the filter to *.php, set the directory to the base directory of Elgg,
and make sure it searches all subdirectories. You might want to set it to be case sensitive also.

You should locate the string „Add friend“ in /languages/en.php. You should see something like this in the file:

'friend:add' => "Add friend",

This means every time Elgg sees friend:add it replaces it with „Add friend“. We want to change the definition of
friend:add.

3.7. Appendix 455

http://notepad-plus-plus.org/
http://www.barebones.com/products/textwrangler/index.html
http://macromates.com/
http://www.eclipse.org/
http://netbeans.org/
http://www.eclipse.org/pdt/
http://www.phpeclipse.com/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/

Elgg Documentation, Release master

Override the string

To override this definition, we will add a languages file to the plugin that we built in the first step.

1. Create a new directory: /mod/<your plugin name>/languages

2. Create a file in that directory called en.php

3. Add these lines to that file

<?php

return array(
'friend:add' => 'Make a new friend',

);

Make sure that you do not have any spaces or newlines before the <?php.

You’re done now and should be able to enable the plugin and see the change. If you are override the language of a
plugin, make sure your plugin is loaded after the one you are trying to modify. The loading order is determined in the
Tools Administration page of the admin section. As you find more things that you’d like to change, you can keep adding
them to this plugin.

How do I find the code that does x?

The best way to find the code that does something that you would like to change is to use grep or a similar search tool.
If you do not have grep as a part of your operating system, you will want to install a grep tool or use a text-editor/IDE
that has good searching in files. Notepad++ is a good choice for Windows users. Eclipse with PHP and NetBeans are
good choices for any platform.

String Example

Let’s say that you want to find where the Log In box code is located. A string from the Log In box that should be fairly
unique is Remember me. Grep for that string. You will find that it is only used in the en.php file in the /languages
directory. There it is used to define the Internationalization string user:persistent. Grep for that string now. You
will find it in two places: the same en.php language file and in /views/default/forms/login.php. The latter
defines the html code that makes up the Log In box.

Action Example

Let’s say that you want to find the code that is run when a user clicks on the Save button when arranging widgets on
a profile page. View the Profile page for a test user. Use Firebug to drill down through the html of the page until you
come to the action of the edit widgets form. You’ll see the url from the base is action/widgets/move.

Grep on widgets/move and two files are returned. One is the JavaScript code for the widgets : /js/
lib/ui.widgets.js. The other one, /engine/lib/widgets.php, is where the action is registered using
elgg_register_action('widgets/reorder'). You may not be familiar with that function in which case, you
should look it up at the API reference. Do a search on the function and it returns the documentation on the function.
This tells you that the action is in the default location since a file location was not specified. The default location for
actions is /actions so you will find the file at /actions/widgets/move.php.

456 Kapitel 3. Continue Reading

http://notepad-plus-plus.org/
http://www.eclipse.org/
http://netbeans.org/

Elgg Documentation, Release master

Debug mode

During the installation process you might have noticed a checkbox that controlled whether debug mode was turned on
or off. This setting can also be changed on the Site Administration page. Debug mode writes a lot of extra data to your
php log. For example, when running in this mode every query to the database is written to your logs. It may be useful
for debugging a problem though it can produce an overwhelming amount of data that may not be related to the problem
at all. You may want to experiment with this mode to understand what it does, but make sure you run Elgg in normal
mode on a production server.

Warnung: Because of the amount of data being logged, don’t enable this on a production server as it can fill up
the log files really quick.

What goes into the log in debug mode?

• All database queries

• Database query profiling

• Page generation time

• Number of queries per page

• List of plugin language files

• Additional errors/warnings compared to normal mode (it’s very rare for these types of errors to be related to any
problem that you might be having)

What does the data look like?

[07-Mar-2009 14:27:20] Query cache invalidated
[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and␣
→˓enabled='yes') results cached
[07-Mar-2009 14:27:20] SELECT guid from elggsites_entity where guid = 1 results cached
[07-Mar-2009 14:27:20] Query cache invalidated
[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and␣
→˓enabled='yes') results cached
[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and␣
→˓enabled='yes') results returned from cache
[07-Mar-2009 14:27:20] ** Sub part of GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggsites_entity where guid=1 results cached
[07-Mar-2009 14:27:20] Query cache invalidated
[07-Mar-2009 14:27:20] DEBUG: 2009-03-07 14:27:20 (MST): "Undefined index: user" in␣
→˓file /var/www/elgg/engine/lib/elgglib.php (line 62)
[07-Mar-2009 14:27:20] DEBUG: 2009-03-07 14:27:20 (MST): "Undefined index: pass" in␣
→˓file /var/www/elgg/engine/lib/elgglib.php (line 62)
[07-Mar-2009 14:27:20] ***************** DB PROFILING ********************
[07-Mar-2009 14:27:20] 1 times: 'SELECT * from elggentities where guid=1 and ((access_
→˓id in (2) or (owner_guid = -1) or (access_id = 0 and owner_guid = -1)) and enabled='yes
→˓')'

(Fortsetzung auf der nächsten Seite)

3.7. Appendix 457

Elgg Documentation, Release master

(Fortsetzung der vorherigen Seite)

...
[07-Mar-2009 14:27:20] 2 times: 'update elggmetadata set access_id = 2 where entity_guid␣
→˓= 1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggentities set owner_guid='0', access_id='2',␣
→˓container_guid='0', time_updated='1236461868' WHERE guid=1'
[07-Mar-2009 14:27:20] 1 times: 'SELECT guid from elggsites_entity where guid = 1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggsites_entity set name='3124/944',␣
→˓description='', url='http://example.org/' where guid=1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggusers_entity set prev_last_action = last_
→˓action, last_action = 1236461868 where guid = 2'
[07-Mar-2009 14:27:20] DB Queries for this page: 56
[07-Mar-2009 14:27:20] ***
[07-Mar-2009 14:27:20] Page /action/admin/site/update_basic generated in 0.36997294426␣
→˓seconds

What events are triggered on every page load?

There are 4 Elgg events that are triggered on every page load:

1. plugins_boot, system

2. init, system

3. ready, system

4. shutdown, system

The first three are triggered in Elgg\Application::bootCore. shutdown, system is triggered in \Elgg\
Application\ShutdownHandler after the response has been sent to the client. They are all documented.

There are other events triggered by Elgg occasionally (such as when a user logs in).

Copy a plugin

There are many questions asked about how to copy a plugin. Let’s say you want to copy the blog plugin in order to
run one plugin called blog and another called poetry. This is not difficult but it does require a lot of work. You would
need to

• change the directory name

• change the names of every function (having two functions causes PHP to crash)

• change the name of every view (so as not to override the views on the original plugin)

• change any data model subtypes

• change the language file

• change anything else that was specific to the original plugin

Bemerkung: If you are trying to clone the groups plugin, you will have the additional difficulty that the group plugin
does not set a subtype.

458 Kapitel 3. Continue Reading

Elgg Documentation, Release master

3.7.3 Roadmap

What direction is the project going? What exciting new features are coming soon?

We do not publish detailed roadmaps, but it’s possible to get a sense for our general direction by utilizing the following
resources:

• Our feedback and planning group is used to host early discussion about what will be worked on next.

• Our Github milestones represent a general direction for the future releases of Elgg. This is the closest thing to a
traditional roadmap that we have.

• Github pull requests will give you a good idea of what’s currently being developed, but nothing is sure until the
PR is actually checked in.

• We use the developer blog to post announcements of features that have recently been checked in to our develop-
ment branch, which gives the surest indication of what features will be available in the next release.

Values

We have several overarching goals/values that affect the direction of Elgg. Enhancements generally must promote these
values in order to be accepted.

Accessibility

Elgg-based sites should be usable by anyone anywhere. That means we’ll always strive to make Elgg:

• Device-agnostic – mobile, tablet, desktop, etc. friendly

• Language-agnostic – i18n, RTL, etc.

• Capability-agnostic – touch, keyboard, screen-reader friendly

Testability

We want to make manual testing unnecessary for core developers, plugin authors, and site administrators by promo-
ting and enabling fast, automated testing at every level of the Elgg stack.

We think APIs are broken if they require plugin authors to write untestable code. We know there are a lot of violations
of this principle in core currently and are working to fix it.

We look forward to a world where the core developers do not need to do any manual testing to verify the correctness of
code contributed to Elgg. Similarly, we envision a world where site administrators can upgrade and install new plugins
with confidence that everything works well together.

TODO: other goals/values?

3.7. Appendix 459

http://community.elgg.org/groups/profile/211069/feedback-and-planning
https://github.com/Elgg/Elgg/issues/milestones
https://github.com/elgg/elgg/pulls
https://community.elgg.org/blog/all

Elgg Documentation, Release master

FAQ

When will feature X be implemented?

We cannot promise when features will get implemented because new features are checked into Elgg only when someone
is motivated enough to implement the feature and submit a pull request. The best we can do is tell you to look out for
what features existing developers have expressed interest in working on.

The best way to ensure a feature gets implemented is to discuss it with the core team and implement it yourself. See
our Contributor Guides guide if you’re interested. We love new contributors!

Do not rely on future enhancements if you’re on the fence as to whether to use Elgg. Evaluate it given the current feature
set. Upcoming features will almost certainly not materialize within your timeline.

When is version X.Y.Z going to be released?

The next version will be released when the core team feels it’s ready and has time to cut the release. http://github.com/
Elgg/Elgg/issues/milestones will give you some rough ideas of timeline.

3.7.4 Release Policy

What to expect when upgrading Elgg.

We adhere to semantic versioning.

Follow the blog to stay up to date on the latest releases.

Contents

• Patch/Bugfix Releases (2.1.x)

• Minor/Feature Releases (2.x.0)

• Major/Breaking Releases (x.0.0)

• Alphas, Betas, and Release Candidates

• Backwards compatibility

Patch/Bugfix Releases (2.1.x)

Every two weeks.

Bugfix releases are made regularly to make sure Elgg stays stable, secure, and bug-free. The higher the third digit, the
more tested and stable the release is.

Since bugfix release focus on fixing bugs and not making major changes, themes and plugins should work from bugfix
release to bugfix release.

460 Kapitel 3. Continue Reading

http://github.com/Elgg/Elgg/issues/milestones
http://github.com/Elgg/Elgg/issues/milestones
http://semver.org
https://elgg.org/blog/all

Elgg Documentation, Release master

Minor/Feature Releases (2.x.0)

Every three months.

Whenever we introduce new features, we’ll bump the middle version number. These releases aren’t as mature as bugfix
release, but are considered stable and useable.

We make every effort to be backward compatible in these releases, so plugins should work from minor release to minor
release.

However, plugins might need to be updated to make use of the new features.

Major/Breaking Releases (x.0.0)

Every year.

Inevitably, improving Elgg requires breaking changes and a new major release is made. These releases are opportunities
for the core team to make strategic, breaking changes to the underlying platform. Themes and plugins from older
versions are not expected to work without modification on different major releases.

We may remove deprecated APIs, but we will not remove APIs without first deprecating them.

Elgg’s dependencies may be upgraded by their major version or removed entirely. We will not remove any dependences
before a major release, but we do not „deprecate“ dependencies or issue any warnings before removing them.

Your package, plugin, or app should declare its own dependencies directly so that this does not cause a problem.

Alphas, Betas, and Release Candidates

Before major releases (and sometimes before feature releases), the core team will offer a pre-release version of Elgg to
get some real-world testing and feedback on the release. These are meant for testing only and should not be used on a
live site.

SemVer 2.0 does not define a particular meaning for pre-releases, but we approach alpha, beta, and rc releases with
these general guidelines:

An -alpha.X pre-release means that there are still breaking changes planned, but the feature set of the release is frozen.
No new features or breaking changes can be proposed for that release.

A -beta.X pre-release means that there are no known breaking changes left to be included, but there are known
regressions or critical bugs left to fix.

An -rc.X pre-release means that there are no known regressions or critical bugs left to be fixed. This version could
become the final stable version of Elgg if no new blockers are reported.

Backwards compatibility

Some parts of the system need some additional clarification if we are talking about being backwards compatible. Eve-
rything that is considered public API needs to adhere to the backwards compatibility rules that are part of semantic
versioning.

3.7. Appendix 461

http://semver.org
http://semver.org

Elgg Documentation, Release master

Classes and functions

Classes and functions marked with @internal are not considered part of the public API and can be changed / removed
at any time. If a class is marked with @internal all properties and methods in that class are considered private API
and therefor can be changed / removed at any time.

Event callbacks

All event callbacks should never be called directly but only be called by triggering the event.

The name of the callback function is considered API as plugin developers need to be able to rely on the fact that they can
(un)register a callback. This only applies if the callback still serves the same purpose. If a callback becomes obsolete
its allowed to be removed from the system.

Warnung: Exceptions to these rules are the callback functions related to the following system events, these
callbacks can be renamed / removed at any time.

• plugins_load

• plugins_boot

• init

• ready

• shutdown

• upgrade

Test suite

The Elgg PHPUnit test suite files are not considered part of the public API and can be changed / removed at any time.

Views

• View names are API.

• View arguments ($vars array) are API.

• Removing views or renaming views follows API deprecation policies.

• Adding new views requires a minor version change.

• View output is not API and can be changed between patch releases.

462 Kapitel 3. Continue Reading

Elgg Documentation, Release master

3.7.5 Support policy

As of Elgg 2.0, each minor release receives bug and security fixes only until the next minor release.

Contents

• Long Term Support Releases

– Bugs

– Security issues

• Timeline

Long Term Support Releases

Within each major version, the last minor release is designated for long term support („LTS“) and will receive bug fixes
until 1 year after the release of the next major version and security fixes until the 2nd following major version release.

E.g. 2.3 is the last minor release within 2.x. It will receive bug fixes until 1 year aftr 3.0 is released and security fixes
until 4.0 is released.

Siehe auch:
• Release Policy

• Reporting Issues

Bugs

When bugs are found, a good faith effort will be made to patch the LTS release, but not all fixes will be back-ported.
E.g. some fixes may depend on new APIs, break backwards compatibility, or require significant refactoring.

Wichtig: If a fix risks stability of the LTS branch, it will not be included.

Security issues

When a security issue is found every effort will be made to patch the LTS release.

Achtung: Please report any security issue to security @ elgg . org

3.7. Appendix 463

Elgg Documentation, Release master

Timeline

Below is a table outlining the specifics for each release (future dates are tentative):

Version First stable release Bug fixes through Security fixes through
1.12 July 2015 April 2019 April 2019
2.0 December 2015 March 2016
2.1 March 2016 June 2016
2.2 June 2016 November 2016
2.3 November 2016 April 2020 September 2021
3.0 April 2019 July 2019
3.1 July 2019 October 2019
3.2 October 2019 January 2020
3.3 January 2020 September 2022 June 2023
4.0 September 2021 January 2022
4.1 January 2022 April 2022
4.2 April 2022 July 2022
4.3 LTS July 2022 June 2024 Until 6.0
5.0 June 2023 October 2023
5.1 October 2023
6.0 TBD

3.7.6 History

The name comes from a town in Switzerland. It also means „elk“ or „moose“ in Danish.

Elgg’s initial funding was by a company called Curverider Ltd, which was started by David Tosh and Ben Werdmuller.
In 2010, Curverider was acquired by Thematic Networks and control of the open-source project was turned over to
The Elgg Foundation. Today, Elgg is a community-driven open source project and has a variety of contributors and
supporters.

464 Kapitel 3. Continue Reading

http://www.elgg.ch/de/
http://theelggfoundation.org

	Features
	Examples
	Continue Reading
	Getting Started
	Bundled plugins
	Blog
	CKEditor
	Images
	Mentions
	Toolbar configuration

	Dashboard
	Discussions
	Notifications

	File repository
	Photo gallery
	Podcasting
	Special content
	Note for developers

	Friends
	Groups
	Likes
	Messageboard
	Messages
	Pages
	Usage

	Profile
	User details
	User avatar
	Notes for developers

	Site Notifications
	Features
	Note for developers

	The Wire
	User validation by e-mail
	The process for the user
	Options for site administrators

	License
	MIT or GPLv2
	FAQ
	How much does Elgg cost?
	Can I remove the Elgg branding/links?
	Can I modify the source code?
	Can I charge my users membership fees?
	If I modify Elgg, do I have to make the changes available?
	If I use Elgg to host a network, does The Elgg Foundation have any rights over my network?
	What’s the difference between the MIT and GPL versions?
	Why are plugins missing from the MIT version?
	May I distribute a plugin for Elgg under a commercial license?
	Can we build our own tool that uses Elgg and sell that tool to our clients?

	Installation
	Requirements
	Browser support policy

	Overview
	Upload Elgg
	Create a data folder
	Create a MySQL database
	Set up Cron
	Visit your Elgg site
	A note on settings.php and .htaccess

	Other Configurations
	Troubleshooting
	Help! I’m having trouble installing Elgg
	I can’t save my settings on installation (I get a 404 error when saving settings)
	The install script redirects me to „action“ when it should be „actions“
	I installed in a subdirectory and my install action isn’t working!
	I did everything! mod_rewrite is working fine, but still the 404 error
	I get an error message that the rewrite test failed after the requirements check page
	There is a white page after I submit my database settings
	I’m getting a 404 error with a really long url
	I am having trouble setting my data path
	I can’t validate my admin account because I don’t have an email server!
	I have tried all of these suggestions and I still cannot install Elgg

	Developer Overview
	Database and Persistence
	Plugins
	Actions
	Events
	Views
	JavaScript
	Internationalization
	Caching
	3rd party libraries
	Database Seeding

	Elgg CLI
	elgg-cli command line tools
	Available commands
	Adding custom commands

	Administrator Guides
	Getting Started
	Focus first on core functionality
	Create test users
	Explore user functionality
	Explore admin functionality
	Extending Elgg

	Composer installation
	Install Composer
	Install Elgg as a Composer Project
	Open your browser

	Setup version controls
	Install plugins
	Commit
	Deploy to production
	Initial Deploy
	Subsequent Deploys

	Upgrading Elgg
	Advice
	From 2.3 to 3.0
	1. Update composer.json
	2. Update .htaccess
	3a. Composer Upgrade (recommended)
	3b. Manual Upgrade (legacy approach)

	Applying a patch using Composer
	Earlier versions

	Plugins
	Where to get plugins
	The Elgg Community
	Finding Plugins
	Sort based on most popular
	Use the plugin tag search
	Look for particular plugin authors

	Evaluating Plugins
	Look at the comments and ratings
	Install on a test site

	Types of plugins
	Themes
	Language Packs

	Installation
	Plugin order

	Performance
	Can Elgg scale to X million users?
	Measure first
	Tune MySQL
	Enable caching
	Simplecache
	System cache
	Boot cache
	Database query cache
	Etags and Expires headers
	Memcached
	Squid
	Bytecode caching
	Direct file serving
	Composer Autoloader Optimization

	Hosting
	Memory, CPU and bandwidth
	Configuration

	Check for poorly-behaved plugins
	Use client-rendered HTML

	Cron
	What does it do?
	How does it work?

	Backup and Restore
	Introduction
	Why
	What
	Assumptions

	Creating a usable backup - automatically
	Customize the backup script
	Configure the backup Cron job
	Configure the cleanup Cron job

	Restoring from backup
	Prepare your backup files
	Restore the files
	Restore the MySQL Database
	Edit the MySQL backup
	Create the new database
	Restore the production database
	Bringing it all together
	Finalizing the new installation

	Congratulations!
	Related
	FTP backup script
	Duplicate Installation
	Introduction
	Why Duplicate an Elgg Installation?
	What Is Not Covered in This Tutorial
	Before You Start
	Copy Elgg Code to the Test Server
	Copy Data to the Test Server
	Edit settings.php
	Copy Elgg Database
	Database Entries
	Change the installation path
	Change the data directory
	Check .htaccess
	Update Webserver Config
	Run upgrade.php
	Tips
	Related

	Getting Help
	Getting help
	Don’t be a Help Vampire
	Search first
	Ask once
	Include Elgg Version
	Have a reasonable profile
	Post in the appropriate forum
	Use a descriptive topic title
	Be detailed
	Keep it public

	Guidelines
	Content
	Mood
	Advertising
	Asking for money / Offering to pay
	Links
	Signatures
	Bumping, +1, me too
	Posting Code

	Good Ideas
	Say thanks
	Give back

	Security
	Upgrade protection
	Cron protection
	Disable password autocomplete
	Email address change requires password
	Email address change requires confirmation
	Session bound icons
	Notification to site administrators
	Notifications to user
	Site administrator
	(Un)ban

	Minimal username length
	Minimal password requirements
	.htaccess file access hardening

	User validation
	Listing of unvalidated users
	Require admin validation

	Spam
	Install an anti-spam plugin
	Change the registration url
	Disable open registration
	Contribute to anti-spam measures in core

	Developer Guides
	Don’t Modify Core
	It makes it hard to get help
	It makes upgrading tricky and potentially disastrous
	It may break plugins
	Summary

	Access Control Lists
	Creating an ACL
	ACL subtypes
	Adding users to an ACL
	Removing users from an ACL
	Retrieving an ACL
	Read access
	Ignoring access

	Accessibility
	Resources + references
	Tips for implementing accessibility
	Tips for testing accessibility
	Documentation objectives and principles

	Forms + Actions
	Registering actions
	Registering actions using plugin config file
	Permissions
	Writing action files
	Customizing actions
	Example: Captcha

	Actions available in core
	entity/delete

	Forms
	Inputs
	Input types

	Files and images
	Sticky forms
	Helper functions
	Overview
	Example: User registration
	Example: Bookmarks

	Ajax
	Security
	Security Tokens
	Signed URLs

	Ajax
	Overview
	Performing actions
	Fetching data
	Fetching views
	Fetching forms
	Submitting forms
	Redirects
	Piggybacking on an Ajax request
	Piggybacking on an Ajax response
	Handling errors
	Requiring ES modules

	Authentication
	Working with the logged in user
	Gatekeepers
	Pluggable Authentication Modules
	Importance
	Passed credentials
	Return value

	Capabilities
	Entity Capabilities
	Defining capabilities
	Registering for capabilities
	Checking for capabilities

	Context
	Cron
	Custom intervals

	Database
	Entities
	Creating an object
	Loading an object
	By GUID
	By user, subtype or site
	By properties

	Displaying entities
	Entity Icons

	Adding, reading and deleting annotations
	Extending ElggEntity
	Advanced features
	Entity URLs
	Entity loading performance

	Custom database functionality
	Systemlog
	System log storage
	Creating your own system log

	Email
	HTML Mail
	Attachments
	E-mail address formatting

	Error Handling
	List of events in core
	System events
	User events
	Relationship events
	Entity events
	Metadata events
	Annotation events
	River events
	Access events
	Permission events
	Notifications events
	Emails
	File events
	Action events
	Ajax
	Routing
	Views
	Search
	Other
	Plugins
	Groups
	Web Services

	File System
	Filestore
	Location
	Directory Structure

	File Objects
	Writing Files
	Reading Files
	Serving Files
	Embedding Files
	Handling File Uploads

	Temporary files

	Group Tools
	Plugin coding guidelines
	Use standardized routing with page handlers
	Use standardized page handlers and scripts
	The object/<subtype> view
	Actions
	Action best practices

	Directly calling a file
	Recommended

	Helper functions
	Input and output
	Entity methods
	Entity and context retrieval
	Plugins
	Interface and annotations
	Messages

	Internationalization
	Overview
	Server-side API
	Javascript API

	JavaScript
	JavaScript Modules
	Executing a module in the current page
	Defining the Module
	Passing settings to modules
	The elgg.data events

	Setting the URL of a module

	Modules provided with Elgg
	Module elgg
	Module elgg/Ajax
	Module elgg/hooks
	Module elgg/i18n
	Module elgg/system_messages
	Module elgg/security
	Module elgg/spinner
	Module elgg/popup
	Module elgg/widgets
	Module elgg/lightbox
	Module elgg/ckeditor
	Inline tabs component

	Traditional scripts
	Hooks
	Registering hook handlers
	The handler function
	Triggering custom hooks
	Available hooks

	Third-party assets

	Menus
	Basic usage
	Examples

	Admin menu
	Advanced usage
	Headers
	Events
	Examples

	Creating a new menu
	Child Dropdown Menus
	Theming
	Toggling Menu Items
	JavaScript

	Notifications
	Instant notifications
	Example:

	Enqueued notifications
	Notification event registration example
	Custom notification event registration example
	Custom notification content example

	Notification salutation and sign-off
	Notification methods
	Email
	Delayed email
	Site notification

	Registering a new notification method
	Example:

	Sending the notifications using your own method
	Example:

	Subscriptions
	Example:

	Muted notifications
	Helper page

	Temporarily disable notifications
	Notification settings
	Notification management

	Page ownership
	Page owner detection

	Permissions Check
	Extending permissions_check
	The override function
	Full Example

	Plugins
	elgg-plugin.php
	Bootstrap class
	elgg-services.php
	composer.json
	Tests
	Related
	Plugin skeleton
	Example Structure
	Required Files
	Actions
	Text Files
	Pages
	Classes
	Vendors
	Views

	Plugin Dependencies
	Overview
	PHP version or extension
	Require an Elgg plugin
	Conflicts

	Plugin bootstrap
	Registering the bootstrap class
	Available functions
	->load()
	->boot()
	->init()
	->ready()
	->shutdown()
	->activate()
	->deactivate()
	->upgrade()
	Available helper functions
	->elgg()
	->plugin()

	Restore capability
	Site setting
	Registration
	Entity menu
	View deleted items
	Custom views

	Restore a deleted item
	Events
	ElggEntity functions
	Function: delete
	Function: persistentDelete
	Function: trash
	Function: isDeleted

	Show deleted items
	Cleanup of deleted entities
	More information

	River
	Pushing river items
	River views
	Summary

	Custom river view

	Routing
	URL Identifier and Segments
	Page Handling
	Routes names
	Route configuration
	Plugin dependent routes
	Route middleware
	Gatekeeper
	AdminGatekeeper
	LoggedOutGatekeeper
	AjaxGatekeeper
	PageOwnerGatekeeper
	GroupPageOwnerGatekeeper
	UserPageOwnerGatekeeper
	PageOwnerCanEditGatekeeper
	GroupPageOwnerCanEditGatekeeper
	UserPageOwnerCanEditGatekeeper
	CsrfFirewall
	ActionMiddleware
	SignedRequestGatekeeper
	UpgradeGatekeeper
	WalledGarden
	Custom Middleware

	Route controllers

	The route:rewrite event
	Routing overview

	Search
	Entity search
	Search fields
	Searchable types
	Custom search types
	Autocomplete and livesearch endpoint

	Services
	Menus

	Plugin settings
	User settings
	Group settings
	Retrieving settings in your code
	Setting values while in code
	Default plugin (group|user) settings

	Themes
	Theming Principles and Best Practices
	Create your plugin
	Customize the CSS
	CSS variables
	View extension
	View overloading
	Icons

	Tools
	Customizing the front page

	Writing a plugin upgrade
	Declaring a plugin upgrade
	The upgrade class
	Class methods
	getVersion()
	shouldBeSkipped()
	needsIncrementOffset()
	countItems()
	run()
	getUpgrade()

	Administration interface

	Views
	Introduction
	Using views
	Views as templates
	Views as cacheable assets
	Views and third-party assets
	Specifying additional views directories

	Viewtypes
	Altering views via plugins
	Overriding views
	Extending views
	Altering view input
	Altering view input example

	Altering view output
	Altering view output example

	Replacing view output completely

	Displaying entities
	Full and partial entity views

	Listing entities
	Rendering a list with an alternate view
	Rendering a list as a table

	Icons
	Generic icons
	Entity icons

	Related
	Page structure best practice
	Simplecache
	Regenerating the Simplecache
	Using the Simplecache in your plugins

	Page/elements/foot vs footer

	Walled Garden
	Activating Walled Garden mode
	Exposing pages through Walled Gardens

	Web services
	Security
	Exposing methods
	Response formats
	Parameters
	Receive parameters as associative array

	API authentication
	Key-based authentication
	Signature-based authentication

	User authentication
	Building out your API
	Determining the authentication available
	Related
	HMAC Authentication
	Supported hashing algorithms
	POST hash calculation
	HMAC hash calculation
	Hashing cache

	API results
	Success result structure
	Error result structure
	Default status codes

	Widgets
	Structure
	Register the widget
	Multiple widgets
	Magic widget name and description
	How to restrict where widgets can be used
	Allow multiple widgets on the same page
	Register widgets in an event
	Modify widget properties of existing widget registration

	Default widgets

	Tutorials
	Hello world
	Composer file
	Registering a route
	View file
	Last step

	Customizing the Home Page
	Building a Blog Plugin
	Create the plugin’s directory and composer file
	Create the form for creating a new blog post
	Create a page for composing the blogs
	Create the action file for saving the blog post
	Create elgg-plugin.php
	Create a page for viewing a blog post
	Create the object view
	Trying it out
	Displaying a list of blog posts
	The end

	Integrating a Rich Text Editor
	Add the WYSIWYG library code
	Tell Elgg when and how to load TinyMCE

	Basic Widget
	Adding the widget view code
	Registering your widget
	Allow user customization

	Design Docs
	Accessibility
	Forms
	Images
	Headings
	Sections
	Menus

	Actions
	Overview
	Action Handler

	Database
	Overview
	Datamodel
	Entities
	Types
	Subtypes
	Subtype Gotchas
	GUIDs
	Deleted state

	ElggObject
	ElggUser
	ElggSite
	ElggGroup
	The Groups plugin
	Writing a group-aware plugin
	Adding content

	Ownership
	Containers
	Annotations
	Adding an annotation
	Reading annotations
	Useful helper functions
	Comments

	Metadata
	The simple case
	Adding metadata
	Reading metadata

	Reading metadata as objects
	Common mistakes
	„Appending“ metadata
	Trying to store hashmaps
	Storing GUIDs in metadata

	Relationships
	Working with relationships
	Creating a relationship
	Verifying a relationship
	Deleting a relationship
	Finding relationships and related entities

	Access Control
	Access controls in the data model
	Pre-defined access controls
	User defined access controls

	How access affects data retrieval
	Write access

	Schema
	InnoDB
	Main tables
	Table: entities
	Table: metadata
	Table: annotations
	Table: relationships

	Secundairy tables
	Table: access_collections

	Events
	Overview
	Elgg Events
	Before and After Events
	Elgg Event Handlers
	Register to handle an Elgg Event
	Invokable classes as handlers

	Trigger an Elgg Event
	Trigger an Event with results
	Trigger an Elgg Event sequence
	Unregister Event Handlers
	Handler Calling Order

	Security
	Passwords
	Password validation
	Password hashing
	Password throttling
	Password resetting

	Sessions
	Session fixation
	„Remember me“ cookie

	Alternative authentication
	HTTPS
	XSS
	CSRF / XSRF
	Signed URLs
	SQL Injection
	Privacy
	Hardening

	Loggable
	Database details

	Contributor Guides
	Writing Code
	License agreement
	Pull requests
	Checklists
	Choosing a branch to submit to
	Commit message format
	Rewriting commit messages

	Coding Standards
	Testing
	General guidelines
	PHP Tests
	PHPUnit
	Testing interactions between services

	Coding best practices
	General coding
	Don’t Repeat Yourself
	Embrace SOLID and GRASP
	Whitespace is free
	Variable names
	Interface names
	Functions
	Ternary syntax
	Minimize complexity
	Use comments effectively
	Commit effectively
	Include tests
	Keep bugfixes simple

	PHP guidelines
	Documentation
	Naming
	Miscellaneous
	Value validation
	Use exceptions
	Documenting return values

	CSS guidelines
	Use shorthand where possible
	Use hyphens, not underscores
	One property per line
	Property declarations
	Vendor prefixes
	Group subproperties

	Javascript guidelines

	Deprecating APIs

	Database
	Database Migrations
	Create a migration
	Executing a migration

	Writing Documentation
	Testing docs locally
	Follow the existing document organization
	intro/*
	admin/*
	guides/*
	design/*
	contribute/*
	appendix/*

	Use „Elgg“ in a grammatically correct way
	Avoid first person pronouns
	Eliminate fluff
	Prefer absolute dates over relative ones
	Do not remind the reader to contribute

	Internationalizing documentation
	Special attention
	Translating links
	Do NOT translate

	Translations
	Transifex
	Pulling translations
	Transifex configuration
	New major Elgg version

	Reporting Issues
	DISCLAIMERS
	Bug reports
	Feature requests

	Becoming a Financial Supporter
	Benefits
	Disclaimer
	Sign up

	Adding a Service to Elgg
	Inject your dependencies
	Making a service part of the public API
	Service Life Cycle and Factories

	Writing tests
	Vision
	Running Tests
	Elgg Core Test Suite
	Plugin tests
	End-to-end tests

	Motivation
	Strategy
	Continuous Integration
	Dependency Injection
	Behavior-Driven Development

	Core tasks
	Moving a plugin to its own repository
	Plugin extraction steps
	Move the code to its own repository
	Dependencies
	Commit the code
	Packagist
	Tag a release
	Translations

	Elgg core cleanup
	Remove the plugin
	Translations
	Bundled
	Composer
	Documentation

	Release Process Workflow
	Requirements
	Merge commits up from lower branches
	For each branch

	Preparation for first new stable minor/major release
	Preparation for a new major release

	Prepare the release
	Make a PR with translation updates
	Make the release PR

	Tag the release
	Additional actions for the first new minor / major
	Additional action for the first new major

	Update the website
	Update elgg.org download page
	Update elgg.org

	Make the announcement

	Appendix
	Upgrade Notes
	From 5.x to 6.0
	Databases
	DB Requirements
	Deleted state

	ES Modules
	Related functions changes

	Composer
	PHP Requirements
	PHPUnit

	Annotations
	Enabled column

	Entity Icons
	Cropping coordinates
	Icontime

	Headings
	CSS and HTML structure changes
	Changes in functions
	Removed lib functions
	Removed class functions
	Lib functions function parameters

	Miscellaneous API changes
	Removed Config values

	From 5.0 to 5.1
	Changes in the DOM structure
	Deprecated Views
	Deprecated Routes

	From 4.x to 5.0
	CKEditor
	Composer
	PHP Requirements
	Faker

	Events and Hooks
	Create event

	Private Settings
	Breadcrumbs integrated into menu system
	Upgrades
	Session
	Gatekeepers
	Files plugin
	Embed plugin
	Javascript
	Hooks system
	Removed functions

	Exceptions
	ElggRiverItem
	Metadata options in getter functions
	Changes in functions
	Lib functions return types
	Lib functions function parameters
	Class function return types
	Class function parameters
	Moved classes
	Deprecated APIs
	Removed classes
	Removed functions
	Removed class functions
	Removed events
	Removed exceptions
	Constants

	From 4.2 to 4.3
	Deprecation of rel=“toggle“ and rel=“popup“
	PAM handlers
	Deprecated APIs
	Lib functions
	Class functions
	Events
	Hooks
	Classes
	Notable function parameters

	Deprecated Config values

	From 4.1 to 4.2
	Stash replaced with Phpfastcache
	Metadata and Annotation boolean values
	System message functions
	Javascript functions
	System messages
	Security tokens
	Translations
	UI functions
	ElggUser & ElggEntity

	Security
	Groups
	Deprecated APIs
	Lib functions

	From 4.0 to 4.1
	Entity Capabilities
	Threaded Comments
	Deprecated APIs
	Lib functions
	Plugin hooks

	From 3.x to 4.0
	Composer
	PHP Requirements
	Composer project
	Doctrine DBAL
	PHP-DI
	ZendMail replaced by LaminasMail
	Removed composer dependencies

	Javascript
	AJAX
	Classes
	System Hooks
	jQuery
	jQuery UI
	Miscellaneous JS changes

	Notifications
	Subscriptions
	Multiple Recipients
	Settings
	Notification Salutation & Sign-off
	Notifications plugin
	Notification Event Handling
	Site notification

	Split OkResponse, ErrorResponse and RedirectResponse
	Datamodel
	Schema changes
	ElggEntity attributes
	ElggUser attributes

	Plugin development
	Plugin bootstrapping
	Plugin Manifest
	Hookable field configurations
	Menus
	Filter tabs
	Title menu
	Registering tag metadatanames
	Default widgets
	Container permissions

	Plugins
	Activity plugin
	Diagnostics Plugin
	Discussions Plugin
	Search Plugin
	Web services Plugin
	Removed classes
	Removed functions
	Miscellaneous changes

	Type hinted functions
	Class function parameters
	Class function return type
	Lib function parameters

	Change in function parameters
	Class functions
	Lib functions

	Renamed hook/event handler callbacks
	Core
	Plugins

	Reworked exceptions
	Moved exceptions
	Removed exceptions

	Reworked Traits
	Miscellaneous API changes
	Deprecated APIs
	Class functions
	Lib functions
	Plugin hooks

	Removed functions
	Class functions
	Lib functions

	Removed views / resources
	Removed hooks / events
	Removed actions

	From 3.2 to 3.3
	PHP Version
	Simpler use of ‚default‘ layout
	Deprecated layout names
	Plugin Manifest changes
	Deprecated APIs
	Deprecated Config values
	Deprecated CLI commands
	Deprecated Hooks

	From 3.1 to 3.2
	User write access
	River items enabled state

	From 3.0 to 3.1
	PHP Version
	Plugin screenshots
	Loading external files
	Setting page owner
	Simpletests
	Hook and event callbacks
	Deprecated Routes
	Deprecated CSS libraries
	Deprecated JS libraries
	Deprecated APIs
	Deprecated actions

	From 2.x to 3.0
	PHP 7.0 is now required
	$CONFIG is removed!
	Removed views
	Removed functions/methods
	Deprecated APIs
	Removed global vars
	Removed classes/interfaces
	Schema changes
	Changes in elgg_get_entities, elgg_get_metadata and elgg_get_annotations getter functions
	Boolean entity properties
	Metadata Changes
	Permissions and Access
	Multi Site Changes
	Entity Subtable Changes
	Friends and Group Access Collection
	Subtypes no longer have an ID
	Custom class loading
	Dependency Injection Container
	Search changes
	Form and field related changes
	Entity and River Menu Changes
	Removed libraries
	Removed pagehandling
	Removed actions
	Inheritance changes
	Removed JavaScript APIs
	Removed hooks/events
	Removed forms/actions
	APIs that now accept only an $options array
	Plugin functions that now require an explicit $plugin_id
	Class constructors that now accept only a stdClass object or null
	Miscellaneous API changes
	View extension behaviour changed
	JavaScript hook calling order may change
	Widget layout related changes
	Routing
	Labelling
	Request value filtering
	Action responses
	HtmLawed is no longer a plugin
	New approach to page layouts
	Likes plugin
	Notifications plugin
	Pages plugin
	Profile plugin
	Data Views plugin
	Twitter API plugin
	Legacy URLs plugin
	User validation by email plugin
	Email delivery
	Theme and styling changes
	Comments
	Object listing views
	Menu changes
	Entity icons
	Icon glyphs
	Autocomplete (user and friends pickers)
	Friends collections
	Layout of .elgg-body elements
	Delete river items
	Discussion replies moved to comments
	Translations cleanup
	System Log
	Error logging
	Composer asset plugin no longer required
	Cron logs
	Removed / changed language keys
	New MySQL schema features are not applied
	Miscellaneous changes
	Twitter API plugin
	Unit and Integration Testing

	From 2.2 to 2.3
	PHP Version
	Deprecated APIs
	Deprecated Views
	New API for page and action handling
	New API for working with file uploads
	New API for manipulating images
	New API for events
	New API for signing URLs
	Extendable form views
	Metadata access_id
	New API for extracting class names from arrays
	Notifications
	Entity list functions can output tables
	Inline tabs components
	API to alter registration and login URL
	Support for fieldsets in forms
	Lightbox

	From 2.1 to 2.2
	Deprecated APIs
	Deprecated Views
	Added elgg/popup module
	Added elgg/lightbox module
	Added elgg/embed module
	New API for handling entity icons
	Removed APIs
	Improved elgg/ckeditor module

	From 2.0 to 2.1
	Deprecated APIs
	Application::getDb() changes
	Added elgg/widgets module

	From 1.x to 2.0
	Elgg can be now installed as a composer dependency instead of at document root
	Cacheable views must have a file extension in their names
	Dropped jquery-migrate and upgraded jquery to ^2.1.4
	JS and CSS views have been moved out of the js/ and css/ directories
	fxp/composer-asset-plugin is now required to install Elgg from source
	List of deprecated views and view arguments that have been removed
	All scripts moved to bottom of page
	Attribute formatter removes keys with underscores
	Breadcrumbs
	Callbacks in Queries
	Comments plugin hook
	Container permissions hook
	Creating or deleting a relationship triggers only one event
	Discussion feature has been pulled from groups into its own plugin
	Dropped login-over-https feature
	Elgg has migrated from ext/mysql to PDO MySQL
	Event/Hook calling order may change
	export/ URLs are no longer available
	Icons migrated to Font Awesome
	Increase of z-index value in elgg-menu-site class
	input/autocomplete view
	Introduced third-party library for sending email
	Label elements
	Plugin Aalborg Theme
	Plugin Likes
	Plugin Messages
	Plugin Blog
	Plugin Bookmarks
	Plugin File
	Removed Classes
	Removed keys available via elgg_get_config()
	Removed Functions
	Removed methods
	Removed Plugin Hooks
	Removed Actions
	Removed Views
	Removed View Variables
	Removed libraries
	Specifying View via Properties
	Viewtype is static after the initial elgg_get_viewtype() call
	Deprecations

	From 1.10 to 1.11
	Comment highlighting

	From 1.9 to 1.10
	File uploads

	From 1.8 to 1.9
	The manifest file
	$CONFIG and $vars[‚config‘]
	Language files
	Notifications
	Adding items to the Activity listing
	Entity URL handlers
	Web services

	From 1.7 to 1.8
	Updating core
	Updating plugins
	Use standardized routing with page handlers
	Include page handler scripts from the page handler
	Use standardized page handlers and scripts
	The object/:subtype view
	Update action structure
	Update deprecated functions
	Update the widget views
	Update the group profile module
	Update forms
	Clean up CSS/HTML
	Update manifest.xml
	Update settings and user settings views

	FAQs and Other Troubleshooting
	General
	„Plugin cannot start and has been deactivated“ or „This plugin is invalid“
	White Page (WSOD)
	Page not found
	Login token mismatch
	Form is missing __token or __ts fields
	Maintenance mode
	Missing email
	Server logs
	How does registration work?
	User validation
	Manually add user
	I’m making or just installed a new theme, but graphics or other elements aren’t working
	Changing profile fields
	Changing registration
	How do I change PHP settings using .htaccess?
	HTTPS login turned on accidently
	Using a test site
	500 - Internal Server Error
	What is it?
	Possible causes

	When I upload a photo or change my profile picture I get a white screen
	CSS is missing
	Wrong URL
	Syntax error
	Rewrite rules errors

	Should I edit the database manually?
	Will editing the database manually break my site?
	Can I add extra fields to tables in the database?
	I want to remove users. Can’t I just delete them from the elgg_entities table?
	I want to remove spam. Can’t I just search and delete it from the elgg_entities table?
	Someone on the community site told me to edit the database manually. Should I?
	I know PHP and MySQL and have a legitimate reason to edit the database. Is it okay to manually edit the database?

	Internet Explorer (IE) login problem
	Canonical URL
	Chrome Frame

	Emails don’t support non-Latin characters
	Session length
	File is missing an owner
	Fixes

	No images
	Wrong path for data directory
	Wrong permissions on the data directory
	Migrated installation with new data directory location

	Deprecation warnings
	Javascript not working
	IP addresses in the logs are wrong

	Security
	Is upgrade.php a security concern?
	Should I delete install.php?
	Filtering

	Development
	What should I use to edit php code?
	Text Editor
	Integrated Development Environment

	I don’t like the wording of something in Elgg. How do I change it?
	Create the plugin skeleton
	Locate the string that you want to change
	Override the string

	How do I find the code that does x?
	String Example
	Action Example

	Debug mode
	What goes into the log in debug mode?
	What does the data look like?

	What events are triggered on every page load?
	Copy a plugin

	General
	„Plugin cannot start and has been deactivated“ or „This plugin is invalid“
	White Page (WSOD)
	Page not found
	Login token mismatch
	Form is missing __token or __ts fields
	Maintenance mode
	Missing email
	Server logs
	How does registration work?
	User validation
	Manually add user
	I’m making or just installed a new theme, but graphics or other elements aren’t working
	Changing profile fields
	Changing registration
	How do I change PHP settings using .htaccess?
	HTTPS login turned on accidently
	Using a test site
	500 - Internal Server Error
	What is it?
	Possible causes

	When I upload a photo or change my profile picture I get a white screen
	CSS is missing
	Wrong URL
	Syntax error
	Rewrite rules errors

	Should I edit the database manually?
	Will editing the database manually break my site?
	Can I add extra fields to tables in the database?
	I want to remove users. Can’t I just delete them from the elgg_entities table?
	I want to remove spam. Can’t I just search and delete it from the elgg_entities table?
	Someone on the community site told me to edit the database manually. Should I?
	I know PHP and MySQL and have a legitimate reason to edit the database. Is it okay to manually edit the database?

	Internet Explorer (IE) login problem
	Canonical URL
	Chrome Frame

	Emails don’t support non-Latin characters
	Session length
	File is missing an owner
	Fixes

	No images
	Wrong path for data directory
	Wrong permissions on the data directory
	Migrated installation with new data directory location

	Deprecation warnings
	Javascript not working
	IP addresses in the logs are wrong

	Security
	Is upgrade.php a security concern?
	Should I delete install.php?
	Filtering

	Development
	What should I use to edit php code?
	Text Editor
	Integrated Development Environment

	I don’t like the wording of something in Elgg. How do I change it?
	Create the plugin skeleton
	Locate the string that you want to change
	Override the string

	How do I find the code that does x?
	String Example
	Action Example

	Debug mode
	What goes into the log in debug mode?
	What does the data look like?

	What events are triggered on every page load?
	Copy a plugin

	Roadmap
	Values
	Accessibility
	Testability

	FAQ
	When will feature X be implemented?
	When is version X.Y.Z going to be released?

	Release Policy
	Patch/Bugfix Releases (2.1.x)
	Minor/Feature Releases (2.x.0)
	Major/Breaking Releases (x.0.0)
	Alphas, Betas, and Release Candidates
	Backwards compatibility
	Classes and functions
	Event callbacks
	Test suite
	Views

	Support policy
	Long Term Support Releases
	Bugs
	Security issues

	Timeline

	History

