
Elgg Documentation
Versión master

Various

07 de junio de 2023

Índice general

1. Features 3

2. Examples 5

3. Continue Reading 7

I

II

Elgg Documentation, Versión master

Elgg (pronunciation) is an open source rapid development framework for socially aware web applications. It is a
great fit for building any app where users log in and share information.

Índice general 1

http://elgg.org

Elgg Documentation, Versión master

2 Índice general

CAPÍTULO 1

Features

Well-documented core API that allows developers to kick start their new project with a simple learning curve

Composer is the package manager of choice that greatly simplifes installation and maintenance of Elgg core
and plugins

Flexible system of hooks and events that allows plugins to extend and modify most aspects of application’s
functionality and behavior

Extendable system of views that allows plugins to collaborate on application’s presentation layer and built out
complex custom themes

Cacheable system of static assets that allows themes and plugins to serve images, stylesheets, fonts and scripts
bypassing the engine

User authentication is powered by pluggable auth modules, which allow applications to implement custom
authentication protocols

Security is ensured by built-in anti CSRF validation, strict XSS filters, HMAC signatures, latest cryptographic
approaches to password hashing

Client-side API powered by asynchronous JavaScript modules via RequireJS and a build-in Ajax service for
easy communication with the server

Flexible entity system that allows applications to prototype new types of content and user interactions

Opinionated data model with a consolidated API layer that allows the developers to easily interface with the
database

Access control system that allows applications to build granular content access policies, as well as create private
networks and intranets

Groups - out of the box support for user groups

File storage powered by flexible API that allows plugins to store user-generated files and serve/stream them
without booting the engine

Notifications service that allows applications to subscribe users to on-site and email notifications and implement
integrations with other their-party services

3

Elgg Documentation, Versión master

RPC web services that can be used for complex integrations with external applications and mobile clients

Internationalization and localization of Elgg applications is simple and can be integrated with third-party
services such as Transifex

Elgg community that can help with any arising issues and hosts a repository of 1000+ open source plugins

Under the hood:

Elgg is a modular OOP framework that is driven by DI services

NGINX or Apache compatible

Symfony2 HTTP Foundation handles requests and responses

RequireJS handles AMD

Laminas Mail handles outgoing email

htmLawed XSS filters

DBAL

Phinx database migrations

CSS-Crush for CSS preprocessing

Imagine for image manipulation

Persistent caching with Memcached and/or Redis

Error handling with Monolog

4 Capítulo 1. Features

CAPÍTULO 2

Examples

It has been used to build all kinds of social apps:

open networks (similar to Facebook)

topical (like the Elgg Community)

private/corporate intranets

dating

educational

company blog

This is the canonical documentation for the Elgg project.

5

https://elgg.org/showcase
http://elgg.org

Elgg Documentation, Versión master

6 Capítulo 2. Examples

CAPÍTULO 3

Continue Reading

3.1 Getting Started

Discover if Elgg is right for your community.

3.1.1 Bundled plugins

Elgg comes with a set of plugins. These provide the basic functionality for your social network.

Blog

A weblog, or blog, is arguably one of the fundamental DNA pieces of most types of social networking site. The
simplest form of personal publishing, it allows for text-based notes to be published in reverse-chronological order.
Commenting is also an important part of blogging, turning an individual act of publishing into a conversation.

Elgg’s blog expands this model by providing per-entry access controls and cross-blog tagging. You can control exactly
who can see each individual entry, as well as find other entries that people have written on similar topics. You can also
see entries written by your friends (that you have access to).

Ver también:

Blogging on Wikipedia

Dashboard

Figura 1: A typical Elgg dash-
board

The dashboard is bundled with both the full and core-only Elgg packages. This is
a users portal to activity that is important to them both from within the site and
from external sources. Using Elgg’s powerful widget API, it is possible to build
widgets that pull out relevant content from within an Elgg powered site as well
as grab information from third party sources such as Twitter or Flickr (providing
those widgets exist). A users dashboard is not the same as their profile, whereas

7

http://en.wikipedia.org/wiki/Blog

Elgg Documentation, Versión master

the profile is for consumption by others, the dashboard is a space for users to use
for their own needs.

Discussions

Add a forum like place to start a discussion. This feature is mainly meant to used
in groups. The group owners can enable/disable this feature for their group.

There is a plugin setting to enable global discussions (so outside of a group). This
setting is disabled by default but can be enabled by a site administrator.

Notifications

In order to encourage discussion in a group all group members will receive notifications about comments on a discus-
sion topic. This will follow the notification preferences of the group member based on the global group preference or
the specific group preference for new discussions.

File repository

Figura 2: A file in an Elgg file re-
pository

The file repository allows users to upload any kind of file. As with everything
in an Elgg system, you can filter uploaded files by tag and restrict access so that
they’re only visible by the people you want them to be. Each file may also have
comments attached to it.

There are a number of different uses for this functionality

Photo gallery

When a user uploads photographs or other pictures, they are automatically co-
llated into an Elgg photo gallery that can be browsed through. Users can also
see pictures that their friends have uploaded, or see pictures attached to a group.
Clicking into an individual file shows a larger version of the photo.

Podcasting

An Elgg file repository RSS feed automatically doubles as an RSS feed, so you
can subscribe to new audio content using programs like iTunes.

Special content

It is possible for other plugins to add to the players available for different content types. It’s possible for a plugin
author to embed a viewer for Word documents, for example.

Note for developers

To add a special content type player, create a plugin with views of the form file/specialcontent/mime/
type. For example, to create a special viewer for Word documents, you would create a view called file/
specialcontent/application/msword, because application/msword is the MIME-type for Word

8 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

documents. Within this view, the ElggEntity version of the file will be referenced as $vars['entity']. The-
refore, the URL of the downloadable file is:

echo $vars['entity']->getDownloadURL();

Using this, it should be possible to develop most types of embeddable viewers.

Friends

Being a social network framework Elgg supports relationships between users.

By default any user can befriend any other user, it’s like following the activity of the other user.

After enabling friendship requests as a feature of the Friends plugin, when user A wants to be friends with user B, user
B has to approve the request. Upon approval user A will be friends with user B and user B will be friends with user A.

Groups

Figura 3: A typical group profile

Once you have found others with similar interests - or perhaps you are part of a
research groups or a course/class - you may want to have a more structured setting
to share content and discuss ideas. This is where Elgg’s powerful group building
can be used. You can create and moderate as many groups as you like

You can keep all group activity private to the group or you can use the
“make public” option to disseminate work to the wider public.

Each group produces granular RSS feeds, so it is easy to follow group de-
velopments

Each group has its own URL and profile

Each group comes with a File repository, forum, pages and messageboard

Likes

Allow users to like content on your site. If content supports being likable a
“thumbs up” will appear as a social interaction with this content. Liking content
will also notify the content owner about the new like. A counter will show next
to the like action reporting about the amount of likes the content has. Clicking on
the counter will show a list of users who recently liked the content.

Nota: The likes plugin uses the entity capability likable. This capability defines if an entity is likable.

Messageboard

Figura 4: A sample messageboard
placed on the profile

The messageboard - similar to “The Wall” in Facebook or a comment wall in
other networks is a plugin that lets users put a messageboard widget on their
profile. Other users can then post messages that will appear on the messageboard.
You can then reply directly to any message and view the history between yourself
and the person posting the message.

3.1. Getting Started 9

Elgg Documentation, Versión master

Messages

Private messaging can be sent to users by clicking on their avatar or profile link,
providing you have permission. Then, using the built in WYSIWYG editor, it is
possible to format the message. Each user has their own inbox and sentbox. It is
possible to be notified via email of new messages.

When users first login, they will be notified about any new message by the mes-
sages notification mechanism in their top toolbar.

Pages

Figura 5: Message notification

Figura 6: An Elgg Page

The pages plugin allows you to save and store hierarchically-organized pages of
text, and restrict both reading and writing privileges to them. This means that you
can collaboratively create a set of documents with a loose collection of people,
participate in a writing process with a formal group, or simply use the functiona-
lity to write a document that only you can see, and only choose to share it once it’s
done. The easy navigation menu allows you to see the whole document structure
from any page. You can create as many of these structures as you like; each indi-
vidual page has its own access controls, so you can reveal portions of the structure
while keeping others hidden. In keeping with all other elements in Elgg, you can
add comments on a page, or search for pages by tag.

Usage

Pages really come into their own in two areas, firstly as a way for users to build up things such as a resume, reflective
documentation and so on. The second thing is in the area of collaboration, especially when in the context of groups.
With the powerful access controls on both read and write, this plugin is ideal for collaborative document creation.

Nota: Developers should note that there are actually 2 types of pages:

1. Top-level pages (with subtype page_top)

2. Normal pages (with subtype page)

Profile

Figura 7: An Elgg profile

The profile plugin is bundled with both the full and core-only Elgg packages.
The intention is that it can be disabled and replaced with another profile plugin
if you wish. It provides a number of pieces of functionality which many consider
fundamental to the concept of a social networking site, and is unique within the
plugins because the profile icon it defines is referenced as standard from all over
the system.

10 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

User details

This provides information about a user, which is configurable with the fields,
user:user hook. You can change the available profile fields from the admin
panel. Each profile field has its own access restriction, so users can choose exactly
who can see each individual element. Some of the fields contain tags (for example skills) limiting access to a field will
also limit who can find you by that tag.

User avatar

Figura 8: The Elgg context menu

The user avatar represents a user (or a group) throughout the site. By default, this
includes a context-sensitive menu that allows you to perform actions on the user
it belongs to wherever you see their avatar. For example, you can add them as a
friend, send an internal message, and more. Each plugin can add to this context
menu, so its full contents will vary depending on the functionality active in the
current Elgg site.

Notes for developers

Using a different profile icon To replace the profile icon, or provide more con-
tent, extend the icon/user/default view.

Adding to the context menu The context menu can be expanded by registering a
plugin hook for “register” “menu:user_hover”, the following sections have
special meaning:

default for non-active links (eg to read a blog)

admin for links accessible by administrators only

In each case, the user in question will be passed as
$params['entity'].

Site Notifications

The Site notifications plugin offers a way for your users to keep up to date with
what’s happening on your community by sending a on-site notification.

Features

Get a notification when content is posted on the community

Unread notifications will automatically be marked as read when you view
the content it relates to

Notifications will automatically be removed if the content it relates to is
removed

Plugin settings are available to automatically cleanup unread/read notifica-
tions

3.1. Getting Started 11

Elgg Documentation, Versión master

Note for developers

The cron based cleanup of (un)read site notifications removes the entities directly from the database. It isn’t using
$entity->delete() to help with performance. This means that no events are triggered for the entities which are
removed during the cleanup.

The Wire

Elgg wire plugin «The Wire» is Twitter-style microblogging plugin that allows users to post notes to the wire.

User validation by e-mail

The uservalidationbyemail plugin adds a step to the user registration process. After the user registered on the site, an
e-mail is sent to their e-mail address in order to validate that the e-mail address belongs to the user. In the e-mail is an
verification link, only after the user clicked on the link will the account of the user be able to login to the site.

The process for the user

1. The user creates an account by going to the registration page of your site

2. After the account is created the user lands on a page with instructions to check their e-mail account for the
validation e-mail

3. In the validation e-mail is a link to confirm their e-mail address

4. After clicking on the link, the account is validated

5. If possible the user gets logged in

If the user tries to login before validating their account an error is shown to indicate that the user needs to check their
e-mail account. Also the validation e-mail is sent again.

Options for site administrators

A site administrator can take some actions on unvalidated accounts. Under Administration -> Users -> Unvalidated
is a list of unvalidated users. The administrator can manualy validate or delete the user. Also the option to resend the
validation e-mail is present.

The following plugins are also bundled with Elgg, but are not (yet) documented

activity

bookmarks

ckeditor

custom_index

developers

embed

externalpages

friends_collections

garbagecollector

12 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

invitefriends

members

reportedcontent

search

system_log

tagcloud

web_services

3.1.2 License

MIT or GPLv2

A full Elgg package that includes the framework and a core set of plugins is available under version 2 of the GNU
General Public License (GPLv2). We also make the framework (without the plugins) available under the MIT license.

FAQ

The following answers are provided as a convenience to you; they are not legal counsel. Consult with a lawyer to be
sure about the answers to these questions. The Elgg Foundation cannot be held responsible for decisions you make
based on what you read on this page.

For questions not answered here, please refer to the official FAQ for the GPLv2.

How much does Elgg cost?

Elgg is free to download, install, and use. If you’d like to donate, we do appreciate our financial supporters!

Can I remove the Elgg branding/links?

Yes.

Can I modify the source code?

Yes, but in general we recommend you make your modifications as plugins so that when a new version of Elgg is
released, the upgrade process is as painless as possible.

Can I charge my users membership fees?

Yes.

If I modify Elgg, do I have to make the changes available?

No, if you are using Elgg to provide a service, you do not have to make the source available. If you distribute a modified
version of Elgg, then you must include the source code for the changes.

3.1. Getting Started 13

http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-faq.html
http://elgg.org/supporter.php

Elgg Documentation, Versión master

If I use Elgg to host a network, does The Elgg Foundation have any rights over my network?

No.

What’s the difference between the MIT and GPL versions?

Plugins are not included with the MIT version.

You can distribute a commercial product based on Elgg using the MIT version without making your modifications
available.

With the GPL licensed version, you have to include make your modifications of the framework public if you redistri-
bute the framework.

Why are plugins missing from the MIT version?

The plugins were developed under the GPL license, so they cannot be released under an MIT license. Also, some
plugins include external dependencies that are not compatible with the MIT license.

May I distribute a plugin for Elgg under a commercial license?

We believe you can, since plugins typically depend only the core framework and the framework is available under the
MIT license. That said, we really recommend you consult with a lawyer on this particular issue to be absolutely sure.

Note that plugins released via the community site repository must be licensed under a GPLv2-compatible license.
They do not necessarily have to be GPLv2, just compatible (like MIT).

Can we build our own tool that uses Elgg and sell that tool to our clients?

Yes, but then your clients will be free to redistribute that tool under the terms of the GPLv2.

3.1.3 Installation

Get your own instance of Elgg running in no time.

Contents

Requirements

Overview

Other Configurations

Troubleshooting

Requirements

MySQL 5.7+

PHP 7.4+ with the following extensions:

14 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

• GD (for graphics processing)

• PDO (for database connection)

• JSON (for AJAX responses, etc.)

• XML (for xml resource and web services, etc.)

• Multibyte String support (for i18n)

• (optional) intl (for i18n)

• Proper configuration and ability to send email through an MTA

Web server with support for URL rewriting

Official support is provided for the following configurations:

Apache server

• Apache with the rewrite module enabled

• PHP running as an Apache module

Nginx server

• Nginx with PHP-FPM using FastCGI

By «official support», we mean that:

Most development and testing is performed with these configurations

Much of the installation documentation is written assuming Apache or Nginx is used

Priority on bug reports is given to Apache and Nginx users if the bug is web server specific (but those are rare).

Nota: If using RHEL, CentOS, or any other distribution with SELinux enabled, you will need to make sure that the
appropriate contexts and permissions are configured:

Give your project root, your data directory, and all of their children the httpd_sys_rw_content_t context

Enable the httpd_can_network_connect and httpd_can_network_connect_db booleans

Browser support policy

Feature branches support the latest 2 versions of all major browsers as were available at the time of the first stable
release on that branch.

Bugfix release will not alter browser support, even if a new version of the browser has since been released.

Major browsers here means all of the following, plus their mobile counterparts:

Android Browser

Chrome

Firefox

IE

Safari

3.1. Getting Started 15

http://www.php.net/mbstring
https://httpd.apache.org/docs/2.0/mod/mod_rewrite.html

Elgg Documentation, Versión master

«Support» may mean that we take advantage of newer, unimplemented technologies but provide a JavaScript polyfill
for the browsers that need it.

You may find that Elgg happens to work on unsupported browsers, but compatibility may break at any time, even
during a bugfix release.

Overview

Upload Elgg

With Composer (recommended if comfortable with CLI):

composer self-update
composer create-project elgg/starter-project:dev-master ./path/to/project/root
cd ./path/to/project/root
composer install
composer install # 2nd call is currently required
vendor/bin/elgg-cli install # follow the questions to provide installation details

From pre-packaged zip (recommended if not comfortable with CLI):

Download the latest version of Elgg

Upload the ZIP file with an FTP client to your server

Unzip the files in your domain’s document root.

Create a data folder

Elgg needs a special folder to store uploaded files including profile icons and photos. You will need to create this
directory.

Atención: For security reasons, this folder MUST be stored outside of your document root. If you created it under
/www/ or /public_html/, you’re doing it wrong.

Once this folder has been created, you’ll need to make sure the web server Elgg is running on has permission to write
to and create directories in it. This shouldn’t be a problem on Windows-based servers, but if your server runs Linux,
Mac OS X or a UNIX variant, you’ll need to set the permissions on the directory.

If you are using a graphical FTP client to upload files, you can usually set permissions by right clicking on the folder
and selecting “properties” or “Get Info”.

Nota: Directories must be executable to be read and written to. The suggested permissions depend upon the exact
server and user configuration. If the data directory is owned by the web server user, the recommended permissions are
750.

Advertencia: Setting your data directory to 777 will work, but it is insecure and is not recommended. If you are
unsure how to correctly set permissions, contact your host for more information.

16 Capítulo 3. Continue Reading

https://elgg.org/about/download
https://en.wikipedia.org/wiki/File_system_permissions#Traditional_Unix_permissions

Elgg Documentation, Versión master

Create a MySQL database

Using your database administration tool of choice (if you’re unsure about this, ask your system administrator), create
a new MySQL database for Elgg. You can create a MySQL database with any of the following tools:

Make sure you add a user to the database with all privileges and record the database name, username and password.
You will need this information when installing Elgg.

Set up Cron

Elgg uses timed requests to your site to perform background tasks like sending notifications or performing database
cleanup jobs. You need to configure the cron to be able to use those kind of features.

Visit your Elgg site

Once you’ve performed these steps, visit your Elgg site in your web browser. Elgg will take you through the rest of
the installation process from there. The first account that you create at the end of the installation process will be an
administrator account.

A note on settings.php and .htaccess

The Elgg installer will try to create two files for you:

elgg-config/settings.php, which contains local environment configuration for your installation

.htaccess, which allows Elgg to generate dynamic URLs

If these files can’t be automatically generated, for example because the web server doesn’t have write permissions in
the directories, Elgg will tell you how to create them. You could also temporarily change the permissions on the root
directory and the engine directory. Set the permissions on those two directories so that the web server can write those
two files, complete the install process, and them change the permissions back to their original settings. If, for some
reason, this won’t work, you will need to:

In elgg-config/, copy settings.example.php to settings.php, open it up in a text editor and
fill in your database details

On Apache server, copy install/config/htaccess.dist to .htaccess

On Nginx server copy install/config/nginx.dist to /etc/nginx/sites-enabled and adjust
it’s contents

Other Configurations

Cloud9

Homestead

EasyPHP

IIS

MAMP

MariaDB

Nginx

3.1. Getting Started 17

Elgg Documentation, Versión master

Ubuntu

Virtual hosts

XAMPP

Troubleshooting

Help! I’m having trouble installing Elgg

First:

Recheck that your server meets the technical requirements for Elgg.

Follow the environment-specific instructions if need be

Have you verified that mod_rewrite is being loaded?

Is the mysql apache being loaded?

Keep notes on steps that you take to fix the install. Sometimes changing some setting or file to try to fix a problem
may cause some other problem later on. If you need to start over, just delete all the files, drop your database, and begin
again.

I can’t save my settings on installation (I get a 404 error when saving settings)

Elgg relies on the mod_rewrite Apache extension in order to simulate certain URLs. For example, whenever you
perform an action in Elgg, or when you visit a user’s profile, the URL is translated by the server into something Elgg
understands internally. This is done using rules defined in an .htaccess file, which is Apache’s standard way of
defining extra configuration for a site.

This error suggests that the mod_rewrite rules aren’t being picked up correctly. This may be for several reasons.
If you’re not comfortable implementing the solutions provided below, we strongly recommend that you contact your
system administrator or technical support and forward this page to them.

The .htaccess, if not generated automatically (that happens when you have problem with mod_rewrite), you
can create it by renaming install/config/htaccess.dist file you find with elgg package to .htaccess.
Also if you find a .htaccess file inside the installation path, but you are still getting 404 error, make sure the
contents of .htaccess are same as that of install/config/htaccess.dist.

‘‘mod_rewrite‘‘ isn’t installed.

Check your httpd.conf to make sure that this module is being loaded by Apache. You may have to restart Apache
to get it to pick up any changes in configuration. You can also use PHP info to check to see if the module is being
loaded.

The rules in ‘‘.htaccess‘‘ aren’t being obeyed.

In your virtual host configuration settings (which may be contained within httpd.conf), change the AllowOverride
setting so that it reads:

AllowOverride all

This will tell Apache to pick up the mod_rewrite rules from .htaccess.

Elgg is not installed in the root of your web directory (ex: http://example.org/elgg/ instead of
http://example.org/)

18 Capítulo 3. Continue Reading

https://secure.php.net/manual/en/function.phpinfo.php

Elgg Documentation, Versión master

The install script redirects me to «action» when it should be «actions»

This is a problem with your mod_rewrite setup.

Atención: DO NOT, REPEAT, DO NOT change any directory names!

I installed in a subdirectory and my install action isn’t working!

If you installed Elgg so that it is reached with an address like http://example.org/mysite/ rather than http://example.org/,
there is a small chance that the rewrite rules in .htaccess will not be processed correctly. This is usually due to using
an alias with Apache. You may need to give mod_rewrite a pointer to where your Elgg installation is.

Open up .htaccess in a text editor

Where prompted, add a line like RewriteBase /path/to/your/elgg/installation/ (Don’t for-
get the trailing slash)

Save the file and refresh your browser.

Please note that the path you are using is the web path, minus the host.

For example, if you reach your elgg install at http://example.org/elgg/, you would set the base like this:

RewriteBase /elgg/

Please note that installing in a subdirectory does not require using RewriteBase. There are only some rare circumstan-
ces when it is needed due to the set up of the server.

I did everything! mod_rewrite is working fine, but still the 404 error

Maybe there is a problem with the file .htaccess. Sometimes the elgg install routine is unable to create one and unable
to tell you that. If you are on this point and tried everything that is written above:

check if it is really the elgg-created .htaccess (not only a dummy provided from the server provider)

if it is not the elgg provided htaccess file, use the htaccess_dist (rename it to .htaccess)

I get an error message that the rewrite test failed after the requirements check page

I get the following messages after the requirements check step (step 2) of the install:

We think your server is running the Apache web server.

The rewrite test failed and the most likely cause is that AllowOverride is not set to All for Elgg’s directory.
This prevents Apache from processing the .htaccess file which contains the rewrite rules.

A less likely cause is Apache is configured with an alias for your Elgg directory and you need to set the
RewriteBase in your .htaccess. There are further instructions in the .htaccess file in your Elgg directory.

After this error, every interaction with the web interface results in a error 500 (Internal Server Error)

This is likely caused by not loading the «filter module by un-commenting the

#LoadModule filter_module modules/mod_filter.so

line in the «httpd.conf» file.

the Apache «error.log» file will contain an entry similar to:

3.1. Getting Started 19

http://example.org/mysite/
http://example.org/
http://example.org/elgg/

Elgg Documentation, Versión master

. . . .htaccess: Invalid command “AddOutputFilterByType”, perhaps misspelled or defined by a module
not included in the server configuration

There is a white page after I submit my database settings

Check that the Apache mysql module is installed and is being loaded.

I’m getting a 404 error with a really long url

If you see a 404 error during the install or on the creation of the first user with a url like: http://example.com/
homepages/26/d147515119/htdocs/elgg/action/register that means your site url is incorrect in
your sites_entity table in your database. This was set by you on the second page of the install. Elgg tries to guess the
correct value but has difficulty with shared hosting sites. Use phpMyAdmin to edit this value to the correct base url.

I am having trouble setting my data path

This is highly server specific so it is difficult to give specific advice. If you have created a directory for uploading data,
make sure your http server can access it. The easiest (but least secure) way to do this is give it permissions 777. It is
better to give the web server ownership of the directory and limit the permissions.

Advertencia: Setting directory permissions to 777 allows the ENTIRE internet to place files in your directory
structure an possibly infect you webserver with malware. Setting permissions to 750 should be more than enough.

The top cause of this issue is PHP configured to prevent access to most directories using open_basedir. You may want
to check with your hosting provider on this.

Make sure the path is correct and ends with a /. You can check the path in your database in the config table.

If you only have ftp access to your server and created a directory but do not know the path of it, you might be able to
figure it out from the www file path set in your config database table. Asking for help from your hosting help team is
recommended at this stage.

I can’t validate my admin account because I don’t have an email server!

While it’s true that normal accounts (aside from those created from the admin panel) require their email address to be
authenticated before they can log in, the admin account does not.

Once you have registered your first account you will be able to log in using the credentials you have provided!

I have tried all of these suggestions and I still cannot install Elgg

It is possible that during the process of debugging your install you have broken something else. Try doing a clean
install:

drop your elgg database

delete your data directory

delete the Elgg source files

start over

20 Capítulo 3. Continue Reading

https://secure.php.net/manual/en/ini.core.php#ini.open-basedir

Elgg Documentation, Versión master

If that fails, seek the help of the Elgg community. Be sure to mention what version of Elgg you are installing, details
of your server platform, and any error messages that you may have received including ones in the error log of your
server.

3.1.4 Developer Overview

This is a quick developer introduction to Elgg. It covers the basic approach to working with Elgg as a framework, and
mentions some of the terms and technologies used.

See the Developer Guides for tutorials or the Design Docs for in-depth discussion on design.

Database and Persistence

Elgg uses MySQL 5.7 or higher for data persistence, and maps database values into Entities (a representation of an
atomic unit of information) and Extenders (additional information and descriptions about Entities). Elgg supports
additional information such as relationships between Entities, activity streams, and various types of settings.

Plugins

Plugins change the behavior or appearance of Elgg by overriding views, or by handling events and plugin hooks. All
changes to an Elgg site should be implemented through plugins to ensure upgrading core is easy.

Actions

Actions are the primary way users interact with an Elgg site. Actions are registered by plugins.

Events and Plugin Hooks

Events and Plugin Hooks are used in Elgg Plugins to interact with the Elgg engine under certain circumstances. Events
and hooks are triggered at strategic times throughout Elgg’s boot and execution process, and allows plugins to modify
or cancel the default behavior.

Views

Views are the primary presentation layer for Elgg. Views can be overridden or extended by Plugins. Views are catego-
ries into a Viewtype, which hints at what sort of output should be expected by the view.

JavaScript

Elgg uses an AMD-compatible JavaScript system provided by RequireJs. Bundled with Elgg are jQuery, jQuery UI,
jQuery Form, and jQuery UI Autocomplete.

Plugins can load their own JS libs.

Internationalization

Elgg’s interface supports multiple languages, and uses Transifex for translation.

3.1. Getting Started 21

https://elgg.org/
https://www.transifex.com/projects/p/elgg-core/

Elgg Documentation, Versión master

Caching

Elgg uses two caches to improve performance: a system cache and SimpleCache.

3rd party libraries

The use of 3rd party libraries in Elgg is managed by using Composer dependencies. Examples of 3rd party libraries
are jQuery, RequireJs or Laminas mail.

To get a list of all the Elgg dependencies check out the Packagist page for Elgg.

Database Seeding

Elgg provides some base database seeds to populate the database with entities for testing purposes.

You can run the following commands to seed and unseed the database.

seed the database
vendor/bin/elgg-cli database:seed

unseed the database
vendor/bin/elgg-cli database:unseed

Plugins can register their own seeds via 'seeds', 'database' hook. The handler must return the class name of
the seed, which must extend \Elgg\Database\Seeder\Seed class.

3.1.5 Elgg CLI

Contents

elgg-cli command line tools

Available commands

Adding custom commands

elgg-cli command line tools

Depending on how you installed Elgg and your server configuration you can access‘‘elgg-cli‘‘ binaries as one of the
following from the root of your Elgg installation:

php ./elgg-cli list
./elgg-cli list
php ./vendor/bin/elgg-cli list
./vendor/bin/elgg-cli list

Nota: Be advised that when using elgg-cli it might be needed to run the command as the same user as the webserver
to prevent issues with rights related to files.

22 Capítulo 3. Continue Reading

https://getcomposer.org/
https://packagist.org/packages/elgg/elgg

Elgg Documentation, Versión master

Available commands

cd /path/to/elgg/

Get help
vendor/bin/elgg-cli --help

List all commands
vendor/bin/elgg-cli list

Install Elgg
vendor/bin/elgg-cli install [-c|--config CONFIG]

Seed the database with fake entities
limit: (int) number of items to seed
type: (string) only seed given entity type
create_since: (string) a compatible PHP date/time string to set the lower bound
→˓entity time created (eg, '-5 months')
create_until: (string) a compatible PHP date/time string to set the upper bound
→˓entity time created (eg, 'yesterday')
image_folder: (string) a folder where the seeder can find images to use as icons,
→˓etc.
create: This is an argument, it'll force the creation of entities instead of
→˓building up to the limit
vendor/bin/elgg-cli database:seed [-l|--limit LIMIT] [-t|--type TYPE] [--create_since
→˓DATE/TIME] [--create_until DATE/TIME] [--image_folder FOLDER] [create]

Remove seeded faked entities
type: (string) only unseed given entity type
vendor/bin/elgg-cli database:unseed [-t|--type TYPE]

Optimize database tables
Requires garbagecollector plugin
vendor/bin/elgg-cli database:optimize

Run cron jobs
vendor/bin/elgg-cli cron [-i|--interval INTERVAL] [-q|--quiet]

Clear caches
vendor/bin/elgg-cli cache:clear

Invalidate caches
vendor/bin/elgg-cli cache:invalidate

Purge caches
vendor/bin/elgg-cli cache:purge

System upgrade
-v|-vv|-vvv control verbosity of the command (helpful for debugging upgrade scripts)
vendor/bin/elgg-cli upgrade [-v]

Upgrade and execute all async upgrades
vendor/bin/elgg-cli upgrade async [-v]

List all, active or inactive plugins
STATUS = all | active | inactive
vendor/bin/elgg-cli plugins:list [-s|--status STATUS]

(continué en la próxima página)

3.1. Getting Started 23

Elgg Documentation, Versión master

(proviene de la página anterior)

Activate plugins
List plugin ids separating them with spaces: vendor/bin/elgg-cli plugins:activate
→˓activity blog
use -f flag to resolve conflicts and dependencies
vendor/bin/elgg-cli plugins:activate [<plugins>] [-f|--force]

Deactivate plugins
List plugin ids separating them with spaces: vendor/bin/elgg-cli plugins:deactivate
→˓activity blog
use -f flag to also disable dependents
vendor/bin/elgg-cli plugins:deactivate [<plugins>] [-f|--force]

Adding custom commands

Plugins can add their commands to the CLI application, by adding command class name via a con-
figuration in elgg-plugin.php or via the 'commands','cli' hook. Command class must extend
\Elgg\CLI\Command.

class MyCommand extends \Elgg\li\Command {

}

elgg_register_plugin_hook_handler('commands', 'cli', function(\Elgg\Hook $hook) {
$return = $hook->getValue();

$return[] = MyCommand::class;

return $return;

});

Custom commands are based on Symfony Console Commands. Please refer to their documentation for more details.

3.2 Administrator Guides

Best practices for effectively managing an Elgg-based site.

3.2.1 Getting Started

You have installed Elgg and worked through any potential initial issues. What now? Here are some suggestions on
how to to familiarize yourself with Elgg.

Focus first on core functionality

When you’re new to Elgg, it’s best to explore the stock features in core and its bundled plugins before installing
any third party plugins. It’s tempting install every interesting plugin from the community site, but exploring the core
features builds a familiarity with Elgg’s expected behavior, and prevents introducing any confusing bugs from third
party plugin into your new Elgg network.

24 Capítulo 3. Continue Reading

https://symfony.com/doc/current/console.html

Elgg Documentation, Versión master

Elgg installs with a basic set of social network plugins activated: blogs, social bookmarking, files, groups, likes,
message boards, wiki-like pages, user profiles, and microblogging. To change the plugins that are activated, log in as
an admin user, then use the topbar to browse to Administration, then to Plugins on the right sidebar.

Nota: The user you create during installation is an admin user.

Create test users

Users can be created two ways in stock Elgg:

1. Complete the signup process using a different email address and username. (Logout first or use a different
browser!)

2. Add a user through the Admin section by browsing to Administration -> Users -> Add New User.

Nota: Users that self-register must validate their account through email before they can log in. Users that an admin
creates are already validated.

Explore user functionality

Use your test users to create blogs, add widgets to your profile or dashboard, post to the Wire (microblogging), and
create pages (wiki-like page creation). Investigate the Settings on the topbar. This is where a user sets notification
settings and configures tools (which will be blank because none of the default plugins add controls here).

Explore admin functionality

All of the admin controls are found by clicking Administration in the topbar. The has a dashboard with a widget that
explains the various sections. Change options in the Configure menu to change how Elgg looks and acts.

Extending Elgg

After exploring what Elgg can do out of the box, install some themes and plugins. You can find many plugins and
themes at the community site that have been developed by third parties. These plugins do everything from changing
language strings, to adding chat, to completely redesigning Elgg’s interface. Because these plugins are not official, be
certain to check the comments to make sure you only install well-written plugins by high quality developers.

3.2.2 Composer installation

The easiest way to keep your Elgg site up-to-date is by using Composer. Composer will take care of installing all the
required dependencies of all plugins and Elgg, while also keeping those depencies up-to-date without having conflicts.

Contents

Install Composer

Install Elgg as a Composer Project

Setup version controls

3.2. Administrator Guides 25

https://getcomposer.org/

Elgg Documentation, Versión master

Install plugins

Commit

Deploy to production

Install Composer

https://getcomposer.org/download/

Install Elgg as a Composer Project

composer self-update
composer create-project elgg/starter-project:dev-master ./path/to/my/project
cd ./path/to/my/project
composer install

This will create a composer.json file based of the Elgg starter project which has the basics of installing Elgg.

Open your browser

Go to your browser and install Elgg via the installation interface

Setup version controls

This step is optional but highly recommended. It’ll allow you to easily manage the installation of the same plugin
versions between environments (development/testing/production).

cd ./path/to/my/project
git init
git add .
git commit -a -m 'Initial commit'
git remote add origin <git repository url>
git push -u origin master

Install plugins

Install plugins as Composer depencies. This assumes that a plugin has been registered on Packagist

composer require hypejunction/hypefeed
composer require hypejunction/hypeinteractions
whatever else you need

Commit

Make sure composer.lock is not ignored in .gitignore

git add .
git commit -a -m 'Add new plugins'
git push origin master

26 Capítulo 3. Continue Reading

https://getcomposer.org/download/
https://github.com/Elgg/starter-project
https://packagist.org/

Elgg Documentation, Versión master

Deploy to production

Initial Deploy

cd ./path/to/www

you can also use git clone
git init
git remote add origin <git repository url>
git pull origin master

composer install

Subsequent Deploys

cd ./path/to/www
git pull origin master

never run composer update in production
composer install

3.2.3 Upgrading Elgg

This document will guide you through steps necessary to upgrade your Elgg installation to the latest version.

If you’ve written custom plugins, you should also read the developer guides for information on upgrading plugin code
for the latest version of Elgg.

Contents

Advice

From 2.3 to 3.0

• 1. Update composer.json

• 2. Update .htaccess

• 3a. Composer Upgrade (recommended)

• 3b. Manual Upgrade (legacy approach)

Applying a patch using Composer

Earlier versions

Advice

Back up your database, data directory and code

Mind any version-specific comments below

Version below 2.0 are advised to only upgrade one minor version at a time

3.2. Administrator Guides 27

Elgg Documentation, Versión master

You can upgrade from any minor version to any higher minor version in the same major (2.0 -> 2.1 or 2.0 ->
2.3)

You can only upgrade the latest minor version in the previous major version to any minor version in the next
version (2.3 -> 3.0 or 2.3 -> 3.2, but not 2.2 -> 3.x).

From Elgg 2.3.* you can upgrade to any future version of Elgg without having to go through each minor version
(e.g. you can upgrade directly from 2.3.8 to 3.2.5, without having to upgrade to 3.0 and 3.1)

Try out the new version on a test site before doing an upgrade

Report any problems in plugins to the plugin authors

If you are a plugin author you can report any backwards-compatibility issues to GitHub

From 2.3 to 3.0

1. Update composer.json

If you have used Elgg’s starter project to install Elgg 2.3, you may need to update your composer.json:

change platform requirements to PHP >= 7.0

optionally, set autoloader optimization parameters

optionally, disable fxp-asset plugin in favor of asset-packagist

Your composer.jsonwould look something like this (depending what changes you may have introduced yourself):

{
"type": "project",
"name": "elgg/starter-project",
"require": {

"elgg/elgg": "3.*"
},
"config": {

"process-timeout": 0,
"platform": {

"php": "7.0"
},
"fxp-asset": {

"enabled": false
},
"optimize-autoloader": true,
"apcu-autoloader": true

},
"repositories": [

{
"type": "composer",
"url": "https://asset-packagist.org"

}
]

}

2. Update .htaccess

Find the line:

28 Capítulo 3. Continue Reading

https://github.com/Elgg/Elgg/issues

Elgg Documentation, Versión master

RewriteRule ^(.*)$ index.php?__elgg_uri=$1 [QSA,L]

And replace it with:

RewriteRule ^(.*)$ index.php [QSA,L]

3a. Composer Upgrade (recommended)

If you had your Elgg 2.3 project installed using composer, you can follow this sequence:

Back up your database, data directory, and code

composer self-update

cd ./path/to/project/root
composer require elgg/elgg:~3.0.0
composer update
vendor/bin/elgg-cli upgrade async -v

Nota: In some cases the command line upgrade will fail because some database schema changes need to be applied
first. In that case you need to execute the Phinx migrations manually

3b. Manual Upgrade (legacy approach)

Manual upgrades are a major undertaking for site admins. We discourage you from maintaining an Elgg installation
using ZIP dist packages. Save yourself some time by learning how to use composer and version control systems,
such as git. This task will also be complicated if you have third-party plugins and/or have made any modifications to
core files!

1. Back up your database, data directory, and code

2. Log in as an admin to your site

3. Download the new version of Elgg from http://elgg.org

4. Update the files

If upgrading to a major version, you need to overwrite all core files and remove any files that were
removed from Elgg core, as they may interfere with proper functioning of your site.

If upgrading to a minor version or patching, you need to overwrite all core files.

5. Merge any new changes to the rewrite rules

For Apache from install/config/htaccess.dist into .htaccess

For Nginx from install/config/nginx.dist into your server configuration (usually inside
/etc/nginx/sites-enabled)

6. Visit http://your-elgg-site.com/upgrade.php

7. Execute asynchronous upgrades at http://your-elgg-site.com/admin/upgrades

Nota: Any modifications should have been written within plugins, so that they are not lost on overwriting. If this is
not the case, take care to maintain your modifications.

3.2. Administrator Guides 29

http://elgg.org
http://your-elgg-site.com/upgrade.php
http://your-elgg-site.com/admin/upgrades

Elgg Documentation, Versión master

Nota: If you are unable to access upgrade.php script and receive an error, add
$CONFIG->security_protect_upgrade = false; to your settings.php and remove it after
you have completed all of the upgrade steps.

Nota: If you encounter issues with plugins during the upgrade, add an empty file called disabled in your /mod/
directory. This will disable the plugins, so that you can finish the core upgrade. You can then deal with issues on
per-plugin basis.

If you have installed Elgg using a dist package but would now like to switch to composer:

Upgrade your current installation using Manual Upgrade method

Move your codebase to a temporary location

Create a new composer project using Elgg’s starter project following installation instructions in the root direc-
tory of your current installation

Copy third-party plugins from your old installation into /mod directory

Run Elgg’s installer using your browser or elgg-cli tool

When you reach the database step, provide the same credentials you have used for manual installation, Elgg will
understand that is’s an existing installation and will not override any database values

Optionally commit your new project to version control

Applying a patch using Composer

The definition of a patch can be found in the Release policy.

Your composer.json requirement for Elgg should be ~3.y.0 (where y is the minor version 0, 1, etc. you wish to
have installed). This will make sure you can easily install patches without the risk of installing the next minor release.

{
"require": {

"elgg/elgg": "~3.0.0"
}

}

Just to be sure you can first verify what will be installed / upgraded by executing the folowing command

to get a full list of all packages which can be upgraded
composer update --dry-run

or if you only wish to check for Elgg
composer update elgg/elgg --dry-run

To upgrade Elgg simply execute

to upgrade all packages
composer update

or to only upgrade Elgg
composer update elgg/elgg

30 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Earlier versions

Check Elgg documentation that corresponds to the Elgg version you want to upgrade to, by switching the documenta-
tion version in the lower left corner of Upgrading docs

3.2.4 Plugins

Plugins can modify the behavior of and add new features to Elgg.

Contents

Where to get plugins

The Elgg Community

• Finding Plugins

• Evaluating Plugins

Types of plugins

• Themes

• Language Packs

Installation

Plugin order

Where to get plugins

Plugins can be obtained from:

The Elgg Community

Github

Third-party sites (typically for a price)

If no existing plugins meet your needs, you can hire a developer or create your own.

The Elgg Community

Finding Plugins

Sort based on most popular

On the community plugin page, you can sort by date uploaded (Filter: Newest) or number of downloads (Filter: Most
downloads). Sorting by the number of downloads is a good idea if you are new to Elgg and want to see which plugins
are frequently used by other administrators. These will often (but not always) be higher quality plugins that provide
significant capabilities.

3.2. Administrator Guides 31

http://community.elgg.org/plugins
https://github.com/Elgg
http://community.elgg.org/groups/profile/75603/professional-services

Elgg Documentation, Versión master

Use the plugin tag search

Next to the filtering control on the plugin page is a search box. It enables you to search by tags. Plugins authors choose
the tags.

Look for particular plugin authors

The quality of plugins varies substantially. If you find a plugin that works well on your site, you can check what else
that plugin author has developed by clicking on their name when viewing a plugin.

Evaluating Plugins

Look at the comments and ratings

Before downloading and using a plugin, it is always a good idea to read through the comments that others have left.
If you see people complaining that the plugin does not work or makes their site unstable, you probably want to stay
away from that plugin. The caveat to that is that sometimes users ignore installation instructions or incorrectly install
a plugin and then leave negative feedback. Further, some plugin authors have chosen to not allow comments.

Install on a test site

If you are trying out a plugin for the first time, it is a bad idea to install it on your production site. You should maintain
a separate test site for evaluating plugins. It is a good idea to slowly roll out new plugins to your production site even
after they pass your evaluation on your test site. This enables you to isolate problems introduced by a new plugin.

Types of plugins

Themes

Themes are plugins that modify the look-and-feel of your site. They generally include stylesheets, client-side scripts
and views that alter the default presentation and behavior of Elgg.

Language Packs

Language packs are plugins that provide support for other languages.

Language packs can extend and include translations for language strings found in the core, core plugins and/or third-
party plugins.

Some of the language packs are already included in the core, and can be found in languages directory in Elgg’s
root directory. Individual plugins tend to include their translations under the languages directory within the plugin’s
root.

This structure makes it easy to create new language packs that supercede existing language strings or add support for
new languages.

32 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Installation

All plugins reside in the mod directory of your Elgg installation.

To install a new plugin:

extract (unzip) contents of the plugin distribution package

copy/FTP the extracted folder into the mod directory of your Elgg installation

activate the plugin from your admin panel

To activate a plugin:

Log in to your Elgg site with your administrator account

Go to Administration -> Configure -> Plugins

Find your plugin in the list of installed plugins and click on the “enable” button.

Plugin order

Plugins are loaded according to the order they are listed on the Plugins page. The initial ordering after an install is
more or less random. As more plugins are added by an administrator, they are placed at the bottom of the list.

Some general rules for ordering plugins:

A theme plugin should be last or at least near the bottom

A plugin that modifies the behavior of another plugin should be lower in the plugin list

3.2.5 Performance

Make your site run as smoothly and responsively as possible.

Contents

Can Elgg scale to X million users?

Measure first

Tune MySQL

Enable caching

• Simplecache

• System cache

• Boot cache

• Database query cache

• Etags and Expires headers

• Memcached

• Squid

• Bytecode caching

• Direct file serving

3.2. Administrator Guides 33

Elgg Documentation, Versión master

• Composer Autoloader Optimization

Hosting

• Memory, CPU and bandwidth

• Configuration

Check for poorly-behaved plugins

Use client-rendered HTML

Can Elgg scale to X million users?

People often ask whether Elgg can scale to large installations.

First, we might stop and ask, «where are you planning to get all those users?» Seriously, though, this is a really
interesting problem. Making Elgg scale is, if anything, an issue of technical engineering. It’s interesting but more
or less a solved problem. Computer science doesn’t work differently for Elgg than for Google, for example. Getting
millions of users? That’s like the Holy Grail of the entire tech industry.

Second, as with most things in life, the answer is «it depends»:

How active are your users?

What hardware is Elgg running on?

Are your plugins behaving well?

Improving the efficiency of the Elgg engine is an ongoing project, although there are limits to the amount that any
script can do.

If you are serious about scalability you will probably want to look at a number of things yourself.

Measure first

There is no point in throwing resources at a problem if you don’t know:

what the problem is

what resources the problem needs

where those resources are needed

Invest in some kind of profiling to tell you where your bottleneck is, especially if you’re considering throwing signifi-
cant money at a problem.

Tune MySQL

Elgg makes extensive use of the back end database, making many trips on each pageload. This is perfectly normal and
a well configured database server will be able to cope with thousands of requests per second.

Here are some configuration tips that might help:

Make sure that MySQL is configured to use an appropriate my.cnf for the size of your website.

Increase the amount of memory available to PHP and MySQL (you will have to increase the amount of memory
available to the php process in any case)

34 Capítulo 3. Continue Reading

https://github.com/elgg/elgg/issues?labels=performance&state=open

Elgg Documentation, Versión master

Enable caching

Generally, if a program is slow, that is because it is repeatedly performing an expensive computation or operation.
Caching allows the system to avoid doing that work over and over again by using memory to store the results so that
you can skip all the work on subsequent requests. Below we discuss several generally-available caching solutions
relevant to Elgg.

Simplecache

By default, views are cached in the Elgg data directory for a given period of time. This removes the need for a view to
be regenerated on every page load.

This can be disabled by setting $CONFIG->simplecache_enabled = false; For best performance, make
sure this value is set to true.

This does lead to artifacts during development if you are editing themes in your plugin as the cached version will be
used in preference to the one provided by your plugin.

The simple cache can be disabled via the administration menu. It is recommended that you do this on your development
platform if you are writing Elgg plugins.

This cache is automatically flushed when a plugin is enabled, disabled or reordered, or when upgrade.php is executed.

For best performance, you can also create a symlink from /cache/ in your www root dir to the
assetroot directory specified in your config (by default it’s located under /path/to/dataroot/caches/
views_simplecache/:

cd /path/to/wwwroot/
ln -s /path/to/dataroot/caches/views_simplecache/ cache

If your webserver supports following symlinks, this will serve files straight off disk without booting up PHP each time.

For security reasons, some webservers (e.g. Apache in version 2.4) might follow the symlinks by default only if the
owner of the symlink source and target match. If the cache symlink fails to work on your server, you can change the
owner of the cache symlink itself (and not the /views_simplecache/ directory) with

cd /path/to/wwwroot/
chown -h wwwrun:www cache

In this example it’s assumed that the /views_simplecache/ directory in the data directory is owned by the
wwwrun account that belongs to the www group. If this is not the case on your server, you have to modify the chown
command accordingly.

System cache

The location of views are cached so that they do not have to be discovered (profiling indicated that page load took a
non-linear amount of time the more plugins were enabled due to view discovery). Elgg also caches information like
the language mapping and class map.

This can be disabled by setting $CONFIG->system_cache_enabled = false; For best performance, make
sure this value is set to true.

This is currently stored in files in your dataroot (although later versions of Elgg may use memcache). As with the
simple cache it is flushed when a plugin is enabled, disabled or reordered, or when upgrade.php is executed.

The system cache can be disabled via the administration menu, and it is recommended that you do this on your
development platform if you are writing Elgg plugins.

3.2. Administrator Guides 35

Elgg Documentation, Versión master

Boot cache

Elgg has the ability to cache numerous resources created and fetched during the boot process. To configure how long
this cache is valid you must set a TTL in your settings.php file: $CONFIG->boot_cache_ttl = 3600;

Look at the Stash documentation for more info about the TTL.

Database query cache

For the lifetime of a given page’s execution, a cache of all SELECT queries is kept. This means that for a given page
load a given select query will only ever go out to the database once, even if it is executed multiple times. Any write to
the database will flush this cache. This cache will be automatically cleared at the end of a page load.

You may experience memory problems if you use the Elgg framework as a library in a PHP CLI script. This can be
disabled by setting $CONFIG->db_disable_query_cache = true;

Etags and Expires headers

These technologies tell your users” browsers to cache static assets (CSS, JS, images) locally. Having these enabled
greatly reduces server load and improves user-perceived performance.

Use the Firefox yslow plugin or Chrome DevTools Audits to confirm which technologies are currently running on
your site.

If the static assets aren’t being cached:

Verify that you have these extensions installed and enabled on your host

Update your .htaccess file, if you are upgrading from a previous version of Elgg

Enable Simplecache, which turns select views into browser-cacheable assets

Memcached

Libmemcached was created by Brian Aker and was designed from day one to give the best performance available to
users of Memcached.

Ver también:

http://libmemcached.org/About.html and https://secure.php.net/manual/en/book.memcached.php

Installation requirements:

php-memcached

libmemcached

memcached

Configuration:

Uncomment and populate the following sections in settings.php

$CONFIG->memcache = true;

$CONFIG->memcache_servers = array (
array('server1', 11211),

(continué en la próxima página)

36 Capítulo 3. Continue Reading

http://www.stashphp.com/index.html
https://addons.mozilla.org/en-us/firefox/addon/yslow/
http://libmemcached.org/About.html
https://secure.php.net/manual/en/book.memcached.php

Elgg Documentation, Versión master

(proviene de la página anterior)

array('server2', 11211)
);

Optionaly if you run multiple Elgg installations but use ony one Memcache server, you may want to add a namespace
prefix. In order to do this, uncomment the following line

$CONFIG->memcache_namespace_prefix = '';

Squid

We have had good results by using Squid to cache images for us.

Bytecode caching

There are numerous PHP code caches available on the market. These speed up your site by caching the compiled byte
code from your script meaning that your server doesn’t have to compile the PHP code each time it is executed.

Direct file serving

If your server can be configured to support the X-Sendfile or X-Accel headers, you can configure it to be used
in settings.php. This allows your web server to directly stream files to the client instead of using PHP’s
readfile().

Composer Autoloader Optimization

The Composer autoloader is responsible for loading classes provided by dependencies of Elgg. The way the autoloa-
der works is it searches for a classname in the installed dependencies. While this is mostly a fast process it can be
optimized.

You can optimize the autoloader 2 different ways. The first is in the commandline, the other is in the composer.
json of your project.

If you want to optimize the autoloader using the commandline use the -o flag. The disadvantage is you have to add
the -o flag every time you run Composer.

During the installation
composer install -o

Or during the upgrade process
composer upgrade -o

The second option is to add the optimization to your composer.json file, that way you never forget it.

{
"config": {

"optimize-autoloader": true,
"apcu-autoloader": true

}
}

3.2. Administrator Guides 37

http://en.wikipedia.org/wiki/Squid_cache

Elgg Documentation, Versión master

Ver también:

Check out the Autoloader Optimization page for more information about how to optimize the Composer autoloader.

Nota: As of Elgg 3.0 all the downloads of Elgg from the website have the optimized autoloader.

Hosting

Don’t expect to run a site catering for millions of users on a cheap shared host. You will need to have your own host
hardware and access over the configuration, as well as lots of bandwidth and memory available.

Memory, CPU and bandwidth

Due to the nature of caching, all caching solutions will require memory. It is a fairly cheap return to throw memory
and CPU at the problem.

On advanced hardware it is likely that bandwidth is going to be your bottleneck before the server itself. Ensure that
your host can support the load you are suggesting.

Configuration

Lastly, take a look at your configuration as there are a few gotchas that can catch people.

For example, out of the box, Apache can handle quite a high load. However, most distros of Linux come with mysql
configured for small sites. This can result in Apache processes getting stalled waiting to talk to one very overloaded
MySQL process.

Check for poorly-behaved plugins

Plugins can be programmed in a very naive way and this can cause your whole site to feel slow.

Try disabling some plugins to see if that noticeably improves performance. Once you’ve found a likely offender, go to
the original plugin author and report your findings.

Use client-rendered HTML

We’ve found that at a certain point, much of the time spent on the server is simply building the HTML of the page
with Elgg’s views system.

It’s very difficult to cache the output of templates since they can generally take arbitrary inputs. Instead of trying to
cache the HTML output of certain pages or views, the suggestion is to switch to an HTML-based templating system so
that the user’s browser can cache the templates themselves. Then have the user’s computer do the work of generating
the output by applying JSON data to those templates.

This can be very effective, but has the downside of being significant extra development cost. The Elgg team is looking
to integrate this strategy into Elgg directly, since it is so effective especially on pages with repeated or hidden content.

38 Capítulo 3. Continue Reading

https://getcomposer.org/doc/articles/autoloader-optimization.md
https://elgg.org/about/download

Elgg Documentation, Versión master

3.2.6 Cron

Contents

What does it do?

How does it work?

What does it do?

Cron is a program available on Unix-based operating systems that enables users to run commands and scripts at set
intervals or at specific times.

Elgg’s cron handler allows administrators and plugin developers to setup jobs that need to be executed at set intervals.

Most common examples of cron jobs in Elgg include:

sending out queued notifications

rotating the system log in the database

collecting garbage in the database (compacting the database by removing entries that are no longer required)

Plugins can add jobs by registering a plugin hook handler for one of the following cron intervals:

minute - Run every minute

fiveminute - Run every 5 minutes

fifteenmin - Run every 15 minutes

halfhour - Run every 30 minutes

hourly - Run every hour

daily - Run every day

weekly - Run every week

monthly - Run every month

yearly - Run every year

elgg_register_plugin_hook_handler('cron', 'hourly', function() {

$events = my_plugin_get_upcoming_events();

foreach ($events as $event) {
$attendees = $event->getAttendees();

// notify
}

});

How does it work?

crontab must be setup in such a way as to activate Elgg cron handler every minute, or at a specific interval. Once
cron tab activates the cron job, Elgg executes all hook handlers attached to that interval.

If you have SSH access to your Linux servers, type crontab -e and add your crontab configuration.

3.2. Administrator Guides 39

https://en.wikipedia.org/wiki/Cron

Elgg Documentation, Versión master

* * * * * path/to/phpbin path/to/elgg/elgg-cli cron -q

The above command will run every minute and activate all due cron jobs.

Optionally you can activate handlers for a specific interval:

0 * * * * path/to/phpbin path/to/elgg/elgg-cli cron -i hourly -q

3.2.7 Backup and Restore

Contents

Introduction

• Why

• What

• Assumptions

Creating a usable backup - automatically

• Customize the backup script

• Configure the backup Cron job

• Configure the cleanup Cron job

Restoring from backup

• Prepare your backup files

• Restore the files

• Restore the MySQL Database

• Edit the MySQL backup

• Create the new database

• Restore the production database

• Bringing it all together

• Finalizing the new installation

Congratulations!

Related

Introduction

Why

Shared hosting providers typically don’t provide an automated way to backup your Elgg installation. This article will
address a method of accomplishing this task.

In IT there are often many ways to accomplish the same thing. Keep that in mind. This article will explain one method
to backup and restore your Elgg installation on a shared hosting provider that uses the CPanel application. However,

40 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

the ideas presented here can be tailored to other applications as well. The following are typical situations that might
require a procedure such as this:

Disaster Recovery

Moving your Elgg site to a new host

Duplicating an installation

What

Topics covered:

Full backups of the Elgg directories and MySQL databases are performed daily (automated)

The backups are sent to an off-site location via FTP (automated)

The local backups are deleted after successful transfer to the off-site location (automatic)

Five days of backups will be maintained (automated)

Restoration of data to the new host (manual)

This process was composed with assistance from previous articles in the Elgg documentation wiki.

Assumptions

The following assumptions have been made:

The Elgg program directory is /home/userx/public_html

The Elgg data directory is /home/userx/elggdata

You’ve created a local directory for your backups at /home/userx/sitebackups

You have an off-site FTP server to send the backup files to

The directory that you will be saving the off-site backups to is /home/usery/sitebackups/

You will be restoring the site to a second shared hosting provider in the /home/usery/public_html
directory

Importante: Be sure to replace userx, usery, http://mynewdomain.com and all passwords with values that
reflect your actual installation!

Creating a usable backup - automatically

Customize the backup script

The script that you will use can be found here .

Just copy the script to a text file and name the file with a .pl extension. You can use any text editor to update the file.

Change the following to reflect your directory structure:

3.2. Administrator Guides 41

Elgg Documentation, Versión master

ENTER THE PATH TO THE DIRECTORY YOU WANT TO BACKUP, NO TRAILING SLASH
$directory_to_backup = '/home/userx/public_html';
$directory_to_backup2 = '/home/userx/elggdata';
ENTER THE PATH TO THE DIRECTORY YOU WISH TO SAVE THE BACKUP FILE TO, NO TRAILING
→˓SLASH
$backup_dest_dir = '/home/userx/sitebackups';

Change the following to reflect your database parameters:

MYSQL BACKUP PARAMETERS
$dbhost = 'localhost';
$dbuser = 'userx_elgg';
$dbpwd = 'dbpassword';
ENTER DATABASE NAME
$database_names_elgg = 'userx_elgg';

Change the following to reflect your off-site FTP server parameters:

FTP PARAMETERS
$ftp_host = "FTP HOSTNAME/IP";
$ftp_user = "ftpuser";
$ftp_pwd = "ftppassword";
$ftp_dir = "/";

Save the file with the .pl extension (for the purposes of this article we will name the file:
elgg-ftp-backup-script.pl) and upload it to the following directory /home/userx/sitebackups

Be aware that you can turn off FTP and flip a bit in the script so that it does not delete the local backup file in the event
that you don’t want to use off-site storage for your backups.

Configure the backup Cron job

Login to your CPanel application and click on the «Cron Jobs» link. In the Common Settings dropdown choose
«Once a day» and type the following in the command field /usr/bin/perl /home/userx/sitebackups/
elgg-ftp-backup-script.pl

Click on the «Add New Cron Job» button. Daily full backups are now scheduled and will be transferred off-site.

Configure the cleanup Cron job

If you are sending your backups, via FTP, to another shared hosting provider that uses the CPanel application or you’ve
turned off FTP altogether you can configure your data retention as follows.

Login to your CPanel application for your FTP site, or locally if you’re not using FTP, and click on the «Cron Jobs»
link. In the Common Settings dropdown choose «Once a day» and type the following in the command field find
/home/usery/sitebackups/full_* -mtime +4 -exec rm {} \;

The -mtime X parameter will set the number of days to retain backups. All files older than x number of days will be
deleted. Click on the «Add New Cron Job» button. You have now configured your backup retention time.

Restoring from backup

42 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Prepare your backup files

The assumption is that you’re restoring your site to another shared hosting provider with CPanel.

When the script backed the files up the original directory structure was maintained in the zip file. We need to do a little
cleanup. Perform the following:

Download the backup file that you wish to restore from

Extract the contents of the backup file

Drill down and you will find your site backup and SQL backup. Extract both of these. You will then have:

• a MySQL dump file with a .sql extension

• another directory structure with the contents of:

∘ /home/userx/public_html

∘ /home/userx/elggdata

Repackage the contents of the /home/userx/public_html directory as a zip file so that the files are in the root of the zip file

• The reason for doing this is simple. It’s much more efficient to upload one zip file than it is to ftp the
contents of the /home/userx/public_html directory to your new host.

Repackage the contents of the /home/userx/elggdata directory as a zip file so that the files are in the root of the
zip file

You should now have the following files:

the .sql file

the zip file with the contents of /home/userx/public_html in the root

the zip file with the contents of /home/userx/elggdata in the root

Restore the files

This is written with the assumption that you’re restoring to a different host but maintaining the original directory
structure. Perform the following:

Login to the CPanel application on the host that you wish to restore the site to and open the File Manager.

Navigate to /home/usery/public_html

• Upload the zip file that contains the /home/userx/public_html files

• Extract the zip file You should now see all of the files in /home/usery/public_html

• Delete the zip file

Navigate to /home/usery/elggdata

• Upload the zip file that contains the /home/userx/elggdata files

• Extract the zip file You should now see all of the files in /home/usery/elggdata

• Delete the zip file

Program and data file restoration is complete

3.2. Administrator Guides 43

Elgg Documentation, Versión master

Restore the MySQL Database

Nota: Again, the assumption here is that you’re restoring your Elgg installation to a second shared hosting provider.
Each shared hosting provider prepends the account holder’s name to the databases associated with that account. For
example, the username for our primary host is userx so the host will prepend userx_ to give us a database name
of userx_elgg. When we restore to our second shared hosting provider we’re doing so with a username of usery
so our database name will be usery_elgg. The hosting providers don’t allow you to modify this behavior. So the
process here isn’t as simple as just restoring the database from backup to the usery account. However, having said that,
it’s not terribly difficult either.

Edit the MySQL backup

Open the .sql file that you extracted from your backup in your favorite text editor. Comment out the following lines
with a hash mark:

#CREATE DATABASE /*!32312 IF NOT EXISTS*/ `userx_elgg` /*!40100 DEFAULT CHARACTER SET
→˓latin1 */;
#USE `userx_elgg`;

Save the file.

Create the new database

Perform the following:

Login to the CPanel application on the new host and click on the «MySQL Databases» icon

• Fill in the database name and click the «create» button. For our example we are going to stick with
elgg which will give us a database name of usery_elgg

• You can associate an existing user with the new database, but to create a new user you will need to:

∘ Go to the «Add New User» section of the «MySQL Databases» page

∘ Enter the username and password. For our example we’re going to keep it simple and use elgg
once again. This will give us a username of usery_elgg

• Associate the new user with the new database

∘ Go to the «Add User To Database» section of the «MySQL Databases» page. Add the
usery_elgg user to the usery_elgg database

∘ Select «All Privileges» and click the «Make Changes» button

Restore the production database

Now it’s time to restore the MySQL backup file by importing it into our new database named «usery_elgg».

Login to the CPanel application on the new host and click on the «phpMyAdmin icon

• Choose the usery_elgg database in the left hand column

• Click on the «import» tab at the top of the page

44 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

• Browse to the .sql backup on your local computer and select it

• Click the «Go» button on the bottom right side of the page

You should now see a message stating that the operation was successful

Bringing it all together

The restored elgg installation knows nothing about the new database name, database username, directory structure,
etc. That’s what we’re going to address here.

Edit /public_html/elgg-config/settings.php on the new hosting provider to reflect the database infor-
mation for the database that you just created.

// Database username
$CONFIG->dbuser = 'usery_elgg';

// Database password
$CONFIG->dbpass = 'dbpassword';

// Database name
$CONFIG->dbname = 'usery_elgg';

// Database server
// (For most configurations, you can leave this as 'localhost')
$CONFIG->dbhost = 'localhost';

// (For most configurations, you can leave this as 3306)
$CONFIG->dbport = 3306;

$CONFIG->wwwroot = 'http://your.website.com/'

Upload the settings.php file back to the new host - overwriting the existing file.

Open the phpMyAdmin tool on the new host from the CPanel. Select the usery_elgg database on the left and click
the SQL tab on the top of the page. Run the following SQL queries against the usery_elgg database:

Change the installation path

UPDATE `elgg_config` SET `value` = REPLACE(`value`, "/home/userx/public_html/grid/",
→˓"/home/usery/public_html/grid/") WHERE `name` = "path";

Change the data directory

UPDATE `elgg_config` SET `value` = REPLACE(`value`, "/home/userx/elggdata/", "/home/
→˓usery/elggdata/") WHERE `name` = "dataroot";

Change the filestore data directory

UPDATE elgg_metadata set value = '/home/usery/elggdata/' WHERE name = 'filestore::dir_
→˓root';

Finalizing the new installation

Run the upgrade script by visiting the following URL: http://mynewdomain.com/upgrade.php . Do this
step twice - back to back.

3.2. Administrator Guides 45

Elgg Documentation, Versión master

Update your DNS records so that your host name resolves to the new host’s IP address if this is a permanent move.

Congratulations!

If you followed the steps outlined here you should now have a fully functional copy of your primary Elgg installation.

Related

FTP backup script

Here is an automated script for backing up an Elgg installation.

#!/usr/bin/perl -w

FTP Backup

use Net::FTP;

DELETE BACKUP AFTER FTP UPLOAD (0 = no, 1 = yes)
$delete_backup = 1;

ENTER THE PATH TO THE DIRECTORY YOU WANT TO BACKUP, NO TRAILING SLASH
$directory_to_backup = '/home/userx/public_html';
$directory_to_backup2 = '/home/userx/elggdata';

ENTER THE PATH TO THE DIRECTORY YOU WISH TO SAVE THE BACKUP FILE TO, NO TRAILING
→˓SLASH
$backup_dest_dir = '/home/userx/sitebackups';

BACKUP FILE NAME OPTIONS
($a,$d,$d,$day,$month,$yearoffset,$r,$u,$o) = localtime();
$year = 1900 + $yearoffset;
$site_backup_file = "$backup_dest_dir/site_backup-$day-$month-$year.tar.gz";
$full_backup_file = "$backup_dest_dir/full_site_backup-$day-$month-$year.tar.gz";

MYSQL BACKUP PARAMETERS
$dbhost = 'localhost';
$dbuser = 'userx_elgg';
$dbpwd = 'dbpassword';
$mysql_backup_file_elgg = "$backup_dest_dir/mysql_elgg-$day-$month-$year.sql.gz";

ENTER DATABASE NAME
$database_names_elgg = 'userx_elgg';

FTP PARAMETERS
$ftp_backup = 1;
$ftp_host = "FTP HOSTNAME/IP";
$ftp_user = "ftpuser";
$ftp_pwd = "ftppassword";
$ftp_dir = "/";

SYSTEM COMMANDS
$cmd_mysqldump = '/usr/bin/mysqldump';
$cmd_gzip = '/usr/bin/gzip';

(continué en la próxima página)

46 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

CURRENT DATE / TIME
($a,$d,$d,$day,$month,$yearoffset,$r,$u,$o) = localtime();
$year = 1900 + $yearoffset;

BACKUP FILES
$syscmd = "tar --exclude $backup_dest_dir" . "/* -czf $site_backup_file $directory_to_
→˓backup $directory_to_backup2";

elgg DATABASE BACKUP
system($syscmd);
$syscmd = "$cmd_mysqldump --host=$dbhost --user=$dbuser --password=$dbpwd --add-drop-
→˓table --databases $database_names_elgg -c -l | $cmd_gzip > $mysql_backup_file_elgg";

system($syscmd);

CREATING FULL SITE BACKUP FILE
$syscmd = "tar -czf $full_backup_file $mysql_backup_file_elgg $site_backup_file";
system($syscmd);

DELETING SITE AND MYSQL BACKUP FILES
unlink($mysql_backup_file_elgg);
unlink($site_backup_file);

UPLOADING FULL SITE BACKUP TO REMOTE FTP SERVER
if($ftp_backup == 1)
{

my $ftp = Net::FTP->new($ftp_host, Debug => 0)
or die "Cannot connect to server: $@";

$ftp->login($ftp_user, $ftp_pwd)
or die "Cannot login ", $ftp->message;

$ftp->cwd($ftp_dir)
or die "Can't CWD to remote FTP directory ", $ftp->message;

$ftp->binary();

$ftp->put($full_backup_file)
or warn "Upload failed ", $ftp->message;

$ftp->quit();
}

DELETING FULL SITE BACKUP
if($delete_backup = 1)
{

unlink($full_backup_file);
}

Duplicate Installation

Contents

Introduction

3.2. Administrator Guides 47

Elgg Documentation, Versión master

• Why Duplicate an Elgg Installation?

• What Is Not Covered in This Tutorial

• Before You Start

Copy Elgg Code to the Test Server

Copy Data to the Test Server

Edit settings.php

Copy Elgg Database

Database Entries

• Change the installation path

• Change the data directory

Check .htaccess

Update Webserver Config

Run upgrade.php

Tips

Related

Introduction

Why Duplicate an Elgg Installation?

There are many reasons you may want to duplicate an Elgg installation: moving the site to another server, creating a
test or development server, and creating functional backups are the most common. To create a successful duplicate of
an Elgg site, 3 things need to be copied:

Database

Data from the data directory

Code

Also at least 5 pieces of information must be changed from the copied installation:

elgg-config/settings.php file which could also be in the pre 2.0 location engine/settings.php

.htaccess file (Apache) or Nginx configuration depending on server used

database entry for your site entity

database entry for the installation path

database entry for the data path

What Is Not Covered in This Tutorial

This tutorial expects a basic knowledge of Apache, MySQL, and Linux commands. As such, a few things will not be
covered in this tutorial. These include:

How to backup and restore MySQL databases

48 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

How to configure Apache to work with Elgg

How to transfer files to and from your production server

Before You Start

Before you start, make sure the Elgg installation you want to duplicate is fully functional. You will also need the
following items:

A backup of the live Elgg database

A place to copy the live database

A server suitable for installing duplicate Elgg site (This can be the same server as your production Elgg ins-
tallation.)

Backups of the database can be obtained various ways, including phpMyAdmin, the MySQL official GUI, and the
command line. Talk to your host for information on how to backup and restore databases or use Google to find
information on this.

During this tutorial, we will make these assumptions about the production Elgg site:

The URL is http://www.myelgg.org/

The installation path is /var/www/elgg/

The data directory is /var/data/elgg/

The database host is localhost

The database name is production_elgg

The database user is db_user

The database password is db_password

The database prefix is elgg

At the end of the tutorial, our test Elgg installation details will be:

The URL is http://test.myelgg.org/

The installation path is /var/www/elgg_test/

The data directory is /var/data/elgg_test/

The database host is localhost

The database name is test_elgg

The database user is db_user

The database password is db_password

The database prefix is elgg

Copy Elgg Code to the Test Server

The very first step is to duplicate the production Elgg code. In our example, this is as simple as copying /var/www/
elgg/ to /var/www/elgg_test/.

cp -a /var/www/elgg/ /var/www/elgg_test/

3.2. Administrator Guides 49

Elgg Documentation, Versión master

Copy Data to the Test Server

In this example, this is as simple as copying /var/data/elgg/ to /var/data/elgg_test/.

cp -a /var/data/elgg/ /var/data/elgg_test/

If you don’t have shell access to your server and have to ftp the data, you may need to change ownership and permis-
sions on the files.

Nota: You also need to delete cache directories from your disk. These correspond to cacheroot and assetroot
directories in your config.

Edit settings.php

The elgg-config/settings.php file contains the database configuration details. These need to be adjus-
ted for your new test Elgg installation. In our example, we’ll look in /var/www/elgg_test/elgg-config/
settings.php and find the lines that look like this:

// Database username
$CONFIG->dbuser = 'db_user';

// Database password
$CONFIG->dbpass = 'db_password';

// Database name
$CONFIG->dbname = 'elgg_production';

// Database server
// (For most configurations, you can leave this as 'localhost')
$CONFIG->dbhost = 'localhost';
// (For most configurations, you can leave this as 3306)
$CONFIG->dbport = 3306;

// Database table prefix
// If you're sharing a database with other applications, you will want to use this
// to differentiate Elgg's tables.
$CONFIG->dbprefix = 'elgg';

We need to change these lines to match our new installation:

// Database username
$CONFIG->dbuser = 'db_user';

// Database password
$CONFIG->dbpass = 'db_password';

// Database name
$CONFIG->dbname = 'elgg_test';

// Database server
// (For most configurations, you can leave this as 'localhost')
$CONFIG->dbhost = 'localhost';
// (For most configurations, you can leave this as 3306)
$CONFIG->dbport = 3306;

(continué en la próxima página)

50 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

// Database table prefix
// If you're sharing a database with other applications, you will want to use this
// to differentiate Elgg's tables.
$CONFIG->dbprefix = 'elgg';

$CONFIG->wwwroot = 'http://your.website.com/'

Nota: Notice the $CONFIG->dbname has changed to reflect our new database.

Copy Elgg Database

Now the database must be copied from elgg_production to elgg_test. See your favorite MySQL manager’s
documentation for how to make a duplicate database. You will generally export the current database tables to a file,
create the new database, and then import the tables that you previously exported.

You have two options on updating the values in the database. You could change the values in the export file or you
could import the file and change the values with database queries. One advantage of modifying the dump file is that
you can also change links that people have created to content within your site. For example, if people have bookmarked
pages using the bookmark plugin, the bookmarks will point to the old site unless your update their URLs.

Database Entries

We must now change 4 entries in the database. This is easily accomplished with 4 simple SQL commands:

Change the installation path

UPDATE `elgg_config` SET `value` = REPLACE(`value`, "/var/www/elgg_production/", "/
→˓var/www/elgg_test/") WHERE `name` = "path";

Change the data directory

UPDATE `elgg_config` SET `value` = REPLACE(`value`, "/var/data/elgg_production/", "/
→˓var/data/elgg_test/") WHERE `name` = "dataroot";

Check .htaccess

If you have made changes to .htaccess that modify any paths, make sure you update them in the test installation.

Update Webserver Config

For this example, you must edit the Apache config to enable a subdomain with a document root of /var/www/
elgg_test/. If you plan to install into a subdirectory of your document root, this step is unnecessary.

If you’re using Nginx, you need to update server config to match new paths based on install/config/nginx.
dist.

3.2. Administrator Guides 51

Elgg Documentation, Versión master

Run upgrade.php

To regenerate cached data, make sure to run http://test.myelgg.org/upgrade.php

Tips

It is a good idea to keep a test server around to experiment with installing new mods and doing development work. If
you automate restorations to the elgg_test database, changing the $CONFIG values and adding the follow lines
to the end of the elgg_test/elgg-config/settings.php file will allow seamless re-writing of the MySQL
database entries.

$con = mysql_connect($CONFIG->dbhost, $CONFIG->dbuser, $CONFIG->dbpass);
mysql_select_db($CONFIG->dbname, $con);

$sql = "UPDATE {$CONFIG->dbprefix}config
SET value = REPLACE(`value`, "/var/www/elgg_production/", "/var/www/elgg_test/")
WHERE name = 'path'";

mysql_query($sql);
print mysql_error();

$sql = "UPDATE {$CONFIG->dbprefix}config
SET value = REPLACE(`value`, "/var/data/elgg_production/", "/var/data/elgg_test/")
WHERE name = 'dataroot'";

mysql_query($sql);
print mysql_error();

Related

Ver también:

Backup and Restore

3.2.8 Getting Help

Having a problem with Elgg? The best way to get help is to ask at the Community Site. This site is community
supported by a large group of volunteers. Here are a few tips to help you get the help you need.

Contents

Getting help

Guidelines

Good Ideas

Getting help

Don’t be a Help Vampire

We were all newbies at one time, but we can all learn. Not showing that you are making attempts to learn on your own
or do your own research is off putting for those helping. Also, very generic questions like «How do I build a forum?»

52 Capítulo 3. Continue Reading

https://community.elgg.org/

Elgg Documentation, Versión master

are almost impossible to answer.

Search first

Be sure to search the documentation (this site), the Community Site, and Google before asking a question. New users
to Elgg frequently have the same questions, so please search. People are less inclined to reply to a post that has been
answered many other times or that can be answered easily by Googling.

Ask once

Posting the same questions in multiple places makes it hard to answer you. Ask your question in one place only.
Duplicate questions may be moderated.

Include Elgg Version

Different versions of Elgg have different features (and different bugs). Including the version of Elgg that you are using
will help those helping you.

Have a reasonable profile

Profiles that look like spam or have silly names will often be ignored. Joviality is fine, but people are more likely to
help Michael than 1337elggHax0r.

Post in the appropriate forum

Check to make sure you’re posting in the right forum. If you have a question about creating a plugin, don’t post to the
Elgg Feedback forum. If you need help installing Elgg, post to Technical Support instead of the Theming group.

Use a descriptive topic title

Good topic titles concisely describe your problem or question. Bad topic titles are vague, contain all capital letters,
and excessive punctuation.

Good title: «White screen after upgrading to 1.7.4.»

Bad title: «URGENT!!!!! site broke ;-(losing money help!!!!!!!!!!!»

Be detailed

Include as many details about your problem as possible. If you have a live site, include a link. Be forthcoming if
community members might ask for more information. We can’t help you if you won’t give any details!

Keep it public

This is a public forum for the good of the Elgg project. Keep posts public. There’s no reason for anyone to ask you to
send a private message or email. Likewise, there’s no reason to ask anyone to send a private email to you. Post in the
public.

3.2. Administrator Guides 53

https://community.elgg.org/

Elgg Documentation, Versión master

Guidelines

In addition to the site-wide Terms and Policies, following these guidelines keeps our community site useful and safe
for everyone.

Content

All content must be safe for work: PG in the US and UK. If your Elgg site has adult content and you have been asked
to post a link, please mark it NSFW (Not Safe For Work) so people know.

Excessive swearing in any language will not be tolerated.

Mood

Working with technical problems can be frustrating. Please keep the community site free of frustration. If you’re feeling
anxious, take a step away and do something else. Threatening or attacking community members, core developers, or
plugin developers will not help solve your problem and will likely get you banned.

Advertising

Advertising is not allowed. Posts with any sort of advertising will be moderated.

Asking for money / Offering to pay

Don’t ask for money on the community site. Likewise, don’t offer to pay for answers. If you are looking for custom
development, post to the Professional Services group. Posts asking for money or recommending a commercial plugin
may be moderated.

Links

If you’re having a problem with a live site, please provide a link to it.

That said, the community site is not a back linking service or SEO tool. Excessive linking will be moderated and your
account may be banned.

Signatures

There’s a reason Elgg doesn’t have an option for signatures: they cause clutter and distract from the conversation.
Users are discouraged from using signatures on the community site, and signatures with links or advertising will be
removed.

Bumping, +1, me too

Don’t do it. If your question hasn’t been answered, see the top of this document for tips. These types of post add
nothing to the conversation and may be moderated.

54 Capítulo 3. Continue Reading

http://community.elgg.org/terms/

Elgg Documentation, Versión master

Posting Code

Long bits of code are confusing to read through in a forums context. Please use http://elgg.pastebin.com to post long
bits of code and provide the Paste Bin link instead of directly posting the code.

Good Ideas

Not policies, but good ideas.

Say thanks

Did someone help you? Be sure to thank them! The community site is run by volunteers. No one has to help you with
your problem. Be sure to show your appreciation!

Give back

Have a tip for Elgg? See someone with a similar problem you had? You’ve been there and can help them out, so give
them a hand!

3.2.9 Security

As of Elgg 3.0 several hardening settings have been added to Elgg. You can enable/disable these settings as you like.

Contents

Upgrade protection

Cron protection

Disable password autocomplete

Email address change requires password

Email address change requires confirmation

Session bound icons

Notification to site administrators

Notifications to user

• Site administrator

• (Un)ban

Minimal username length

Minimal password requirements

.htaccess file access hardening

3.2. Administrator Guides 55

http://elgg.pastebin.com

Elgg Documentation, Versión master

Upgrade protection

The URL of http://your-elgg-site.com/upgrade.php can be protected by a unique token. This will prevent random users
from being able to run this file. The token is not needed for logged in site administrators.

Cron protection

The URLs of the cron can be protected by a unique token. This will prevent random users from being able to run the
cron. The token is not needed when running the cron from the commandline of the server.

Disable password autocomplete

Data entered in these fields will be cached by the browser. An attacker who can access the victim’s browser could
steal this information. This is especially important if the application is commonly used in shared computers such as
cyber cafes or airport terminals. If you disable this, password management tools can no longer autofill these fields.
The support for the autocomplete attribute can be browser specific.

Email address change requires password

When a user wishes to change their email address associated with their account, they need to also supply their current
password.

Email address change requires confirmation

When a user wishes to change their email address associated with their account, they need to confirm the new email
address. This is done by sending an email to the new address with a validation link. After clicking this link the new
email address will be used.

Session bound icons

Entity icons can be session bound by default. This means the URLs generated also contain information about the
current session. Having icons session bound makes icon urls not shareable between sessions. The side effect is that
caching of these urls will only help the active session.

Notification to site administrators

When a new site administrator is added or when a site administrator is removed all the site administrators get a
notification about this action.

Notifications to user

Site administrator

When the site administrator role is added to or removed from the account, send a notification to the user whos account
this is affecting.

56 Capítulo 3. Continue Reading

http://your-elgg-site.com/upgrade.php

Elgg Documentation, Versión master

(Un)ban

When the account of a user gets banned or unbanned, let the affected user know about this action.

Minimal username length

You can configure the minimal length the username should have upon registration of a user.

Minimal password requirements

You can configure several requirements for new passwords of the users

length: the password should be at least x characters long

lower case: minimal number of lower case (a-z) characters in the password

upper case: minimal number of upper case (A-Z) characters in the password

numbers: minimal number of numbers (0-9) characters in the password

specials: minimal number of special (like !@#$ %^&*(), etc.) characters in the password

.htaccess file access hardening

In the .htaccess file a set of file access hardening rules have been added to prevent direct access to files in certain folders.
Enabling these rules shouldn’t cause any issues when all the plugins you use follow the Elgg coding guidelines.

Examples of the rules are:

the vendor folder. This folder only contains helper libraries that Elgg uses and there is no need for direct
access to this folder. All required dependecies are loaded from within Elgg

the languages folder. This folder contains the main Elgg language files. These files are loaded from within
Elgg

3.2.10 User validation

Plugins can influence how users are validated before they can use the website.

Contents

Listing of unvalidated users

Require admin validation

Listing of unvalidated users

In the Admin section of the website is a list of all unvalidated users. Some actions can be taken on the users, like delete
them from the system or validate them.

Plugins have the option to add additional features to this list.

Ver también:

3.2. Administrator Guides 57

Elgg Documentation, Versión master

An example of this is the User validation by e-mail plugin which doesn’t allow users onto the website until their e-mail
address is validated.

Require admin validation

In the Site settings under the Users section there is a setting which can be enabled to require admin validation of a
new user account before the user can use their account. After registration the user gets notified that their account is
awaiting validation by an administrator.

Site administrators can receive an e-mail notification that there are users awaiting validation.

After validation the user is notified that they can use their account.

3.2.11 Spam

Keep spam under control.

Spam is a very common problem that admins need to deal with and which we aim to improve in core, but there are
some actions site admins can take to mitigate the problem.

Install an anti-spam plugin

There are several available on the community

http://community.elgg.org/plugins/search?f{[}c{]}{[}{]}=spam&sb=Search

Change the registration url

Some have said they have good success changing the registration URL, since the spammers are naive bots and can no
longer find where to create the fake accounts.

Disable open registration

If the flow of registrations is low enough, you can vet all users that come in to keep the quality of interaction high.

Contribute to anti-spam measures in core

https://github.com/Elgg/Elgg/issues?labels=spam&state=open

3.3 Developer Guides

Customize Elgg’s behavior with plugins.

58 Capítulo 3. Continue Reading

http://community.elgg.org/plugins/search?f{[}c{]}{[}{]}=spam&sb=Search
https://github.com/Elgg/Elgg/issues?labels=spam&state=open

Elgg Documentation, Versión master

3.3.1 Don’t Modify Core

Advertencia: In general, you shouldn’t modify non-config files that come with third-party software like Elgg.

The best way to customize the behavior of Elgg is to install Elgg as a composer dependency and use a plugin to store
modifications specific to your application, and alter behavior through the rich Elgg plugin API.

If you’d like to share customizations between sites or even publish your changes as a reusable package for the com-
munity, create a plugin using the same plugin APIs and file structure.

It makes it hard to get help

When you don’t share the same codebase as everyone else, it’s impossible for others to know what is going on in your
system and whether your changes are to blame. This can frustrate those who offer help because it can add considerable
noise to the support process.

It makes upgrading tricky and potentially disastrous

You will certainly want or need to upgrade Elgg to take advantage of

security patches

new features

new plugin APIs

new stability improvements

performance improvements

If you’ve modified core files, then you must be very careful when upgrading that your changes are not overwritten
and that they are compatible with the new Elgg code. If your changes are lost or incompatible, then the upgrade may
remove features you’ve added and even completely break your site.

This can also be a slippery slope. Lots of modifications can lead you to an upgrade process so complex that it’s
practically impossible. There are lots of sites stuck running old versions software due to taking this path.

It may break plugins

You may not realize until much later that your «quick fix» broke seemingly unrelated functionality that plugins depen-
ded on.

Summary

Resist the temptation Editing existing files is quick and easy, but doing so heavily risks the maintainability,
security, and stability of your site.

When receiving advice, consider if the person telling you to modify core will be around to rescue you if you run
into trouble later!

Apply these principle to software in general. If you can avoid it, don’t modify third party plugins either, for
the same reasons: Plugin authors release new versions, too, and you will want those updates.

3.3. Developer Guides 59

Elgg Documentation, Versión master

3.3.2 Access Control Lists

An Access Control List (or ACL) can grant one or more users access to an entity or annotation in the database.

Contents

Creating an ACL

ACL subtypes

Adding users to an ACL

Removing users from an ACL

Retrieving an ACL

Read access

Ignoring access

Ver también:

Database Access Control

Creating an ACL

An access collection can be create by using the function create_access_collection().

$owner_guid = elgg_get_logged_in_user_guid();

$acl = create_access_collection("Sample name", $owner_guid, 'collection_subtype');

ACL subtypes

ACLs can have a subtype, this is to help differentiate between the usage of the ACL. It’s higly recommended to set a
subtype for an ACL.

Elgg core has three examples of subtype usage

group_acl an ACL owned by an ElggGroup which grants group members access to content shared with
the group

friends an ACL owned by an ElggUser which grant friends of a user access to content shared with friends

friends_collection an ACL owned by an ElggUser which grant specific friends access to content
shared with the ACL

Adding users to an ACL

If you have an ACL you still need to add users to it in order to grant those users access to content with the access_id
of the ACLs id.

// creating an ACL
$owner_guid = elgg_get_logged_in_user_guid();

$acl_id = create_access_collection("Sample name", $owner_guid, 'collection_subtype');

(continué en la próxima página)

60 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

// add other user (procedural style)
add_user_to_access_collection($some_user_guid, $acl_id);

// add other user (object oriented style)
/* @var $acl ElggAccessCollection */
$acl = get_access_collection($acl_id);

$acl->addMember($some_other_user_guid);

Removing users from an ACL

If you no longer wish to allow access for a given user in an ACL you can easily remove that user from the list.

// remove a user from an ACL (procedural style)
remove_user_from_access_collection($user_guid_to_be_removed, $acl_id);

// remove a user from an ACL (object oriented style)
/* @var $acl ElggAccessCollection */
$acl = get_access_collection($acl_id);

$acl->removeMember(user_guid_to_be_removed);

Retrieving an ACL

In order to manage an ACL, or add the ID of an ACL to an access list there are several functions available to retrieve
an ACL from the database.

// get ACL based on known id
$acl = get_access_collection($acl_id);

// get all ACLs of an owner (procedural style)
$acls = elgg_get_access_collections([

'owner_guid' => $some_owner_guid,
]);

// get all ACLs of an owner (object oriented style)
$acls = $some_owner_entity->getOwnedAccessCollections();

// add a filter for ACL subtype
// get all ACLs of an owner (procedural style)
$acls = elgg_get_access_collections([

'owner_guid' => $some_owner_guid,
'subtype' => 'some_subtype',

]);

// get all ACLs of an owner (object oriented style)
$acls = $some_owner_entity->getOwnedAccessCollections([

'subtype' => 'some_subtype',
]);

// get one ACL of an owner (object oriented style)
// for example the group_acl of an ElggGroup

(continué en la próxima página)

3.3. Developer Guides 61

Elgg Documentation, Versión master

(proviene de la página anterior)

// Returns the first ACL owned by the entity with a given subtype
$acl = $group_entity->getOwnedAccessCollection('group_acl');

Read access

The access system of Elgg automaticly adds all the ACLs a user is a member of to the access checks. For example a
user is a member of a group and is friends with 3 other users, all the corresponding ACLs are added in order to check
access to entities when retrieving them (eg. listing all blogs).

Ignoring access

If for some case you need entities retrieved ignoring the access rules you can wrap your code in elgg_call. There
are different flags you can use.

ELGG_IGNORE_ACCESS: no access rules are applied

ELGG_ENFORCE_ACCESS: access rules are forced to be applied

ELGG_SHOW_DISABLED_ENTITIES: will retrieve entities that are disabled

ELGG_HIDE_DISABLED_ENTITIES: will never retrieve entities that are disabled

$options = [
'type' => 'user'

];

$entities = elgg_call(ELGG_IGNORE_ACCESS, function() use ($options) {
return elgg_get_entities($options);

});

You can also combine flags.

$entities = elgg_call(ELGG_IGNORE_ACCESS | ELGG_SHOW_DISABLED_ENTITIES, function() {
return elgg_get_entities([

'type' => 'user'
]);

});

3.3.3 Accessibility

This page aims to list and document accessibility rules and best practices, to help core and plugins developpers to
make Elgg the most accessible social engine framework that everyone dreams of.

Nota: This is an ongoing work, please contribute on Github if you have some skills in this field!

Resources + references

Official WCAG Accessibility Guidelines Overview

Official WCAG Accessibility Guidelines

Resources for planning and implementing for accessibility

62 Capítulo 3. Continue Reading

https://github.com/Elgg/Elgg
https://www.w3.org/WAI/standards-guidelines/wcag/glance/
https://www.w3.org/TR/WCAG/
https://www.w3.org/WAI/planning/

Elgg Documentation, Versión master

Practical tips from the W3C for improving accessibility

Preliminary review of websites for accessibility

Tools for checking the accessibility of websites

List of practical techniques for implementing accessibility (It would be great if someone could go through this
and filter out all the ones that are relevant to Elgg)

Tips for implementing accessibility

All accessibility-related tickets reported to trac should be tagged with «a11y», short for «accessibility»

Use core views such as output/*, and input/* to generate markup, since we can bake a11y concerns into
these views

All images should have a descriptive alt attribute. Spacer or purely decorative graphics should have blank alt
attributes

All <a> tags should have text or an accessible image inside. Otherwise screen readers will have to read the
URL, which is a poor experience <a> tags should contain descriptive text, if possible, as opposed to generic
text like «Click here»

Markup should be valid

Themes should not reset «outline» to nothing. :focus deserves a special visual treatment so that handicapped
users can know where they are

Tips for testing accessibility

Use the tools linked to from the resources section. Example report for community.elgg.org on June 16, 2012

Try different font-size/zoom settings in your browser and make sure the theme remains usable

Turn off css to make sure the sequential order of the page makes sense

Documentation objectives and principles

Main accessibility rules

collect and document best practices

Provide code examples

Keep the document simple and usable

Make it usable for both beginner developpers and experts (from most common and easiest changes to elaborate
techniques)

3.3.4 Forms + Actions

Create, update, or delete content.

Elgg forms submit to actions. Actions define the behavior for form submission.

This guide assumes basic familiarity with:

Plugins

Views

3.3. Developer Guides 63

https://www.w3.org/WAI/planning/interim-repairs/
https://www.w3.org/WAI/test-evaluate/preliminary/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/TR/WCAG20-TECHS/Overview.html#contents
http://try.powermapper.com/Reports/a6276098-0883-4d04-849e-8c05999812f2/report/map.htm

Elgg Documentation, Versión master

Internationalization

Contents

Registering actions

• Registering actions using plugin config file

• Permissions

• Writing action files

• Customizing actions

Actions available in core

• entity/delete

Forms

• Inputs

• Input types

Files and images

Sticky forms

• Helper functions

• Overview

• Example: User registration

• Example: Bookmarks

Ajax

Security

Security Tokens

Signed URLs

Registering actions

Actions must be registered before use.

There are two ways to register actions:

Using elgg_register_action()

elgg_register_action("example", __DIR__ . "/actions/example.php");

The mod/example/actions/example.php script will now be run whenever a form is submitted to http://
localhost/elgg/action/example.

Use elgg-plugin.php

return [
'actions' => [

// defaults to using an action file in /actions/myplugin/action_a.php
'myplugin/action_a' => [

(continué en la próxima página)

64 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

'access' => 'public',
],

// define custom action path
'myplugin/action_b' => [

'access' => 'admin',
'filename' => __DIR__ . '/actions/action.php'

],

// define a controller
'myplugin/action_c' => [

'controller' => \MyPlugin\Actions\ActionC::class,
],

],
];

Advertencia: A stumbling point for many new developers is the URL for actions. The URL always uses /
action/ (singular) and never /actions/ (plural). However, action script files are usually saved under the
directory /actions/ (plural) and always have an extension. Use elgg_generate_action_url() to avoid
confusion.

Registering actions using plugin config file

You can also register actions via the elgg-plugin config file. To do this you need to provide an action section in the
config file. The location of the action files are assumed to be in the plugin folder /actions.

<?php

return [
'actions' => [

'blog/save' => [], // all defaults
'blog/delete' => [// all custom

'access' => 'admin',
'filename' => __DIR__ . 'actions/blog/remove.php',

],
],

];

Permissions

By default, actions are only available to logged in users.

To make an action available to logged out users, pass "public" as the third parameter:

elgg_register_action("example", $filepath, "public");

To restrict an action to only administrators, pass "admin" for the last parameter:

elgg_register_action("example", $filepath, "admin");

3.3. Developer Guides 65

Elgg Documentation, Versión master

Writing action files

Use the get_input() function to get access to request parameters:

$field = get_input('input_field_name', 'default_value');

You can then use the Database api to load entities and perform actions on them accordingly.

To indicate a successful action, use elgg_ok_response(). This function accepts data that you want to make
available to the client for XHR calls (this data will be ignored for non-XHR calls)

$user = get_entity($guid);
// do something

$action_data = [
'entity' => $user,
'stats' => [

'friends' => $user->getFriends(['count' => true]);
],

];

return elgg_ok_response($action_data, 'Action was successful', 'url/to/forward/to');

To indicate an error, use elgg_error_response()

$user = elgg_get_logged_in_user_entity();
if (!$user) {

// show an error and forward the user to the referring page
// send 404 error code on AJAX calls
return elgg_error_response('User not found', REFERRER, ELGG_HTTP_NOT_FOUND);

}

if (!$user->canEdit()) {
// show an error and forward to user's profile
// send 403 error code on AJAX calls
return elgg_error_response('You are not allowed to perform this action', $user->

→˓getURL(), ELGG_HTTP_FORBIDDEN);
}

Customizing actions

Before executing any action, Elgg triggers a hook:

$result = elgg_trigger_plugin_hook('action:validate', $action, null, true);

Where $action is the action being called. If the hook returns false then the action will not be executed. Don’t
return anything if your validation passes.

Example: Captcha

The captcha module uses this to intercept the register and user/requestnewpassword actions and redirect
them to a function which checks the captcha code. This check returns false if the captcha validation fails (which
prevents the associated action from executing).

This is done as follows:

66 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

elgg_register_plugin_hook_handler("action:validate", "register", "captcha_verify_
→˓action_hook");
elgg_register_plugin_hook_handler("action:validate", "user/requestnewpassword",
→˓"captcha_verify_action_hook");

...

function captcha_verify_action_hook(\Elgg\Hook $hook) {
$token = get_input('captcha_token');
$input = get_input('captcha_input');

if (($token) && (captcha_verify_captcha($input, $token))) {
return;

}

register_error(elgg_echo('captcha:captchafail'));

return false;
}

This lets a plugin extend an existing action without the need to replace the whole action. In the case of the captcha
plugin it allows the plugin to provide captcha support in a very loosely coupled way.

Actions available in core

entity/delete

If your plugin does not implement any custom logic when deleting an entity, you can use bundled delete action

$guid = 123;
// You can provide optional forward path as a URL query parameter
$forward_url = 'path/to/forward/to';
echo elgg_view('output/url', array(

'text' => elgg_echo('delete'),
'href' => elgg_generate_action_url('entity/delete', [

'guid' => $guid,
'forward_url' => $forward_url,

]),
'confirm' => true,

));

You can customize the success message keys for your entity type and subtype, using
"entity:delete:$type:$subtype:success" and "entity:delete:$type:success" keys.

// to add a custom message when a blog post or file is deleted
// add the translations keys in your language files
return [

'entity:delete:object:blog:success' => 'Blog post has been deleted,
'entity:delete:object:file:success' => 'File titled %s has been deleted',

];

Forms

To output a form, use the elgg_view_form function like so:

3.3. Developer Guides 67

Elgg Documentation, Versión master

echo elgg_view_form('example');

Doing this generates something like the following markup:

<form action="http://localhost/elgg/action/example">
<fieldset>
<input type="hidden" name="__elgg_ts" value="1234567890" />
<input type="hidden" name="__elgg_token" value="3874acfc283d90e34" />

</fieldset>
</form>

Elgg does some things automatically for you when you generate forms this way:

1. It sets the action to the appropriate URL based on the name of the action you pass to it

2. It adds some anti-csrf tokens (__elgg_ts and __elgg_token) to help keep your actions secure

3. It automatically looks for the body of the form in the forms/example view.

Put the content of your form in your plugin’s forms/example view:

// /mod/example/views/default/forms/example.php
echo elgg_view('input/text', array('name' => 'example'));

// defer form footer rendering
// this will allow other plugins to extend forms/example view
elgg_set_form_footer(elgg_view('input/submit'));

Now when you call elgg_view_form('example'), Elgg will produce:

<form action="http://localhost/elgg/action/example">
<fieldset>
<input type="hidden" name="__elgg_ts" value="...">
<input type="hidden" name="__elgg_token" value="...">

<input type="text" class="elgg-input-text" name="example">
<div class="elgg-foot elgg-form-footer">

<input type="submit" class="elgg-button elgg-button-submit" value="Submit">
</div>

</fieldset>
</form>

Inputs

To render a form input, use one of the bundled input views, which cover all standard HTML input elements. See
individual view files for a list of accepted parameters.

echo elgg_view('input/select', array(
'required' => true,
'name' => 'status',
'options_values' => [

'draft' => elgg_echo('status:draft'),
'published' => elgg_echo('status:published'),

],
// most input views will render additional parameters passed to the view
// as tag attributes

(continué en la próxima página)

68 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

'data-rel' => 'blog',
));

The above example will render a dropdown select input:

<select required="required" name="status" data-rel="blog" class="elgg-input-select">
<option value="draft">Draft</option>
<option value="published">Published</option>

</select>

To ensure consistency in field markup, use elgg_view_field(), which accepts all the parameters of the input
being rendered, as well as #label and #help parameters (both of which are optional and accept HTML or text).

echo elgg_view_field([
'#type' => 'select',
'#label' => elgg_echo('blog:status:label'),
'#help' => elgg_view_icon('help') . elgg_echo('blog:status:help'),
'required' => true,
'name' => 'status',
'options_values' => [

'draft' => elgg_echo('status:draft'),
'published' => elgg_echo('status:published'),

],
'data-rel' => 'blog',

]);

The above will generate the following markup:

<div class="elgg-field elgg-field-required">
<label for="elgg-field-1" class="elgg-field-label">Blog status<span title="Required

→˓" class="elgg-required-indicator">*</label>
<div class="elgg-field-input">

<select required="required" name="status" data-rel="blog" id="elgg-field-1"
→˓class="elgg-input-select">

<option value="draft">Draft</option>
<option value="published">Published</option>

</select>
</div>
<div class="elgg-field-help elgg-text-help">

This indicates whether or not the
→˓blog is visible in the feed

</div>
</div>

Input types

A list of bundled input types/views:

input/text - renders a text input <input type="text">

input/plaintext - renders a textarea <textarea></textarea>

input/longtext - renders a WYSIWYG text input

input/url - renders a url input <input type="url">

input/email - renders an email input <input type="email">

3.3. Developer Guides 69

Elgg Documentation, Versión master

input/checkbox - renders a single checkbox <input type="checkbox">

input/checkboxes - renders a set of checkboxes with the same name

input/radio - renders one or more radio buttons <input type="radio">

input/submit - renders a submit button <button type="submit">

input/button - renders a button <button></button>

input/file - renders a file input <input type="file">

input/select - renders a select input <select></select>

input/hidden - renders a hidden input <input type="hidden">

input/password - renders a password input <input type="password">

input/number - renders a number input <input type="number">

input/date - renders a jQuery datepicker

Elgg offers some helper input types

input/access - renders an Elgg access level select

input/tags - renders an Elgg tags input

input/autocomplete - renders an Elgg entity autocomplete

input/captcha - placeholder view for plugins to extend

input/friendspicker - renders an Elgg friend autocomplete

input/userpicker - renders an Elgg user autocomplete

input/location renders an Elgg location input

Files and images

Use the input/file view in your form’s content view.

// /mod/example/views/default/forms/example.php
echo elgg_view('input/file', ['name' => 'icon']);

If you wish to upload an icon for entity you can use the helper view entity/edit/icon. This view shows a file
input for uploading a new icon for the entity, an thumbnail of the current icon and the option to remove the current
icon.

The view supports some variables to control the output

entity - the entity to add/remove the icon for. If provided based on this entity the thumbnail and remove
option wil be shown

entity_type - the entity type for which the icon will be uploaded. Plugins could find this useful, maybe to
validate icon sizes

entity_subtype - the entity subtype for which the icon will be uploaded. Plugins could find this useful,
maybe to validate icon sizes

icon_type - the type of the icon (default: icon)

name - name of the input/file (default: icon)

remove_name - name of the remove icon toggle (default: $vars[“name”] . “_remove”)

required - is icon upload required (default: false)

70 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

show_remove - show the remove icon option (default: true)

show_thumb - show the thumb of the entity if available (default: true)

thumb_size - the icon size to use as the thumb (default: medium)

If using the helper view you can use the following code in you action to save the icon to the entity or remove the
current icon.

if (get_input('icon_remove')) {
$entity->deleteIcon();

} else {
$entity->saveIconFromUploadedFile('icon');

}

Set the enctype of the form to multipart/form-data:

echo elgg_view_form('example', array(
'enctype' => 'multipart/form-data'

));

Nota: The enctype of all forms that use the method POST defaults to multipart/form-data.

In your action file, use elgg_get_uploaded_file('your-input-name') to access the uploaded file:

$icon = elgg_get_uploaded_file('icon');

Sticky forms

Sticky forms are forms that retain user input if saving fails. They are «sticky» because the user’s data «sticks» in
the form after submitting, though it was never saved to the database. This greatly improves the user experience by
minimizing data loss. Elgg includes helper functions so you can make any form sticky.

Helper functions

Sticky forms are implemented in Elgg by the following functions:

elgg_make_sticky_form($name) - Tells the engine to make all input on a form sticky.

elgg_clear_sticky_form($name) - Tells the engine to discard all sticky input on a form.

elgg_is_sticky_form($name) - Checks if $name is a valid sticky form.

elgg_get_sticky_values($name) - Returns all sticky values saved for $name by
elgg_make_sticky_form($name).

Overview

The basic flow of using sticky forms is:

1. Call elgg_make_sticky_form($name) at the top of actions for forms you want to be sticky.

2. Use elgg_is_sticky_form($name) and elgg_get_sticky_values($name) to get sticky values
when rendering a form view.

3.3. Developer Guides 71

Elgg Documentation, Versión master

3. Call elgg_clear_sticky_form($name) after the action has completed successfully or after data has
been loaded by elgg_get_sticky_values($name).

Example: User registration

Simple sticky forms require little logic to determine the input values for the form. This logic is placed at the top of the
form body view itself.

The registration form view first sets default values for inputs, then checks if there are sticky values. If so, it loads the
sticky values before clearing the sticky form:

// views/default/forms/register.php
$password = $password2 = '';
$username = get_input('u');
$email = get_input('e');
$name = get_input('n');

if (elgg_is_sticky_form('register')) {
extract(elgg_get_sticky_values('register'));
elgg_clear_sticky_form('register');

}

The registration action sets creates the sticky form and clears it once the action is completed:

// actions/register.php
elgg_make_sticky_form('register', ['password', 'password2']);

...

$guid = register_user($username, $password, $name, $email, false, $friend_guid,
→˓$invitecode);

if ($guid) {
elgg_clear_sticky_form('register');
....

}

Truco: The function elgg_make_sticky_form() supports an optional second argument
$ignored_field_names. This needs to be an array of the field names you don’t wish to be made sticky. This
is usefull for fields which contain sensitive data, like passwords.

Example: Bookmarks

The bundled plugin Bookmarks” save form and action is an example of a complex sticky form.

The form view for the save bookmark action uses elgg_extract() to pull values from the $vars array:

// mod/bookmarks/views/default/forms/bookmarks/save.php
$title = elgg_extract('title', $vars, '');
$desc = elgg_extract('description', $vars, '');
$address = elgg_extract('address', $vars, '');
$tags = elgg_extract('tags', $vars, '');
$access_id = elgg_extract('access_id', $vars, ACCESS_DEFAULT);

(continué en la próxima página)

72 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

$container_guid = elgg_extract('container_guid', $vars);
$guid = elgg_extract('guid', $vars, null);
$shares = elgg_extract('shares', $vars, array());

The page handler scripts prepares the form variables and calls elgg_view_form() passing the correct values:

// mod/bookmarks/pages/add.php
$vars = bookmarks_prepare_form_vars();
$content = elgg_view_form('bookmarks/save', array(), $vars);

Similarly, mod/bookmarks/pages/edit.php uses the same function, but passes the entity that is being edited
as an argument:

$bookmark_guid = get_input('guid');
$bookmark = get_entity($bookmark_guid);

...

$vars = bookmarks_prepare_form_vars($bookmark);
$content = elgg_view_form('bookmarks/save', array(), $vars);

The library file defines bookmarks_prepare_form_vars(). This function accepts an ElggEntity as an
argument and does 3 things:

1. Defines the input names and default values for form inputs.

2. Extracts the values from a bookmark object if it’s passed.

3. Extracts the values from a sticky form if it exists.

// mod/bookmarks/lib/bookmarks.php
function bookmarks_prepare_form_vars($bookmark = null) {

// input names => defaults
$values = array(

'title' => get_input('title', ''), // bookmarklet support
'address' => get_input('address', ''),
'description' => '',
'access_id' => ACCESS_DEFAULT,
'tags' => '',
'shares' => array(),
'container_guid' => elgg_get_page_owner_guid(),
'guid' => null,
'entity' => $bookmark,

);

if ($bookmark) {
foreach (array_keys($values) as $field) {

if (isset($bookmark->$field)) {
$values[$field] = $bookmark->$field;

}
}

}

if (elgg_is_sticky_form('bookmarks')) {
$sticky_values = elgg_get_sticky_values('bookmarks');
foreach ($sticky_values as $key => $value) {

$values[$key] = $value;

(continué en la próxima página)

3.3. Developer Guides 73

Elgg Documentation, Versión master

(proviene de la página anterior)

}
}

elgg_clear_sticky_form('bookmarks');

return $values;
}

The save action checks the input, then clears the sticky form upon success:

// mod/bookmarks/actions/bookmarks/save.php
elgg_make_sticky_form('bookmarks');

...

if ($bookmark->save()) {
elgg_clear_sticky_form('bookmarks');

}

Ajax

See the Ajax guide for instructions on calling actions from JavaScript.

Security

For enhanced security, all actions require an CSRF token. Calls to action URLs that do not include security tokens will
be ignored and a warning will be generated.

A few views and functions automatically generate security tokens:

elgg_view('output/url', array('is_action' => true));
elgg_view('input/securitytoken');
$url = elgg_add_action_tokens_to_url("http://localhost/elgg/action/example");
$url = elgg_generate_action_url('myplugin/myaction');

In rare cases, you may need to generate tokens manually:

$__elgg_ts = elgg()->csrf->getCurrentTime()->getTimestamp();
$__elgg_token = elgg()->csrf->generateActionToken($__elgg_ts);

You can also access the tokens from javascript:

elgg.security.token.__elgg_ts;
elgg.security.token.__elgg_token;

These are refreshed periodically so should always be up-to-date.

Security Tokens

On occasion we need to pass data through an untrusted party or generate an «unguessable token» based on some
data. The industry-standard HMAC algorithm is the right tool for this. It allows us to verify that received data were
generated by our site, and were not tampered with. Note that even strong hash functions like SHA-2 should not be
used without HMAC for these tasks.

74 Capítulo 3. Continue Reading

http://security.stackexchange.com/a/20301/4982

Elgg Documentation, Versión master

Elgg provides elgg_build_hmac() to generate and validate HMAC message authentication codes that are un-
guessable without the site’s private key.

// generate a querystring such that $a and $b can't be altered
$a = 1234;
$b = "hello";
$query = http_build_query([

'a' => $a,
'b' => $b,
'mac' => elgg_build_hmac([$a, $b])->getToken(),

]);
$url = "action/foo?$query";

// validate the querystring
$a = (int) get_input('a', '', false);
$b = (string) get_input('b', '', false);
$mac = get_input('mac', '', false);

if (elgg_build_hmac([$a, $b])->matchesToken($mac)) {
// $a and $b have not been altered

}

Note: If you use a non-string as HMAC data, you must use types consistently. Consider the following:

$mac = elgg_build_hmac([123, 456])->getToken();

// type of first array element differs
elgg_build_hmac(["123", 456])->matchesToken($mac); // false

// types identical to original
elgg_build_hmac([123, 456])->matchesToken($mac); // true

Signed URLs

Signed URLs offer a limited level of security for situations where action tokens are not suitable, for example when
sending a confirmation link via email. URL signatures verify that the URL has been generated by your Elgg installation
(using site secret) and that the URL query elements were not tampered with.

URLs a signed with an unguessable SHA-256 HMAC key. See Security Tokens for more details.

$url = elgg_http_add_url_query_element(elgg_normalize_url('confirm'), [
'user_guid' => $user_guid,

]);

$url = elgg_http_get_signed_url($url);

notify_user($user_guid, $site->guid, 'Confirm', "Please confirm by clicking this
→˓link: $url");

Advertencia: Signed URLs do not offer CSRF protection and should not be used instead of action tokens.

3.3. Developer Guides 75

Elgg Documentation, Versión master

3.3.5 Ajax

The elgg/Ajax AMD module (introduced in Elgg 2.1) provides a set of methods for communicating with the server
in a concise and uniform way, which allows plugins to collaborate on the request data, the server response, and the
returned client-side data.

Contents

Overview

• Performing actions

• Fetching data

• Fetching views

• Fetching forms

• Submitting forms

• Redirects

• Piggybacking on an Ajax request

• Piggybacking on an Ajax response

• Handling errors

• Requiring AMD modules

Overview

All the ajax methods perform the following:

1. Client-side, the data option (if given as an object) is filtered by the hook ajax_request_data.

2. The request is made to the server, either rendering a view or a form, calling an action, or loading a path.

3. The method returns a jqXHR object, which can be used as a Promise.

4. Server-echoed content is turned into a response object (Elgg\Services\AjaxResponse) containing a
string (or a JSON-parsed value).

5. The response object is filtered by the hook ajax_response.

6. The response object is used to create the HTTP response.

7. Client-side, the response data is filtered by the hook ajax_response_data.

8. The jqXHR promise is resolved and any success callbacks are called.

More notes:

All hooks have a type depending on the method and first argument. See below.

By default the elgg/spinner module is automatically used during requests.

User messages generated by system_message() and register_error() are collected and displayed
on the client.

Elgg gives you a default error handler that shows a generic message if output fails.

PHP exceptions or denied resource return HTTP error codes, resulting in use of the client-side error handler.

76 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

The default HTTP method is POST for actions, otherwise GET. You can set it via options.method.

If a non-empty options.data is given, the default method is always POST.

For client caching, set options.method to "GET" and options.data.elgg_response_ttl to the
max-age you want in seconds.

To save system messages for the next page load, set options.data.elgg_fetch_messages = 0. You
may want to do this if you intent to redirect the user based on the response.

To stop client-side API from requiring AMD modules required server-side with elgg_require_js(), set
options.data.elgg_fetch_deps = 0.

All methods accept a query string in the first argument. This is passed on to the fetch URL, but does not appear
in the hook types.

Performing actions

Consider this action:

// in myplugin/actions/do_math.php

elgg_ajax_gatekeeper();

$arg1 = (int)get_input('arg1');
$arg2 = (int)get_input('arg2');

// will be rendered client-side
system_message('We did it!');

echo json_encode([
'sum' => $arg1 + $arg2,
'product' => $arg1 * $arg2,

]);

To execute it, use ajax.action('<action_name>', options):

var Ajax = require('elgg/Ajax');
var ajax = new Ajax();

ajax.action('do_math', {
data: {

arg1: 1,
arg2: 2

},
}).done(function (output, statusText, jqXHR) {

alert(output.sum);
alert(output.product);

});

Notes for actions:

All hooks have type action:<action_name>. So in this case, three hooks will be triggered:

• client-side "ajax_request_data", "action:do_math" to filter the request data (before
it’s sent)

• server-side "ajax_response", "action:do_math" to filter the response (after the action
runs)

3.3. Developer Guides 77

Elgg Documentation, Versión master

• client-side "ajax_response_data", "action:do_math" to filter the response data (before
the calling code receives it)

CSRF tokens are added to the request data.

The default method is POST.

An absolute action URL can be given in place of the action name.

Nota: When setting data, use ajax.objectify($form) instead of $form.serialize(). Doing so allows
the ajax_request_data plugin hook to fire and other plugins to alter/piggyback on the request.

Fetching data

Consider this PHP script that runs at http://example.org/myplugin_time.

// in myplugin/elgg-plugin.php
return [

'routes' => [
'default:myplugin:time' => [

'path' => '/myplugin_time',
'resource' => 'myplugin/time',

],
],

];

// in myplugin/views/default/resources/myplugin/time.php
elgg_ajax_gatekeeper();

echo json_encode([
'rfc2822' => date(DATE_RFC2822),
'day' => date('l'),

]);

return true;

To fetch its output, use ajax.path('<url_path>', options).

var Ajax = require('elgg/Ajax');
var ajax = new Ajax();

ajax.path('myplugin_time').done(function (output, statusText, jqXHR) {
alert(output.rfc2822);
alert(output.day);

});

Notes for paths:

The 3 hooks (see Actions above) will have type path:<url_path>. In this case, «path:myplugin_time».

If the page handler echoes a regular web page, output will be a string containing the HTML.

An absolute URL can be given in place of the path name.

78 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Fetching views

Consider this view:

// in myplugin/views/default/myplugin/get_link.php

if (empty($vars['entity']) || !$vars['entity'] instanceof ElggObject) {
return;

}

$object = $vars['entity'];
/* @var ElggObject $object */

echo elgg_view('output/url', [
'text' => $object->getDisplayName(),
'href' => $object->getUrl(),
'is_trusted' => true,

]);

Since it’s a PHP file, we must register it for Ajax first:

// in myplugin_init()
elgg_register_ajax_view('myplugin/get_link');

To fetch the view, use ajax.view('<view_name>', options):

var Ajax = require('elgg/Ajax');
var ajax = new Ajax();

ajax.view('myplugin/get_link', {
data: {

guid: 123 // querystring
},

}).done(function (output, statusText, jqXHR) {
$('.myplugin-link').html(output);

});

Notes for views:

The 3 hooks (see Actions above) will have type view:<view_name>. In this case, «view:myplugin/get_link».

output will be a string with the rendered view.

The request data are injected into $vars in the view.

If the request data contains guid, the system sets $vars['entity'] to the corresponding entity or false
if it can’t be loaded.

Advertencia: In ajax views and forms, note that $vars can be populated by client input. The data is filtered like
get_input(), but may not be the type you’re expecting or may have unexpected keys.

Fetching forms

Consider we have a form view. We register it for Ajax:

3.3. Developer Guides 79

Elgg Documentation, Versión master

// in myplugin_init()
elgg_register_ajax_view('forms/myplugin/add');

To fetch this using ajax.form('<action_name>', options).

var Ajax = require('elgg/Ajax');
var ajax = new Ajax();

ajax.form('myplugin/add').done(function (output, statusText, jqXHR) {
$('.myplugin-form-container').html(output);

});

Notes for forms:

The 3 hooks (see Actions above) will have type form:<action_name>. In this case, «form:myplugin/add».

output will be a string with the rendered view.

The request data are injected into $vars in your form view.

If the request data contains guid, the system sets $vars['entity'] to the corresponding entity or false
if it can’t be loaded.

Nota: Only the request data are passed to the requested form view (i.e. as a third parameter accepted by
elgg_view_form()). If you need to pass attributes or parameters of the form element rendered by the input/
form view (i.e. normally passed as a second parameter to elgg_view_form()), use the server-side hook
view_vars, input/form.

Advertencia: In ajax views and forms, note that $vars can be populated by client input. The data is filtered like
get_input(), but may not be the type you’re expecting or may have unexpected keys.

Submitting forms

To submit a form using Ajax, simply pass ajax parameter with form variables:

echo elgg_view_form('login', ['ajax' => true]);

Redirects

Use ajax.forward() to start a spinner and redirect the user to a new destination.

var Ajax = require('elgg/Ajax');
var ajax = new Ajax();
ajax.forward('/activity');

Piggybacking on an Ajax request

The client-side ajax_request_data hook can be used to append or filter data being sent by an elgg/Ajax
request.

Let’s say when the view foo is fetched, we want to also send the server some data:

80 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

// in your boot module
var Ajax = require('elgg/Ajax');
var elgg = require('elgg');

var ajax = new Ajax();

elgg.register_hook_handler(Ajax.REQUEST_DATA_HOOK, 'view:foo', function (name, type,
→˓params, data) {

// send some data back
data.bar = 1;
return data;

});

This data can be read server-side via get_input('bar');.

Nota: If data was given as a string (e.g. $form.serialize()), the request hooks are not triggered.

Nota: The form will be objectified as FormData, and the request content type will be determined accordingly.

Piggybacking on an Ajax response

The server-side ajax_response hook can be used to append or filter response data (or metadata).

Let’s say when the view foo is fetched, we want to also send the client some additional data:

use Elgg\Services\AjaxResponse;

function myplugin_append_ajax(\Elgg\Hook $hook) {

/* @var $response AjaxResponse */
$response = $hook->getValue();

// alter the value being returned
$response->getData()->value .= " hello";

// send some metadata back. Only client-side "ajax_response" hooks can see this!
$response->getData()->myplugin_alert = 'Listen to me!';

return $response;
}

// in myplugin_init()
elgg_register_plugin_hook_handler(AjaxResponse::RESPONSE_HOOK, 'view:foo', 'myplugin_
→˓append_ajax');

To capture the metadata send back to the client, we use the client-side ajax_response hook:

// in your boot module
var Ajax = require('elgg/Ajax');
var elgg = require('elgg');

elgg.register_hook_handler(Ajax.RESPONSE_DATA_HOOK, 'view:foo', function (name, type,
→˓params, data) {

(continué en la próxima página)

3.3. Developer Guides 81

Elgg Documentation, Versión master

(proviene de la página anterior)

// the return value is data.value

// the rest is metadata

alert(data.myplugin_alert);

return data;
});

Nota: Only data.value is returned to the success function or available via the Deferred interface.

Nota: Elgg uses these same hooks to deliver system messages over elgg/Ajax responses.

Handling errors

Responses basically fall into three categories:

1. HTTP success (200) with status 0. No register_error() calls were made on the server.

2. HTTP success (200) with status -1. register_error() was called.

3. HTTP error (4xx/5xx). E.g. calling an action with stale tokens, or a server exception. In this case the done
callbacks are not called.

The first and third case are the most common cases in the system. Use the done and fail callbacks to differentiate
behaviour on success and error.

ajax.action('entity/delete?guid=123').done(function (value, statusText, jqXHR) {
// remove element from the page

}).fail(function() {
// handle error condition if needed

});

Requiring AMD modules

Each response from an Ajax service will contain a list of AMD modules required server side with elgg_require_js().
When response data is unwrapped, these modules will be loaded asynchronously - plugins should not expect these
modules to be loaded in their $.done() and $.then() handlers and must use require() for any modules they depend on.
Additionally AMD modules should not expect the DOM to have been altered by an Ajax request when they are loaded
- DOM events should be delegated and manipulations on DOM elements should be delayed until all Ajax requests
have been resolved.

3.3.6 Authentication

Elgg provides everything needed to authenticate users via username/email and password out of the box, including:

remember-me cookies for persistent login

password reset logic

82 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

secure storage of passwords

logout

UIs for accomplishing all of the above

All that’s left for you to do as a developer is to use the built-in authentication functions to secure your pages and
actions.

Working with the logged in user

Check whether the current user is logged in with elgg_is_logged_in():

if (elgg_is_logged_in()) {
// do something just for logged-in users

}

Check if the current user is an admin with elgg_is_admin_logged_in():

if (elgg_is_admin_logged_in()) {
// do something just for admins

}

Get the currently logged in user with elgg_get_logged_in_user_entity():

$user = elgg_get_logged_in_user_entity();

The returned object is an ElggUser so you can use all the methods and properties of that class to access information
about the user. If the user is not logged in, this will return null, so be sure to check for that first.

Gatekeepers

Gatekeeper functions allow you to manage how code gets executed by applying access control rules.

Forward a user to the front page if they are not logged in with elgg_gatekeeper():

elgg_gatekeeper();

echo "Information for logged-in users only";

Forward a user to the front page unless they are an admin with elgg_admin_gatekeeper():

elgg_admin_gatekeeper();

echo "Information for admins only";

Pluggable Authentication Modules

Elgg has support for pluggable authentication modules (PAM), which enables you to write your own authentication
handlers. Whenever a request needs to get authenticated the system will call elgg_authenticate()which probes
the registered PAM handlers until one returns success.

The preferred approach is to create a separate Elgg plugin which will have one simple task: to process an authentication
request. This involves setting up an authentication handler in the plugin’s Bootstrap class, and to register it with the
PAM module so it will get processed whenever the system needs to authenticate a request.

3.3. Developer Guides 83

Elgg Documentation, Versión master

The authentication handler is a function and takes a single parameter. Registering the handler is being done by
register_pam_handler() which takes the name of the authentication handler, the importance and the policy as
parameters. It is advised to register the handler in the plugin’s init function, for example:

// classes/Your/Plugin/Bootstrap.php

function init() {
// Register the authentication handler
register_pam_handler('your_plugin_auth_handler');

}

// your_plugin/lib/functions.php

function your_plugin_auth_handler($credentials) {
// do things ...

}

Importance

By default an authentication module is registered with an importance of sufficient.

In a list of authentication modules; if any one marked sufficient returns true, pam_authenticate() will also
return true. The exception to this is when an authentication module is registered with an importance of required. All
required modules must return true for pam_authenticate() to return true, regardless of whether all sufficient
modules return true.

Passed credentials

The format of the credentials passed to the handler can vary, depending on the originating request. For example, a
regular login via the login form will create a named array, with the keys username and password. If a request was
made for example via XML-RPC then the credentials will be set in the HTTP header, so in this case nothing will get
passed to the authentication handler and the handler will need to perform steps on its own to authenticate the request.

Return value

The authentication handle should return a boolean, indicating if the request could be authenticated or not. One
caveat is that in case of a regular user login where credentials are available as username and password the user will get
logged in. In case of the XML-RPC example the authentication handler will need to perform this step itself since the
rest of the system will not have any idea of either possible formats of credentials passed nor its contents. Logging in a
user is quite simple and is being done by login(), which expects an ElggUser object.

3.3.7 Capabilities

Contents

Entity Capabilities

84 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Entity Capabilities

Defining capabilities

There is no need to explicitly define or register a new capability to the system. For example the search plugin uses the
searchable capability.

Registering for capabilities

If an entity supports a certain capability (or feature) this should be registered in the system. This can be done by
registering the capability in the entities section of the elgg-plugin.php of the plugin.

'entities' => [
[

'type' => 'object',
'subtype' => 'blog',
'capabilities' => [

'searchable' => true,
],

],
],

There is also the option to enable (or disable) a capability for a certain entity type/subtype using one of the following
functions:

elgg_entity_enable_capability($type, $subtype, $capability) use this for enabling a
certain capability

elgg_entity_disable_capability($type, $subtype, $capability) use this for disabling
a certain capability

Checking for capabilities

There are helper functions to check if a certain capability is supported in the system. You can check if an entity supports
a certain capability using the $entity->hasCapability($capability) function. Alternatively if you do not have an entity
at your disposal, you can use elgg_entity_has_capability($type, $subtype, $capability).

There is also a function available to get an array of all type/subtypes in the system that support a certain capability.

$types_subtypes = elgg_entity_types_with_capability('searchable');

// output
[

'object' => [
'blog',
'page',

],
'group' => [

'group',
],

]

3.3. Developer Guides 85

Elgg Documentation, Versión master

3.3.8 Context

Advertencia: The contents of this page are outdated. While the functionality is still in place, using global context
to determine your business logic is bad practice, and will make your code less testable and succeptive to bugs.

Within the Elgg framework, context can be used by your plugin’s functions to determine if they should run or not. You
will be registering callbacks to be executed when particular events are triggered. Sometimes the events are generic
and you only want to run your callback when your plugin caused the event to be triggered. In that case, you can use
the page’s context.

You can explicitly set the context with set_context(). The context is a string and typically you set it to the
name of your plugin. You can retrieve the context with the function get_context(). It’s however better to use
elgg_push_context($string) to add a context to the stack. You can check if the context you want in in the
current stack by calling elgg_in_context($context). Don’t forget to pop (with elgg_pop_context())
the context after you push one and don’t need it anymore.

If you don’t set it, Elgg tries to guess the context. If the page was called through the router, the context is set to the
first segment of the current route, e.g. profile in profile/username.

Sometimes a view will return different HTML depending on the context. A plugin can take advantage of that by setting
the context before calling elgg_view() on the view and then setting the context back. This is frequently done with
the search context.

3.3.9 Cron

If you setup cron correctly as described in Cron special hooks will be triggered so you can register for these hooks
from your own code.

The example below registers a function for the daily cron.

function my_plugin_init() {
elgg_register_plugin_hook_handler('cron', 'daily', 'my_plugin_cron_handler');

}

If timing is important in your cron hook be advised that the functions are executed in order of registration. This could
mean that your function may start (a lot) later then you may have expected. However the parameters provided in the
hook contain the original starting time of the cron, so you can always use that information.

function my_plugin_cron_handler(\Elgg\Hook $hook) {
$start_time = $hook->getParam('time');

}

Custom intervals

Plugin developers can configure there own custom intervals.

Advertencia: It’s NOT recommended to do this, as the users of your plugin may also need to configure your
custom interval. Try to work with the default intervals. If you only need to do a certain task at for example 16:30
you can use the halfhour interval and check that date('G', $start_time) == 16 and date('i',
$start_time) == 30

86 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

elgg_register_plugin_hook_hander('cron:intervals', 'system', 'my_custom_cron_interval
→˓');

function my_custom_cron_interval(\Elgg\Hook $hook) {
$cron_intervals = $hook->getValue();

// add custom interval
$cron_intervals['my_custom_interval'] = '30 16 * * *'; // every day at 16:30

→˓hours

return $cron_intervals;
}

Ver también:

Events and Plugin Hooks has more information about hooks

For more information about the supported cron interval definition see the PHP Scheduler documentation

3.3.10 Database

Persist user-generated content and settings with Elgg’s generic storage API.

Contents

Entities

• Creating an object

• Loading an object

• Displaying entities

• Adding, reading and deleting annotations

• Extending ElggEntity

• Advanced features

Custom database functionality

Systemlog

• System log storage

• Creating your own system log

Entities

Creating an object

To create an object in your code, you need to instantiate an ElggObject. Setting data is simply a matter of adding
instance variables or properties. The built-in properties are:

‘‘guid‘‘ The entity’s GUID; set automatically

‘‘owner_guid‘‘ The owning user’s GUID

3.3. Developer Guides 87

https://github.com/peppeocchi/php-cron-scheduler#schedules-execution-time

Elgg Documentation, Versión master

‘‘subtype‘‘ A single-word arbitrary string that defines what kind of object it is, for example blog

‘‘access_id‘‘ An integer representing the access level of the object

‘‘title‘‘ The title of the object

‘‘description‘‘ The description of the object

The object subtype is a special property. This is an arbitrary string that describes what the object is. For example, if
you were writing a blog plugin, your subtype string might be blog. It’s a good idea to make this unique, so that other
plugins don’t accidentally try and use the same subtype. For the purposes of this document, let’s assume we’re building
a simple forum. Therefore, the subtype will be forum:

$object = new ElggObject();
$object->setSubtype('forum');
$object->access_id = 2;
$object->save();

access_id is another important property. If you don’t set this, your object will be private, and only the creator user
will be able to see it. Elgg defines constants for the special values of access_id:

ACCESS_PRIVATE Only the owner can see it

ACCESS_LOGGED_IN Any logged in user can see it

ACCESS_PUBLIC Even visitors not logged in can see it

Saving the object will automatically populate the $object->guid property if successful. If you change any more
base properties, you can call $object->save() again, and it will update the database for you.

You can set metadata on an object just like a standard property. Let’s say we want to set the SKU of a product:

$object->SKU = 62784;

If you assign an array, all the values will be set for that metadata. This is how, for example, you set tags.

Metadata cannot be persisted to the database until the entity has been saved, but for convenience, ElggEntity can cache
it internally and save it when saving the entity.

Loading an object

By GUID

$entity = get_entity($guid);
if (!$entity) {

// The entity does not exist or you're not allowed to access it.
}

But what if you don’t know the GUID? There are several options.

By user, subtype or site

If you know the user ID you want to get objects for, or the subtype, you have several options. The easiest is probably
to call the procedural function elgg_get_entities:

88 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

$entities = elgg_get_entities(array(
'type' => $entity_type,
'subtype' => $subtype,
'owner_guid' => $owner_guid,

));

This will return an array of ElggEntity objects that you can iterate through. elgg_get_entities paginates
by default, with a limit of 10; and offset 0.

You can leave out owner_guid to get all objects and leave out subtype or type to get objects of all types/subtypes.

If you already have an ElggUser – e.g. elgg_get_logged_in_user_entity, which always has the current
user’s object when you’re logged in – you can simply use:

$objects = $user->getObjects($subtype, $limit, $offset)

But what about getting objects with a particular piece of metadata?

By properties

You can fetch entities by their properties using elgg_get_entities. Using specific parameters passed to
$options array, you can retrieve entities by their attributes, metadata, annotations, private settings and relations-
hips.

Displaying entities

In order for entities to be displayed in listing functions you need to provide a view for the entity in the views system.

To display an entity, create a view EntityType/subtype where EntityType is one of the following:

object: for entities derived from ElggObject user: for entities derived from ElggUser site: for entities derived from
ElggSite group: for entities derived from ElggGroup

A default view for all entities has already been created, this is called EntityType/default.

Entity Icons

Entity icons can be saved from uploaded files, existing local files, or existing ElggFile objects. These methods save
the master size of the icon defined in the system. The other defined sizes will be generated when requested.

$object = new ElggObject();
$object->title = 'Example entity';
$object->description = 'An example object with an icon.';

// from an uploaded file
$object->saveIconFromUploadedFile('file_upload_input');

// from a local file
$object->saveIconFromLocalFile('/var/data/generic_icon.png');

// from a saved ElggFile object
$file = get_entity(123);
if ($file instanceof ElggFile) {

$object->saveIconFromElggFile($file);

(continué en la próxima página)

3.3. Developer Guides 89

Elgg Documentation, Versión master

(proviene de la página anterior)

}

$object->save();

The following sizes exist by default:

master - 10240px at longer edge (not upscaled)

large - 200px at longer edge (not upscaled)

medium - 100px square

small - 40px square

tiny - 25px square

topbar - 16px square

Use elgg_get_icon_sizes() to get all possible icon sizes for a specific entity type and subtype. The function
triggers the entity:icon:sizes hook.

To check if an icon is set, use $object->hasIcon($size).

You can retrieve the URL of the generated icon with ElggEntity::getIconURL($params) method. This
method accepts a $params argument as an array that specifies the size, type, and provide additional context for the
hook to determine the icon to serve. The method triggers the entity:icon:url hook.

Use elgg_view_entity_icon($entity, $size, $vars) to render an icon. This will scan the following
locations for a view and include the first match to .

1. views/$viewtype/icon/$type/$subtype.php

2. views/$viewtype/icon/$type/default.php

3. views/$viewtype/icon/default.php

Where

$viewtype Type of view, e.g. 'default' or 'json'.

$type Type of entity, e.g. 'group' or 'user'.

$subtype Entity subtype, e.g. 'blog' or 'page'.

You do not have to return a fallback icon from the hook handler. If no uploaded icon is found, the view system will
scan the views (in this specific order):

1. views/$viewtype/$icon_type/$entity_type/$entity_subtype.svg

2. views/$viewtype/$icon_type/$entity_type/$entity_subtype/$size.gif

3. views/$viewtype/$icon_type/$entity_type/$entity_subtype/$size.png

4. views/$viewtype/$icon_type/$entity_type/$entity_subtype/$size.jpg

Where

$viewtype Type of view, e.g. 'default' or 'json'.

$icon_type Icon type, e.g. 'icon' or 'cover_image'.

$entity_type Type of entity, e.g. 'group' or 'user'.

$entity_subtype Entity subtype, e.g. 'blog' or 'page' (or 'default' if entity has not subtype).

$size Icon size (note that we do not use the size with svg icons)

90 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Icon methods support passing an icon type if an entity has more than one icon. For example, a user might have an
avatar and a cover photo icon. You would pass 'cover_photo' as the icon type:

$object->saveIconFromUploadedFile('uploaded_photo', 'cover_photo');

$object->getIconUrl([
'size' => 'medium',
'type' => 'cover_photo'

]);

Nota: Custom icon types (e.g. cover photos) only have a preset for master size, to add custom sizes use
entity:<icon_type>:url hook to configure them.

By default icons will be stored in /icons/<icon_type>/<size>.jpg relative to entity’s directory on filestore.
To provide an alternative location, use the entity:<icon_type>:file hook.

Adding, reading and deleting annotations

Annotations could be used, for example, to track ratings. To annotate an entity you can use the object’s annotate()
method. For example, to give a blog post a rating of 5, you could use:

$blog_post->annotate('rating', 5);

To retrieve the ratings on the blog post, use $blogpost->getAnnotations('rating') and if you want to
delete an annotation, you can operate on the ElggAnnotation class, eg $annotation->delete().

Retrieving a single annotation can be done with get_annotation() if you have the annotation’s ID. If you delete
an ElggEntity of any kind, all its metadata, annotations, and relationships will be automatically deleted as well.

Extending ElggEntity

If you derive from one of the Elgg core classes, you’ll need to tell Elgg how to properly instantiate the new type of
object so that get_entity() et al. will return the appropriate PHP class. For example, if I customize ElggGroup in a class
called «Committee», I need to make Elgg aware of the new mapping. Following is an example class extension:

// Class source
class Committee extends ElggGroup {

protected function initializeAttributes() {
parent::initializeAttributes();
$this->attributes['subtype'] = 'committee';

}

// more customizations here
}

In your plugins elgg-plugin.php file add the entities section.

<?php // mod/example/elgg-plugin.php
return [

// entities registration
'entities' => [

[

(continué en la próxima página)

3.3. Developer Guides 91

Elgg Documentation, Versión master

(proviene de la página anterior)

'type' => 'group',
'subtype' => 'committee',
'class' => 'Committee',
'capabilities' => [

'searchable' => true,
],

],
],

];

The entities will be registered upon activation of the plugin.

Now if you invoke get_entity() with the GUID of a committee object, you’ll get back an object of type Commit-
tee.

Advanced features

Entity URLs

Entity urls are provided by the getURL() interface and provide the Elgg framework with a common way of directing
users to the appropriate display handler for any given object.

For example, a profile page in the case of users.

The url is set using the elgg_register_entity_url_handler() function. The function you register
must return the appropriate url for the given type - this itself can be an address set up by a page handler.

The default handler is to use the default export interface.

Entity loading performance

elgg_get_entities has a couple options that can sometimes be useful to improve performance.

preload_owners: If the entities fetched will be displayed in a list with the owner information, you can set this
option to true to efficiently load the owner users of the fetched entities.

preload_containers: If the entities fetched will be displayed in a list using info from their containers, you can
set this option to true to efficiently load them.

distinct: When Elgg fetches entities using an SQL query, Elgg must be sure that each entity row appears only
once in the result set. By default it includes a DISTINCT modifier on the GUID column to enforce this, but
some queries naturally return unique entities. Setting the distinct option to false will remove this modifier,
and rely on the query to enforce its own uniqueness.

The internals of Elgg entity queries is a complex subject and it’s recommended to seek help on the Elgg Community
site before using the distinct option.

Custom database functionality

It is strongly recommended to use entities wherever possible. However, Elgg supports custom SQL queries using the
database API.

92 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Systemlog

Nota: This section need some attention and will contain outdated information

The default Elgg system log is a simple way of recording what happens within an Elgg system. It’s viewable and
searchable directly from the administration panel.

System log storage

A system log row is stored whenever an event concerning an object whose class implements the Loggable interface
is triggered. ElggEntity and ElggExtender implement Loggable, so a system log row is created whenever an
event is performed on all objects, users, groups, sites, metadata and annotations.

Common events include:

create

update

delete

login

Creating your own system log

There are some reasons why you might want to create your own system log. For example, you might need to store a full
copy of entities when they are updated or deleted, for auditing purposes. You might also need to notify an administrator
when certain types of events occur.

To do this, you can create a function that listens to all events for all types of object:

register_elgg_event_handler('all','all','your_function_name');

Your function can then be defined as:

function your_function_name($object, $event) {
if ($object instanceof Loggable) {

...
}

}

You can then use the extra methods defined by Loggable to extract the information you need.

3.3.11 Email

Elgg has the ability to send out emails. This can be done directly using functions like elgg_send_email() and
notify_user() or indirectly through the notifications system. Below an overview of the feature of the email
system.

Contents

HTML Mail

3.3. Developer Guides 93

Elgg Documentation, Versión master

Attachments

E-mail address formatting

HTML Mail

As an admin you can configure your site to have all outgoing emails to be HTML emails or just plain text emails.
HTML emails are enabled by default. When enabled the email contents will be wrapped in HTML elements and some
CSS will be applied. This allows theme developers to style the emails.

The appropriate views to format and style the emails can be found in views/default/email.

The CSS will be inlined automatically so it will work in most email clients. If your email contains images, those
images can be converted to inline base64 encoded images (default) or attachments. Converted images are the best way
to have images show consistently in various clients.

Instead of having the message converted automatically to a HTML, you can also provide your own html_message
in the params of a notification. The html_message can be either a Elgg\Email\HtmlPart or a string. If
it is a string Elgg will automatically try to inline provided CSS present in the css param. If you do not want to
inline CSS you will need to set the convert_css param to false. Below an example of a custom HTML part.

elgg_send_email(\Elgg\Email::factory([
'from' => 'from@elgg.org',
'to' => 'to@elgg.org',
'subject' => 'Test Email',
'body' => 'Welcome to the site',
'params' => [

'html_message' => '
<p>Welcome to the site</p>

',
'convert_css' => true,
'css' => 'p { padding: 10px;}'

],
]));

Attachments

notify_user() or enqueued notifications support attachments for e-mail notifications if provided in $params.
To add one or more attachments add a key attachments in $params which is an array of the attachments. An
attachment should be in one of the following formats:

An ElggFile which points to an existing file

An array with the file contents

An array with a filepath

// this example is for notify_user()
$params['attachments'] = [];

// Example of an ElggFile attachment
$file = new \ElggFile();
$file->owner_guid = <some owner_guid>;
$file->setFilename('<some filename>');

(continué en la próxima página)

94 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

$params['attachments'][] = $file;

// Example of array with content
$params['attachments'][] = [

'content' => 'The file content',
'filename' => 'test_file.txt',
'type' => 'text/plain',

];

// Example of array with filepath
// 'filename' can be provided, if not basename() of filepath will be used
// 'type' can be provided, if not will try a best guess
$params['attachments'][] = [

'filepath' => '<path to a valid file>',
];

notify_user($to_guid, $from_guid, $subject, $body, $params);

E-mail address formatting

Elgg has a helper class to aid in getting formatted e-mail addresses: \Elgg\Email\Address.

// the constructor takes two variables
// first is the email address, this is REQUIRED
// second is the name, this is optional
$address = new \Elgg\Email\Address('example@elgg.org', 'Example');

// this will result in 'Example <example@elgg.org>'
echo $address->toString();

// to change the name use:
$address->setName('New Example');

// to change the e-mail address use:
$address->setEmail('example2@elgg.org');

There are some helper functions available

\Elgg\Email\Address::fromString($string) Will return an \Elgg\Email\Address class
with e-mail and name set, provided a formatted string (eg. Example <example@elgg.org>)

\Elgg\Email\Address::fromEntity($entity) Will return an \Elgg\Email\Address class
with e-mail and name set based on the entity

\Elgg\Email\Address::getFormattedEmailAddress($email, $name) Will return a format-
ted string provided an e-mail address and optionaly a name

3.3.12 Error Handling

Under the hood, Elgg uses Monolog for logging errors to the server’s error log (and stdout for CLI commands).

Monolog comes with a number of tools that can help administrators keep track of errors and debugging information.

You can add custom handlers (see Monolog documentation for a full list of handlers):

3.3. Developer Guides 95

https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog

Elgg Documentation, Versión master

// Add a new handler to notify a given email about a critical error
elgg()->logger->pushHandler(

new \Monolog\Handler\NativeMailerHandler(
'admin@example.com',
'Critical error',
'no-reply@mysite.com',
\Monolog\Logger::CRITICAL

)
);

3.3.13 List of events in core

For more information on how events work visit Events and Plugin Hooks.

Contents

System events

User events

Relationship events

Entity events

Metadata events

Annotation events

River events

File events

Notes

Nota: Some events are marked with (sequence) this means those events also have a :before and :after event
Also see Event sequence

System events

plugins_load, system (sequence) Triggered before the plugins are loaded. Rarely used. init, system is used instead.
Can be used to load additional libraries.

plugins_boot, system (sequence) Triggered just after the plugins are loaded. Rarely used. init, system is used instead.

init, system (sequence) Plugins tend to use this event for initialization (extending views, registering callbacks, etc.)

ready, system (sequence) Triggered after the init, system event. All plugins are fully loaded and the engine is
ready to serve pages.

shutdown, system Triggered after the page has been sent to the user. Expensive operations could be done here and
not make the user wait.

Nota: Depending upon your server configuration the PHP output might not be shown until after the process is com-
pleted. This means that any long-running processes will still delay the page load.

96 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Nota: This event is prefered above using register_shutdown_function as you may not have access to all the
Elgg services (eg. database) in the shutdown function but you will in the event.

Nota: The Elgg session is already closed before this event. Manipulating session is not possible.

regenerate_site_secret:before, system Return false to cancel regenerating the site secret. You should also provide a
message to the user.

regenerate_site_secret:after, system Triggered after the site secret has been regenerated.

log, systemlog Called for all triggered events by system_log plugin. Used internally by
Elgg\SystemLog\Logger::log() to populate the system_log table.

upgrade, system Triggered after a system upgrade has finished. All upgrade scripts have run, but the caches are not
cleared.

upgrade:execute, system (sequence) Triggered when executing an ElggUpgrade. The $object of the event is
the ElggUpgrade.

activate, plugin Return false to prevent activation of the plugin.

deactivate, plugin Return false to prevent deactivation of the plugin.

init:cookie, <name> Return false to override setting a cookie.

cache:invalidate, system (sequence) Invalidate internal and external caches.

cache:clear, system (sequence) Clear internal and external caches, by default including system_cache, simplecache,
and memcache. One might use it to reset others such as APC, OPCache, or WinCache.

cache:purge, system (sequence) Purge internal and external caches. This is meant to remove old/stale content from
the caches.

send:before, http_response Triggered before an HTTP response is sent. Handlers will receive an instance of Sym-
fonyComponentHttpFoundationResponse that is to be sent to the requester. Handlers can terminate the event and
prevent the response from being sent by returning false.

send:after, http_response Triggered after an HTTP response is sent. Handlers will receive an instance of Symfony-
ComponentHttpFoundationResponse that was sent to the requester.

reload:after, translations Triggered after the translations are (re)loaded.

User events

login:before, user Triggered during login. Returning false prevents the user from logging

login:after, user Triggered after the user logs in.

login:first, user Triggered after a successful login. Only if there is no previous login.

logout:before, user Triggered during logout. Returning false should prevent the user from logging out.

logout:after, user Triggered after the user logouts.

validate, user When a user registers, the user’s account is disabled. This event is triggered to allow a plugin to
determine how the user should be validated (for example, through an email with a validation link).

validate:after, user Triggered when user’s account has been validated.

invalidate:after, user Triggered when user’s account validation has been revoked.

3.3. Developer Guides 97

Elgg Documentation, Versión master

profileupdate, user User has changed profile

profileiconupdate, user User has changed profile icon

ban, user Triggered before a user is banned. Return false to prevent.

unban, user Triggered before a user is unbanned. Return false to prevent.

make_admin, user Triggered before a user is promoted to an admin. Return false to prevent.

remove_admin, user Triggered before a user is demoted from an admin. Return false to prevent.

Relationship events

create, relationship Triggered after a relationship has been created. Returning false deletes the relationship that was
just created.

delete, relationship Triggered before a relationship is deleted. Return false to prevent it from being deleted.

join, group Triggered after the user $params['user'] has joined the group $params['group'].

leave, group Triggered before the user $params['user'] has left the group $params['group'].

Entity events

create, <entity type> Triggered for user, group, object, and site entities after creation. Return false to delete entity.

update, <entity type> Triggered before an update for the user, group, object, and site entities. Return false to pre-
vent update. The entity method getOriginalAttributes() can be used to identify which attributes have
changed since the entity was last saved.

update:after, <entity type> Triggered after an update for the user, group, object, and site entities. The entity method
getOriginalAttributes() can be used to identify which attributes have changed since the entity was
last saved.

delete:before, <entity type> Triggered before entity deletion. Return false to prevent deletion.

delete, <entity type> Triggered before entity deletion.

delete:after, <entity type> Triggered after entity deletion.

disable, <entity type> Triggered before the entity is disabled. Return false to prevent disabling.

disable:after, <entity type> Triggered after the entity is disabled.

enable, <entity type> Return false to prevent enabling.

enable:after, <entity type> Triggered after the entity is enabled.

Metadata events

create, metadata Called after the metadata has been created. Return false to delete the metadata that was just created.

update, metadata Called after the metadata has been updated. Return false to delete the metadata.

delete, metadata Called before metadata is deleted. Return false to prevent deletion.

enable, metadata Called when enabling metadata. Return false to prevent enabling.

disable, metadata Called when disabling metadata. Return false to prevent disabling.

98 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Annotation events

annotate, <entity type> Called before the annotation has been created. Return false to prevent annotation of this
entity.

create, annotation Called after the annotation has been created. Return false to delete the annotation.

update, annotation Called after the annotation has been updated. Return false to delete the annotation.

delete, annotation Called before annotation is deleted. Return false to prevent deletion.

enable, annotation Called when enabling annotations. Return false to prevent enabling.

disable, annotations Called when disabling annotations. Return false to prevent disabling.

River events

create:before, river Called before the river item is saved to the database. Return false to prevent the item from
being created.

create:after, river Called after a river item is created.

delete:before, river Triggered before a river item is deleted. Returning false cancels the deletion.

delete:after, river Triggered after a river item was deleted.

File events

upload:after, file Called after an uploaded file has been written to filestore. Receives an instance of ElggFile the
uploaded file was written to. The ElggFile may or may not be an entity with a GUID.

Notes

Because of bugs in the Elgg core, some events may be thrown more than once on the same action. For example,
update, object is thrown twice.

3.3.14 File System

Contents

Filestore

File Objects

Temporary files

Filestore

Location

Elgg’s filestore is located in the site’s dataroot that is configured during installation, and can be modified via site
settings in Admin interface.

3.3. Developer Guides 99

Elgg Documentation, Versión master

Directory Structure

The structure of the filestore is tied to file ownership by Elgg entities. Whenever the first file owned by an entity is
written to the filestore, a directory corresponding to the entity GUID will be created within a parent bucket directory
(buckets are bound to 5000 guids). E.g. files owned by user with guid 7777 will be located in 5000/7777/.

When files are created, filenames can contain subdirectory names (often referred to as $prefix throughout the code).
For instance, avatars of the above user, can be found under 5000/7777/profile/.

File Objects

Writing Files

To write a file to the filestore, you would use an instance of ElggFile. Even though ElggFile extends ElggObject
and can be stored as an actual Elgg entity, that is not always necessary (e.g. when writing thumbs of an image).

$file = new ElggFile();
$file->owner_guid = 7777;
$file->setFilename('portfolio/files/sample.txt');
$file->open('write');
$file->write('Contents of the file');
$file->close();

// to uprade this file to an entity
$file->save();

Reading Files

You can read file contents using instanceof of ElggFile.

// from an Elgg entity
$file = get_entity($file_guid);
readfile($file->getFilenameOnFilestore());

// arbitrary file on the filestore
$file = new ElggFile();
$file->owner_guid = 7777;
$file->setFilename('portfolio/files/sample.txt');

// option 1
$file->open('read');
$contents = $file->grabFile();
$file->close();

// option 2
$contents = file_get_contents($file->getFilenameOnFilestore());

Serving Files

You can serve files from filestore using elgg_get_inline_url() and elgg_get_download_url(). Both
functions accept 3 arguments:

‘‘file‘‘ An instance of ElggFile to be served

100 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

‘‘use_cookie‘‘ If set to true, validity of the URL will be limited to current session

‘‘expires‘‘ Expiration time of the URL

You can use use_cookie and expires arguments as means of access control. For example, users avatars in most
cases have a long expiration time and do not need to be restricted by current session - this will allows browsers to
cache the images and file service will send appropriate Not Modified headers on consecutive requests.

The default behaviour of use_cookie can be controlled on the admin security settings page.

For entities that are under Elgg’s access control, you may want to use cookies to ensure that access settings are
respected and users do not share download URLs with somebody else.

You can also invalidated all previously generated URLs by updating file’s modified time, e.g. by using touch().

Embedding Files

Please note that due to their nature inline and download URLs are not suitable for embedding. Embed URLs must be
permanent, whereas inline and download URLs are volatile (bound to user session and file modification time).

To embed an entity icon, use elgg_get_embed_url().

Handling File Uploads

In order to implement an action that saves a single file uploaded by a user, you can use the following approach:

// in your form
echo elgg_view('input/file', [

'name' => 'upload',
'label' => 'Select an image to upload',
'help' => 'Only jpeg, gif and png images are supported',

]);

// in your action
$uploaded_file = elgg_get_uploaded_file('upload');
if (!$uploaded_file) {

return elgg_error_response("No file was uploaded");
}

$supported_mimes = [
'image/jpeg',
'image/png',
'image/gif',

];

$mime_type = elgg()->mimetype->getMimeType($uploaded_file->getPathname());
if (!in_array($mime_type, $supported_mimes)) {

return elgg_error_response("{$mime_type} is not supported");
}

$file = new ElggFile();
$file->owner_guid = elgg_get_logged_in_user_guid();
if ($file->acceptUploadedFile($uploaded_file)) {

$file->save();
}

If your file input supports multiple files, you can iterate through them in your action:

3.3. Developer Guides 101

Elgg Documentation, Versión master

// in your form
echo elgg_view('input/file', [

'name' => 'upload[]',
'multiple' => true,
'label' => 'Select images to upload',

]);

// in your action
foreach (elgg_get_uploaded_files('upload') as $upload) {

$file = new ElggFile();
$file->owner_guid = elgg_get_logged_in_user_guid();
if ($file->acceptUploadedFile($upload)) {

$file->save();
}

}

Nota: If images are uploaded their is an automatic attempt to fix the orientation of the image.

Temporary files

If you ever need a temporary file you can use elgg_get_temp_file(). You’ll get an instance of an
ElggTempFile which has all the file functions of an ElggFile, but writes it’s data to the systems temp folder.

Advertencia: It’s not possible to save the ElggTempFile to the database. You’ll get an
Elgg\Exceptions\Filesystem\IOException if you try.

3.3.15 Group Tools

Elgg groups allow group administrators to enable/disable various tools available within a group. These tools are pro-
vided by other plugins like blog or file.

Plugins can access group tool register via elgg()->group_tools.

elgg()->group_tools->register('my-tool', [
'default_on' => false, // default is true
'label' => elgg_echo('my-tool:checkbox:label'),
'priority' => 300, // display this earlier than other modules/tools

]);

A registered tool will have an option to be toggled on the group edit form, and can have a profile view module
associated with it. To add a profile module, simply add a corresponding view as groups/profile/module/
<tool_name>. This view will only be called if the tool is enabled.

If you simply wish to list some content in the group you can use the groups/profile/module view with some
additional parameters.

entity_type: in combination with the entity_subtype it can generate everything the module needs

entity_subtype: in combination with the entity_type it can generate everything the module needs

no_results: custom no results found text

The following will be automaticly generated:

102 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

title: based on the language key collection:<entity_type>:<entity_subtype>:group

content: elgg_list_entities() based on given type/subtype

all_link: based on the route name collection:<entity_type>:<entity_subtype>:group

add_link: based on the route name add:<entity_type>:<entity_subtype>:group and with a
permissions check to the given type/subtype

// file: groups/profile/module/my-tool.php

// if you wish to list some content (eg. files) in the group
// you can use the following
$params = [

'entity_type' => 'object',
'entity_subtype' => 'file',
'no_results' => elgg_echo('file:none'),

];
$params = $params + $vars;

echo elgg_view('groups/profile/module', $params);

Alternatively you can generate your own title and content

// file: groups/profile/module/my-tool.php

echo elgg_view('groups/profile/module', [
'title' => elgg_echo('my-tool'),
'content' => 'Hello, world!',

]);

You can programmically enable and disable tools for a given group:

$group = get_entity($group_guid);

// enables the file tool for the group
$group->enableTool('file');

// disables the file tool for the group
$group->disableTool('file');

If you want to allow a certain feature in a group only if the group tool option is enabled, you can check this using
\ElggGroup::isToolEnabled($tool_option).

It is also a possibility to use a gatekeeper function to prevent access to a group page based on an enabled tool.

elgg_group_tool_gatekeeper('file', $group);

Ver también:

Read more about gatekeepers here: Gatekeepers

If you need the configured group tool options for a specific group you can use the
elgg()->group_tools->group($group) function.

3.3.16 Plugin coding guidelines

In addition to the Elgg Coding Standards, these are guidelines for creating plugins. Core plugins are being updated to
this format and all plugin authors should follow these guidelines in their own plugins.

3.3. Developer Guides 103

Elgg Documentation, Versión master

Ver también:

Be sure to follow the Plugin skeleton for your plugin’s layout.

Advertencia: Don’t Modify Core

Contents

Use standardized routing with page handlers

Use standardized page handlers and scripts

The object/<subtype> view

Actions

Directly calling a file

Recommended

Use standardized routing with page handlers

Example: Bookmarks plugin

Page handlers should accept the following standard URLs:

Purpose URL
All page_handler/all
User page_handler/owner/<username>
User friends’ page_handler/friends/<username>
Single entity page_handler/view/<guid>/<title>
Add page_handler/add/<container_guid>
Edit page_handler/edit/<guid>
Group list page_handler/group/<guid>/owner

Include page handler scripts from the page handler. Almost every page handler should have a pa-
ge handler script. (Example: bookmarks/all => mod/bookmarks/views/default/resources/
bookmarks/all.php)

Pass arguments like entity guids to the resource view via $vars in elgg_view_resource().

Call elgg_gatekeeper() and elgg_admin_gatekeeper() in the page handler function if required.

The group URL should use views like resources/groups/*.php to render pages.

Page handlers should not contain HTML.

Use standardized page handlers and scripts

Example: Bookmarks plugin

Store page functionality in mod/<plugin>/views/default/resources/<page_handler>/
<page_name>.php

Use elgg_view_resource('<page_handler>/<page_name>') to render that.

104 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Use the default page layout in page handler scripts: $content = elgg_view_layout('default',
$options);

Page handler scripts should not contain HTML

Call elgg_push_breadcrumb() in the page handler scripts.

No need to worry about setting the page owner if the URLs are in the standardized format

For group content, check the container_guid by using elgg_get_page_owner_entity()

The object/<subtype> view

Example: Bookmarks plugin

Make sure there are views for $vars['full_view'] == true and $vars['full_view'] ==
false

Check for the object in $vars['entity'] . Use elgg_instance_of() to make sure it’s the type entity
you want. Return true to short circuit the view if the entity is missing or wrong.

Use the new list body and list metadata views to help format. You should use almost no markup in these views.

Update action structure - Example: Bookmarks plugin.

Namespace action files and action names (example: mod/blog/actions/blog/save.php => action/
blog/save)

Use the following action URLs:

Purpose URL
Add action/plugin/save
Edit action/plugin/save
Delete action/plugin/delete

Make the delete action accept action/<handler>/delete?guid=<guid> so the metadata entity menu
has the correct URL by default

Actions

Actions are transient states to perform an action such as updating the database or sending a notification to a user. Used
correctly, actions provide a level of access control and prevent against CSRF attacks.

Actions require action (CSRF) tokens to be submitted via GET/POST, but these are added automatically by
elgg_view_form() and by using the is_action argument of the output/url view.

Action best practices

Action files are included within Elgg’s action system; like views, they are not regular scripts executable by users. Do
not boot the Elgg core in your file and direct users to load it directly.

Because actions are time-sensitive they are not suitable for links in emails or other delayed notifications. An example
of this would be invitations to join a group. The clean way to create an invitation link is to create a page handler for
invitations and email that link to the user. It is then the page handler’s responsibility to create the action links for a user
to join or ignore the invitation request.

Consider that actions may be submitted via XHR requests, not just links or form submissions.

3.3. Developer Guides 105

Elgg Documentation, Versión master

Directly calling a file

This is an easy one: Don’t do it. With the exception of 3rd party application integration, there is not a reason to directly
call a file in mods directory.

Recommended

These points are good ideas, but are not yet in the official guidelines. Following these suggestions will help to keep
your plugin consistent with Elgg core.

Update the widget views (see the blog or file widgets)

Update the group profile “widget” using blog or file plugins as example

Update the forms

• Move form bodies to /forms/<handler>/<action> to use Evan’s new elgg_view_form()

• Use input views in form bodies rather than html

• Add a function that prepares the form (see mod/file/lib/file.php for example)

• Integrate sticky forms (see the file plugin’s upload action and form prepare function)

Clean up CSS/HTML

• Should be able to remove almost all CSS (look for patterns that can be moved into core if you need
CSS)

Use hyphens rather than underscores in classes/ids

Do not use the bundled category with your plugins. That is for plugins distributed with Elgg

Don’t use register_shutdown_function as you may not have access to certain Elgg parts anymore (eg
database). Instead use the shutdown system event

3.3.17 Helper functions

Contents

Input and output

Entity methods

Entity and context retrieval

Plugins

Interface and annotations

Messages

Input and output

get_input($name) Grabs information from a form field (or any variable passed using GET or POST). Also
sanitises input, stripping Javascript etc.

set_input($name, $value) Forces a value to a particular variable for subsequent retrieval by
get_input()

106 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Entity methods

$entity->getURL() Returns the URL of any entity in the system

$entity->getGUID() Returns the GUID of any entity in the system

$entity->canEdit() Returns whether or not the current user can edit the entity

$entity->getOwnerEntity() Returns the ElggUser owner of a particular entity

Entity and context retrieval

elgg_get_logged_in_user_entity() Returns the ElggUser for the current user

elgg_get_logged_in_user_guid() Returns the GUID of the current user

elgg_is_logged_in() Is the viewer logged in

elgg_is_admin_logged_in() Is the view an admin and logged in

elgg_gatekeeper() Shorthand for checking if a user is logged in. Forwards user to front page if not

elgg_admin_gatekeeper() Shorthand for checking the user is logged in and is an admin. Forwards user
to front page if not

get_user($user_guid) Given a GUID, returns a full ElggUser entity

elgg_get_page_owner_guid() Returns the GUID of the current page owner, if there is one

elgg_get_page_owner_entity() Like elgg_get_page_owner_guid() but returns the full entity

elgg_get_context() Returns the current page’s context - eg «blog» for the blog plugin, «thewire» for the
wire, etc. Returns «main» as default

elgg_set_context($context) Forces the context to be a particular value

elgg_push_context($context) Adds a context to the stack

elgg_pop_context() Removes the top context from the stack

elgg_in_context($context) Checks if you’re in a context (this checks the complete stack, eg. “widget”
in “groups”)

Plugins

elgg_is_active_plugin($plugin_id) Check if a plugin is installed and enabled

Interface and annotations

elgg_view_image_block($icon, $info) Return the result in a formatted list

elgg_view_comments($entity) Returns any comments associated with the given entity

elgg_get_friendly_time($unix_timestamp) Returns a date formatted in a friendlier way - «18
minutes ago», «2 days ago», etc.

3.3. Developer Guides 107

Elgg Documentation, Versión master

Messages

system_message($message) Registers a success message

register_error($message) Registers an error message

elgg_view_message($type, $message) Outputs a message

3.3.18 List of plugin hooks in core

For more information on how hooks work visit Events and Plugin Hooks.

Contents :local:

List of plugin hooks in core

System hooks

page_owner, system Filter the page_owner for the current page. No options are passed.

siteid, system

gc, system Allows plugins to run garbage collection for $params['period'].

diagnostics:report, system Filter the output for the diagnostics report download.

cron, <period> Triggered by cron for each period.

cron:intervals, system Allow the configuration of custom cron intervals

validate, input Filter GET and POST input. This is used by get_input() to sanitize user input.

prepare, html Triggered by elgg_format_html() and used to prepare untrusted HTML.

The $return value is an array:

html - HTML string being prepared

options - Preparation options

diagnostics:report, system Filters the output for a diagnostic report.

debug, log Triggered by the Logger. Return false to stop the default logging method. $params includes:

level - The debug level. One of:

• Elgg_Logger::OFF

• Elgg_Logger::ERROR

• Elgg_Logger::WARNING

• Elgg_Logger::NOTICE

• Elgg_Logger::INFO

msg - The message

display - Should this message be displayed?

format, friendly:title Formats the «friendly» title for strings. This is used for generating URLs.

format, friendly:time Formats the «friendly» time for the timestamp $params['time'].

108 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

format, strip_tags Filters a string to remove tags. The original string is passed as
$params['original_string'] and an optional set of allowed tags is passed as
$params['allowed_tags'].

output:before, page In elgg_view_page(), this filters $vars before it’s passed to the page shell
view (page/<page_shell>). To stop sending the X-Frame-Options header, unregister the handler
Elgg\Page\SetXFrameOptionsHeaderHandler::class from this hook.

output, page In elgg_view_page(), this filters the output return value.

parameters, menu:<menu_name> Triggered by elgg_view_menu(). Used to change menu variables (like sort
order) before rendering.

The $params array will contain:

name - name of the menu

sort_by - preferring sorting parameter

other parameters passed to elgg_view_menu()

register, menu:<menu_name> Filters the initial list of menu items pulled from configuration, before the menu has
been split into sections. Triggered by elgg_view_menu() and elgg()->menus->getMenu().

The $params array will contain parameters returned by parameters, menu:<menu_name> hook.

The return value is an instance of \Elgg\Menu\MenuItems containing \ElggMenuItem objects.

Hook handlers can add/remove items to the collection using the collection API, as well as array access opera-
tions.

register, menu:<menu_name>:<type>:<subtype> More granular version of the menu hook triggered before the
register, menu:<menu_name> hook.

Only applied if menu params contain - params[“entity”] with an \ElggEntity (<type>
is \ElggEntity::type and <subtype> is \ElggEntity::subtype) or - pa-
rams[“annotation”] with an \ElggAnnotation (<type> is \ElggAnnotation::getType()
and <subtype> is \ElggAnnotation::getSubtype()) or - params[“relationship”] with an
\ElggRelationship (<type> is \ElggRelationship::getType() and <subtype> is
\ElggRelationship::getSubtype())

prepare, menu:<menu_name> Filters the array of menu sections before they’re displayed. Each section is a string
key mapping to an area of menu items. This is a good hook to sort, add, remove, and modify menu items.
Triggered by elgg_view_menu() and elgg()->menus->prepareMenu().

The $params array will contain:

selected_item - ElggMenuItem selected in the menu, if any

The return value is an instance of \Elgg\Menu\PreparedMenu. The prepared menu is a collection of
\Elgg\Menu\MenuSection, which in turn are collections of \ElggMenuItem objects.

prepare, menu:<menu_name>:<type>:<subtype> More granular version of the menu hook triggered before the
prepare, menu:<menu_name> hook.

Only applied if menu params contain - params[“entity”] with an \ElggEntity (<type>
is \ElggEntity::type and <subtype> is \ElggEntity::subtype) or - pa-
rams[“annotation”] with an \ElggAnnotation (<type> is \ElggAnnotation::getType()
and <subtype> is \ElggAnnotation::getSubtype()) or - params[“relationship”] with an
\ElggRelationship (<type> is \ElggRelationship::getType() and <subtype> is
\ElggRelationship::getSubtype())

register, menu:filter:<filter_id> Allows plugins to modify layout filter tabs on layouts that specify <filter_id>
parameter. Parameters and return values are same as in register, menu:<menu_name> hook.

3.3. Developer Guides 109

Elgg Documentation, Versión master

If filter_id is filter (the default) then the all, mine and friends tabs will be generated base on
some provided information or be tried for routes similar to the current route.

params[“all_link”] will be used for the all tab

params[“mine_link”] will be used for the mine tab

params[“friends_link”] will be used for the friend tab

If the above are not provided than a route will be tried based on params['entity_type'] and
params['entity_subtype']. If not provided entity_type and entity_subtypewill be based on
route detection of the current route. For example if the current route is collection:object:blog:all
entity_type will be object and entity_subtype will be blog. - The all tab will be based on the
route collection:<entity_type>:<entity_subtype>:all - The mine tab will be based on the
route collection:<entity_type>:<entity_subtype>:owner - The friend tab will be based
on the route collection:<entity_type>:<entity_subtype>:friends

If the routes aren’t registered the tabs will not appear.

creating, river The options for elgg_create_river_item are filtered through this hook. You may alter values
or return false to cancel the item creation.

simplecache:generate, <view> Filters the view output for a /cache URL when simplecache is enabled.

cache:generate, <view> Filters the view output for a /cache URL when simplecache is disabled. Note this will be
fired for every /cache request–no Expires headers are used when simplecache is disabled.

prepare, breadcrumbs In elgg_get_breadcrumbs(), this filters the registered breadcrumbs before returning
them, allowing a plugin to alter breadcrumb strategy site-wide. $params array includes:

breadcrumbs - an array of bredcrumbs, each with title and link keys

identifier - route identifier of the current page

segments - route segments of the current page

elgg.data, site Filters cached configuration data to pass to the client. More info

elgg.data, page Filters uncached, page-specific configuration data to pass to the client. More info

registration_url, site Filters site’s registration URL. Can be used by plugins to attach invitation codes, referrer codes
etc. to the registration URL. $params array contains an array of query elements added to the registration URL
by the invoking script. The hook must return an absolute URL to the registration page.

login_url, site Filters site’s login URL. $params array contains an array of query elements added to the login URL
by the invoking script. The hook must return an absolute URL of the login page.

commands, cli Allows plugins to register their own commands executable via elgg-cli binary. Handlers must
return an array of command class names. Commands must extend \Elgg\Cli\Command to be executable.

seeds, database Allows plugins to register their own database seeds. Seeds populate the database with fake entities for
testing purposes. Seeds must extend \Elgg\Database\Seeds\Seed class to be executable via elgg-cli
database:seed.

languages, translations Allows plugins to add/remove languages from the configurable languages in the system.

generate, password Allows plugins to generate new random cleartext passwords.

User hooks

usersettings:save, user Triggered in the aggregate action to save user settings. The hook handler must return false
to prevent sticky forms from being cleared (i.e. to indicate that some of the values were not saved). Do not

110 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

return true from your hook handler, as you will override other hooks” output, instead return null to indicate
successful operation.

The $params array will contain:

user - \ElggUser, whose settings are being saved

request - \Elgg\Request to the action controller

change:email, user Triggered before the user email is changed. Allows plugins to implement additional logic requi-
red to change email, e.g. additional email validation. The hook handler must return false to prevent the email
from being changed right away.

The $params array will contain:

user - \ElggUser, whose settings are being saved

email - Email address that passes sanity checks

request - \Elgg\Request to the action controller

access:collections:write, user Filters an array of access permissions that the user $params['user_id'] is allo-
wed to save content with. Permissions returned are of the form (id => “Human Readable Name”).

registeruser:validate:username, all Return boolean for if the string in $params['username'] is valid for a
username. Hook handler can throw \Elgg\Exceptions\Configuration\RegistrationException
with an error message to be shown to the user.

registeruser:validate:password, all Return boolean for if the string in $params['password'] is valid for a
password. Hook handler can throw \Elgg\Exceptions\Configuration\RegistrationException
with an error message to be shown to the user.

registeruser:validate:email, all Return boolean for if the string in $params['email'] is valid for an email
address. Hook handler can throw \Elgg\Exceptions\Configuration\RegistrationException
with an error message to be shown to the user.

register, user Triggered by the register action after the user registers. Return false to delete the
user. Note the function register_user does not trigger this hook. Hook handlers can throw
\Elgg\Exceptions\Configuration\RegistrationException with an error message to be dis-
played to the user.

The $params array will contain:

user - Newly registered user entity

All parameters sent with the request to the action (incl. password, friend_guid, invitecode etc)

login:forward, user Filters the URL to which the user will be forwarded after login.

find_active_users, system Return the number of active users.

status, user Triggered by The Wire when adding a post.

username:character_blacklist, user Filters the string of blacklisted characters used to validate username during
registration. The return value should be a string consisting of the disallowed characters. The default string can
be found from $params['blacklist'].

Object hooks

comments, <entity_type> Triggered in elgg_view_comments(). If returning content, this overrides the page/
elements/comments view.

comments:count, <entity_type> Return the number of comments on $params['entity'].

3.3. Developer Guides 111

Elgg Documentation, Versión master

likes:count, <entity_type> Return the number of likes for $params['entity'].

Access hooks

access_collection:url, access_collection Can be used to filter the URL of the access collection.

The $params array will contain:

access_collection - ElggAccessCollection

access_collection:name, access_collection Can be used to filter the display name (readable access level) of the access
collection.

The $params array will contain:

access_collection - ElggAccessCollection

access:collections:read, user Filters an array of access IDs that the user $params['user_id'] can see.

Advertencia: The handler needs to either not use parts of the API that use the access system (triggering the
hook again) or to ignore the second call. Otherwise, an infinite loop will be created.

access:collections:write, user Filters an array of access IDs that the user $params['user_id'] can write to.
In get_write_access_array(), this hook filters the return value, so it can be used to alter the available options
in the input/access view. For core plugins, the value «input_params» has the keys «entity» (ElggEntity|false),
«entity_type» (string), «entity_subtype» (string), «container_guid» (int) are provided. An empty entity value
generally means the form is to create a new object.

Advertencia: The handler needs to either not use parts of the API that use the access system (triggering the
hook again) or to ignore the second call. Otherwise, an infinite loop will be created.

access:collections:write:subtypes, user Returns an array of access collection subtypes to be used when retrieving
access collections owned by a user as part of the get_write_access_array() function.

access:collections:addcollection, collection Triggered after an access collection $params['collection_id']
is created.

access:collections:deletecollection, collection Triggered before an access collection
$params['collection_id'] is deleted. Return false to prevent deletion.

access:collections:add_user, collection Triggered before adding user $params['user_id'] to collection
$params['collection_id']. Return false to prevent adding.

access:collections:remove_user, collection Triggered before removing user $params['user_id'] to collection
$params['collection_id']. Return false to prevent removal.

get_sql, access Filters SQL clauses restricting/allowing access to entities and annotations.

The hook is triggered regardless if the access is ignored. The handlers may need to check if access is ignored
and return early, if appended clauses should only apply to access controlled contexts.

$return value is a nested array of ands and ors.

$params includes:

table_alias - alias of the main table used in select clause

ignore_access - whether ignored access is enabled

112 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

use_enabled_clause - whether disabled entities are shown/hidden

access_column - column in the main table containing the access collection ID value

owner_guid_column - column in the main table referencing the GUID of the owner

guid_column - column in the main table referencing the GUID of the entity

enabled_column - column in the main table referencing the enabled status of the entity

query_builder - an instance of the QueryBuilder

Action hooks

action:validate, <action>

Trigger before action script/controller is executed. This hook should be used to validate/alter
user input, before proceeding with the action. The hook handler can throw an instance of
\Elgg\Exceptions\Http\ValidationException or return false to terminate further
execution.

$params array includes:

request - instance of \Elgg\Request

action_gatekeeper:permissions:check, all Triggered after a CSRF token is validated. Return false to prevent valida-
tion.

action_gatekeeper:upload_exceeded_msg, all Triggered when a POST exceeds the max size allowed by the server.
Return an error message to display.

forward, <reason> Filter the URL to forward a user to when forward($url, $reason) is called. In certain
cases, the params array will contain an instance of \Elgg\Exceptions\HttpException that triggered
the error.

response, action:<action> Filter an instance of \Elgg\Http\ResponseBuilder before it is sent to the client.
This hook can be used to modify response content, status code, forward URL, or set additional response headers.
Note that the <action> value is parsed from the request URL, therefore you may not be able to filter the
responses of action() calls if they are nested within the another action script file.

Ajax

ajax_response, * When the elgg/Ajax AMD module is used, this hook gives access to the response object
(\Elgg\Services\AjaxResponse) so it can be altered/extended. The hook type depends on the method
call:

elgg/Ajax method plugin hook type
action() action:<action_name>
path() path:<url_path>
view() view:<view_name>
form() form:<action_name>

Permission hooks

container_logic_check, <entity_type> Triggered by ElggEntity:canWriteToContainer() before trigge-
ring permissions_check and container_permissions_check hooks. Unlike permissions hooks,

3.3. Developer Guides 113

Elgg Documentation, Versión master

logic check can be used to prevent certain entity types from being contained by other entity types, e.g. discus-
sion replies should only be contained by discussions. This hook can also be used to apply status logic, e.g. do
disallow new replies for closed discussions.

The handler should return false to prevent an entity from containing another entity. The default value passed
to the hook is null, so the handler can check if another hook has modified the value by checking if return value
is set. Should this hook return false, container_permissions_check and permissions_check
hooks will not be triggered.

The $params array will contain:

container - An entity that will be used as a container

user - User who will own the entity to be written to container

subtype - Subtype of the entity to be written to container (entity type is assumed from hook type)

container_permissions_check, <entity_type> Return boolean for if the user $params['user'] can use
the entity $params['container'] as a container for an entity of <entity_type> and subtype
$params['subtype'].

In the rare case where an entity is created with neither the container_guid nor the owner_guid matching
the logged in user, this hook is called twice, and in the first call $params['container'] will be the owner,
not the entity’s real container.

The $params array will contain:

container - An entity that will be used as a container

user - User who will own the entity to be written to container

subtype - Subtype of the entity to be written to container (entity type is assumed from hook type)

permissions_check, <entity_type> Return boolean for if the user $params['user'] can edit the entity
$params['entity'].

permissions_check:delete, <entity_type> Return boolean for if the user $params['user'] can delete the entity
$params['entity']. Defaults to $entity->canEdit().

permissions_check:delete, river Return boolean for if the user $params['user'] can delete the river item
$params['item']. Defaults to true for admins and false for other users.

permissions_check:download, file Return boolean for if the user $params['user'] can download the file in
$params['entity'].

The $params array will contain:

entity - Instance of ElggFile

user - User who will download the file

permissions_check, widget_layout Return boolean for if $params['user'] can edit the widgets in the context
passed as $params['context'] and with a page owner of $params['page_owner'].

permissions_check:comment, <entity_type> Return boolean for if the user $params['user'] can comment on
the entity $params['entity'].

permissions_check:annotate:<annotation_name>, <entity_type> Return boolean for if the user
$params['user'] can create an annotation <annotation_name> on the entity
$params['entity']. If logged in, the default is true.

Nota: This is called before the more general permissions_check:annotate hook, and its return value
is that hook’s initial value.

114 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

permissions_check:annotate, <entity_type> Return boolean for if the user $params['user'] can create an an-
notation $params['annotation_name'] on the entity $params['entity']. if logged in, the default
is true.

permissions_check:annotation Return boolean for if the user in $params['user'] can edit the annotation
$params['annotation'] on the entity $params['entity']. The user can be null.

fail, auth Return the failure message if authentication failed. An array of previous PAM failure methods is passed as
$params.

api_key, use Triggered by elgg_ws_pam_auth_api_key(). Returning false prevents the key from being aut-
henticated.

gatekeeper, <entity_type>:<entity_subtype> Filters the result of elgg_entity_gatekeeper() to prevent or
allow access to an entity that user would otherwise have or not have access to. A handler can return false or
an instance of \Elgg\Exceptions\HttpException to prevent access to an entity. A handler can return
true to override the result of the gatekeeper. Important that the entity received by this hook is fetched with
ignored access and including disabled entities, so you have to be careful to not bypass the access system.

$params array includes:

entity - Entity that is being accessed

user - User accessing the entity (null implies logged in user)

Notifications

These hooks are listed chronologically in the lifetime of the notification event. Note that not all hooks apply to instant
notifications.

enqueue, notification Can be used to prevent a notification event from sending subscription notifications. Hook
handler must return false to prevent a subscription notification event from being enqueued.

$params array includes:

object - object of the notification event

action - action that triggered the notification event. E.g. corresponds to publish when
elgg_trigger_event('publish', 'object', $object) is called

get, subscriptions

Filters subscribers of the notification event. Applies to subscriptions and instant notifications. In
case of a subscription event, by default, the subscribers list consists of the users subscribed to the
container entity of the event object. In case of an instant notification event, the subscribers list consists
of the users passed as recipients to notify_user()

IMPORTANT Always validate the notification event, object and/or action types before adding any new reci-
pients to ensure that you do not accidentally dispatch notifications to unintended recipients. Consider a situation,
where a mentions plugin sends out an instant notification to a mentioned user - any hook acting on a subject or
an object without validating an event or action type (e.g. including an owner of the original wire thread) might
end up sending notifications to wrong users.

$params array includes:

event - \Elgg\Notifications\NotificationEvent instance that describes the no-
tification event

origin - subscriptions_service or instant_notifications

methods_override - delivery method preference for instant notifications

Handlers must return an array in the form:

3.3. Developer Guides 115

Elgg Documentation, Versión master

array(
<user guid> => array('sms'),
<user_guid2> => array('email', 'sms', 'ajax')

);

send:before, notifications Triggered before the notification event queue is processed. Can be used to terminate the
notification event. Applies to subscriptions and instant notifications.

$params array includes:

event - \Elgg\Notifications\NotificationEvent instance that describes the notification
event

subscriptions - a list of subscriptions. See 'get', 'subscriptions' hook for details

prepare, notification A high level hook that can be used to alter an instance of
\Elgg\Notifications\Notification before it is sent to the user. Applies to
subscriptions and instant notifications. This hook is triggered before a more granular
'prepare', 'notification:<action>:<entity_type>:<entity_subtype>' and after
'send:before', 'notifications. Hook handler should return an altered notification object.

$params may vary based on the notification type and may include:

event - \Elgg\Notifications\NotificationEvent instance that describes the notification
event

object - object of the notification event. Can be null for instant notifications

action - action that triggered the notification event. May default to notify_user for instant notifi-
cations

method - delivery method (e.g. email, site)

sender - sender

recipient - recipient

language - language of the notification (recipient’s language)

origin - subscriptions_service or instant_notifications

prepare, notification:<action>:<entity_type>:<entity_type> A granular hook that can be used to filter a notifica-
tion \Elgg\Notifications\Notification before it is sent to the user. Applies to subscriptions and
instant notifications. In case of instant notifications that have not received an object, the hook will be called
as 'prepare', 'notification:<action>'. In case of instant notifications that have not received an
action name, it will default to notify_user.

$params include:

event - \Elgg\Notifications\NotificationEvent instance that describes the notification
event

object - object of the notification event. Can be null for instant notifications

action - action that triggered the notification event. May default to notify_user for instant notifi-
cations

method - delivery method (e.g. email, site)

sender - sender

recipient - recipient

language - language of the notification (recipient’s language)

116 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

origin - subscriptions_service or instant_notifications

format, notification:<method> This hook can be used to format a notification before it is passed to the 'send',
'notification:<method>' hook. Applies to subscriptions and instant notifications. The hook handler
should return an instance of \Elgg\Notifications\Notification. The hook does not receive any
$params. Some of the use cases include:

Strip tags from notification title and body for plaintext email notifications

Inline HTML styles for HTML email notifications

Wrap notification in a template, add signature etc.

send, notification:<method> Delivers a notification. Applies to subscriptions and instant notifications. The handler
must return true or false indicating the success of the delivery.

$params array includes:

notification - a notification object \Elgg\Notifications\Notification

send:after, notifications Triggered after all notifications in the queue for the notifications event have been processed.
Applies to subscriptions and instant notifications.

$params array includes:

event - \Elgg\Notifications\NotificationEvent instance that describes the notification
event

subscriptions - a list of subscriptions. See 'get', 'subscriptions' hook for details

deliveries - a matrix of delivery statuses by user for each delivery method

Emails

prepare, system:email Triggered by elgg_send_email(). Applies to all outgoing system and notification
emails. This hook allows you to alter an instance of \Elgg\Email before it is passed to the email transport.
This hook can be used to alter the sender, recipient, subject, body, and/or headers of the email.

$params are empty. The $return value is an instance of \Elgg\Email.

validate, system:email Triggered by elgg_send_email(). Applies to all outgoing system and notification
emails. This hook allows you to suppress or whitelist outgoing emails, e.g. when the site is in a development
mode. The handler must return false to supress the email delivery.

$params contains:

email - An instance of \Elgg\Email

transport, system:email Triggered by elgg_send_email(). Applies to all outgoing system and notification
emails. This hook allows you to implement a custom email transport, e.g. delivering emails via a third-party
proxy service such as SendGrid or Mailgun. The handler must return true to indicate that the email was trans-
ported.

$params contains:

email - An instance of \Elgg\Email

zend:message, system:email Triggered by the default email transport handler (Elgg uses laminas/
laminas-mail). Applies to all outgoing system and notification emails that were not transported using the
transport, system:email hook. This hook allows you to alter an instance of \Laminas\Mail\Message
before it is passed to the Laminas email transport.

$params contains:

3.3. Developer Guides 117

Elgg Documentation, Versión master

email - An instance of \Elgg\Email

Routing

route:config, <route_name> Allows altering the route configuration before it is registered. This hook can be used
to alter the path, default values, requirements, as well as to set/remove middleware. Please note that the hand-
ler for this hook should be registered outside of the init event handler, as core routes are registered during
plugins_boot event.

route:rewrite, <identifier> Allows altering the site-relative URL path for an incoming request. See Routing for de-
tails. Please note that the handler for this hook should be registered outside of the init event handler, as route
rewrites take place after plugins_boot event has completed.

response, path:<path> Filter an instance of \Elgg\Http\ResponseBuilder before it is sent to the client. This
hook type will only be used if the path did not start with «action/» or «ajax/». This hook can be used to modify
response content, status code, forward URL, or set additional response headers. Note that the <path> value is
parsed from the request URL, therefore plugins using the route hook should use the original <path> to filter
the response, or switch to using the route:rewrite hook.

ajax_response, path:<path> Filters ajax responses before they’re sent back to the elgg/Ajax module. This hook
type will only be used if the path did not start with «action/» or «ajax/».

Views

view_vars, <view_name> Filters the $vars array passed to the view

view, <view_name> Filters the returned content of the view

layout, page In elgg_view_layout(), filters the layout name. $params array includes:

identifier - ID of the page being rendered

segments - URL segments of the page being rendered

other $vars received by elgg_view_layout()

shell, page In elgg_view_page(), filters the page shell name

head, page In elgg_view_page(), filters $vars['head'] Return value contains an array with title,
metas and links keys, where metas is an array of elements to be formatted as <meta> head tags, and
links is an array of elements to be formatted as <link> head tags. Each meta and link element contains a set
of key/value pairs that are formatted into html tag attributes, e.g.

return [
'title' => 'Current page title',
'metas' => [

'viewport' => [
'name' => 'viewport',
'content' => 'width=device-width',

]
],
'links' => [

'rss' => [
'rel' => 'alternative',
'type' => 'application/rss+xml',
'title' => 'RSS',
'href' => elgg_format_url($url),

],

(continué en la próxima página)

118 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

'icon-16' => [
'rel' => 'icon',
'sizes' => '16x16',
'type' => 'image/png',
'href' => elgg_get_simplecache_url('graphics/favicon-16.png'),

],
],

];

ajax_response, view:<view> Filters ajax/view/ responses before they’re sent back to the elgg/Ajax module.

ajax_response, form:<action> Filters ajax/form/ responses before they’re sent back to the elgg/Ajax modu-
le.

response, view:<view_name> Filter an instance of \Elgg\Http\ResponseBuilder before it is sent to the
client. Applies to request to /ajax/view/<view_name>. This hook can be used to modify response content,
status code, forward URL, or set additional response headers.

response, form:<form_name> Filter an instance of \Elgg\Http\ResponseBuilder before it is sent to the
client. Applies to request to /ajax/form/<form_name>. This hook can be used to modify response content,
status code, forward URL, or set additional response headers.

table_columns:call, <name> When the method elgg()->table_columns->$name() is called, this hook is
called to allow plugins to override or provide an implementation. Handlers receive the method arguments via
$params['arguments'] and should return an instance of Elgg\Views\TableColumn if they wish to
specify the column directly.

vars:compiler, css Allows plugins to alter CSS variables passed to CssCrush during compilation. See CSS variables
<_guides/theming#css-vars>.

Files

download:url, file

Allows plugins to filter the download URL of the file. By default, the download URL is generated by the file
service.

$params array includes:

entity - instance of ElggFile

inline:url, file

Allows plugins to filter the inline URL of the image file. By default, the inline URL is generated by the file
service.

$params array includes:

entity - instance of ElggFile

mime_type, file Return the mimetype for the filename $params['filename'] with original fi-
lename $params['original_filename'] and with the default detected mimetype of
$params['default'].

simple_type, file The hook provides $params['mime_type'] (e.g. application/pdf or image/jpeg)
and determines an overall category like document or image. The bundled file plugin and other-third party
plugins usually store simpletype metadata on file entities and make use of it when serving icons and cons-
tructing ege* filters and menus.

3.3. Developer Guides 119

Elgg Documentation, Versión master

upload, file Allows plugins to implement custom logic for moving an uploaded file into an instance of ElggFile.
The handler must return true to indicate that the uploaded file was moved. The handler must re-
turn false to indicate that the uploaded file could not be moved. Other returns will indicate that
ElggFile::acceptUploadedFile should proceed with the default upload logic.

$params array includes:

file - instance of ElggFile to write to

upload - instance of Symfony’s UploadedFile

Search

search:results, <search_type> Triggered by elgg_search(). Receives normalized options suitable for
elgg_get_entities() call and must return an array of entities matching search options. This hook is
designed for use by plugins integrating third-party indexing services, such as Solr and Elasticsearch.

search:params, <search_type> Triggered by elgg_search(). Filters search parameters (query, sorting, search
fields etc) before search clauses are prepared for a given search type. Elgg core only provides support for
entities search type.

search:fields, <entity_type> Triggered by elgg_search(). Filters search fields before search clauses are pre-
pared. $return value contains an array of names for each entity property type, which should be mat-
ched against the search query. $params array contains an array of search params passed to and filtered by
elgg_search().

return [
'attributes' => [],
'metadata' => ['title', 'description'],
'annotations' => ['revision'],
'private_settings' => ['internal_notes'],

];

search:fields, <entity_type>:<entity_subtype> See search:fields, <entity_type>

search:fields, <search_type> See search:fields, <entity_type>

search:options, <entity_type> Triggered by elgg_search(). Prepares search clauses (options) to be passed to
elgg_get_entities().

search:options, <entity_type>:<entity_subtype> See search:options, <entity_type>

search:options, <search_type> See search:options, <entity_type>

search:config, search_types Implemented in the search plugin. Filters an array of custom search types. This allows
plugins to add custom search types (e.g. tag or location search). Adding a custom search type will extend the
search plugin user interface with appropriate links and lists.

search:config, type_subtype_pairs Implemented in the search plugin. Filters entity type/subtype pairs before entity
search is performed. Allows plugins to remove certain entity types/subtypes from search results, group multiple
subtypes together, or to reorder search sections.

search:format, entity Implemented in the search plugin. Allows plugins to populate entity’s volatile data before it’s
passed to search view. This is used for highlighting search hit, extracting relevant substrings in long text fields
etc.

120 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Other

config, comments_per_page Filters the number of comments displayed per page. Default is
25. $params['entity'] will hold the containing entity or null if not provided. Use
elgg_comments_per_page() to get the value.

config, comments_latest_first Filters the order of comments. Default is true for latest first.
$params['entity'] will hold the containing entity or null if not provided.

default, access In get_default_access(), this hook filters the return value, so it can be used to alter the default value
in the input/access view. For core plugins, the value «input_params» has the keys «entity» (ElggEntity|false),
«entity_type» (string), «entity_subtype» (string), «container_guid» (int) are provided. An empty entity value
generally means the form is to create a new object.

classes, icon Can be used to filter CSS classes applied to icon glyphs. By default, Elgg uses FontAwesome. Plugins
can use this hook to switch to a different font family and remap icon classes.

entity:icon:sizes, <entity_type> Triggered by elgg_get_icon_sizes() and sets entity type/subtype specific
icon sizes. entity_subtype will be passed with the $params array to the callback.

entity:<icon_type>:sizes, <entity_type>

Allows filtering sizes for custom icon types, see entity:icon:sizes, <entity_type>.

The hook must return an associative array where keys are the names of the icon sizes (e.g. «large»),
and the values are arrays with the following keys:

w - Width of the image in pixels

h - Height of the image in pixels

square - Should the aspect ratio be a square (true/false)

upscale - Should the image be upscaled in case it is smaller than the given width and height (true/false)

crop - Is cropping allowed on this image size (true/false, default: true)

If the configuration array for an image size is empty, the image will be saved as an exact copy of
the source without resizing or cropping.

Example:

return [
'small' => [

'w' => 60,
'h' => 60,
'square' => true,
'upscale' => true,

],
'large' => [

'w' => 600,
'h' => 600,
'upscale' => false,

],
'original' => [],

];

entity:icon:url, <entity_type> Triggered when entity icon URL is requested, see entity icons. Callback should return
URL for the icon of size $params['size'] for the entity $params['entity']. Following parameters
are available through the $params array:

entity Entity for which icon url is requested.

3.3. Developer Guides 121

Elgg Documentation, Versión master

viewtype The type of view e.g. 'default' or 'json'.

size Size requested, see entity icons for possible values.

Example on how one could default to a Gravatar icon for users that have not yet uploaded an avatar:

// Priority 600 so that handler is triggered after avatar handler
elgg_register_plugin_hook_handler('entity:icon:url', 'user', 'gravatar_icon_handler',
→˓600);

/**
* Default to icon from gravatar for users without avatar.

*
* @param \Elgg\Hook $hook 'entity:icon:url', 'user'

*
* @return string

*/
function gravatar_icon_handler(\Elgg\Hook $hook) {

$entity = $hook->getEntityParam();

// Allow users to upload avatars
if ($entity->icontime) {

return $url;
}

// Generate gravatar hash for user email
$hash = md5(strtolower(trim($entity->email)));

// Default icon size
$size = '150x150';

// Use configured size if possible
$config = elgg_get_icon_sizes('user');
$key = $hook->getParam('size');
if (isset($config[$key])) {

$size = $config[$key]['w'] . 'x' . $config[$key]['h'];
}

// Produce URL used to retrieve icon
return "http://www.gravatar.com/avatar/$hash?s=$size";

}

entity:<icon_type>:url, <entity_type> Allows filtering URLs for custom icon types, see entity:icon:url,
<entity_type>

entity:icon:file, <entity_type> Triggered by ElggEntity::getIcon() and allows plugins to provide an alter-
native ElggIcon object that points to a custom location of the icon on filestore. The handler must return an
instance of ElggIcon or an exception will be thrown.

entity:<icon_type>:file, <entity_type> Allows filtering icon file object for custom icon types, see
entity:icon:file, <entity_type>

entity:<icon_type>:prepare, <entity_type> Triggered by ElggEntity::saveIcon*() methods and can be
used to prepare an image from uploaded/linked file. This hook can be used to e.g. rotate the image before it
is resized/cropped, or it can be used to extract an image frame if the uploaded file is a video. The handler must
return an instance of ElggFile with a simpletype that resolves to image. The $return value passed to the
hook is an instance of ElggFile that points to a temporary copy of the uploaded/linked file.

The $params array contains:

entity - entity that owns the icons

122 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

file - original input file before it has been modified by other hooks

entity:<icon_type>:save, <entity_type> Triggered by ElggEntity::saveIcon*() methods and can be used
to apply custom image manipulation logic to resizing/cropping icons. The handler must return true to prevent
the core APIs from resizing/cropping icons. The $params array contains:

entity - entity that owns the icons

file - ElggFile object that points to the image file to be used as source for icons

x1, y1, x2, y2 - cropping coordinates

entity:<icon_type>:saved, <entity_type> Triggered by ElggEntity::saveIcon*() methods once icons have
been created. This hook can be used by plugins to create river items, update cropping coordinates for custom
icon types etc. The handler can access the created icons using ElggEntity::getIcon(). The $params
array contains:

entity - entity that owns the icons

x1, y1, x2, y2 - cropping coordinates

entity:<icon_type>:delete, <entity_type> Triggered by ElggEntity::deleteIcon() method and can be
used for clean up operations. This hook is triggered before the icons are deleted. The handler can return false
to prevent icons from being deleted. The $params array contains:

entity - entity that owns the icons

entity:url, <entity_type> Return the URL for the entity $params['entity']. Note: Generally it is better to
override the getUrl() method of ElggEntity. This hook should be used when it’s not possible to subclass
(like if you want to extend a bundled plugin without overriding many views).

fields, <entity_type>:<entity_subtype> Return an array of fields usable for elgg_view_field(). The result
should be returned as an array of fields. It is required to provide name and #type for each field.

$result = [];

$result[] = [
'#type' => 'longtext',
'name' => 'description',

];

return $result;

to:object, <entity_type|metadata|annotation|relationship|river_item> Converts the entity
$params['entity'] to a StdClass object. This is used mostly for exporting entity properties for
portable data formats like JSON and XML.

extender:url, <annotation|metadata> Return the URL for the annotation or metadatum
$params['extender'].

file:icon:url, override Override a file icon URL.

is_member, group Return boolean for if the user $params['user'] is a member of the group
$params['group'].

setting, plugin Filter plugin settings. $params contains:

plugin - An ElggPlugin instance

plugin_id - The plugin ID

name - The name of the setting

value - The value to set

3.3. Developer Guides 123

Elgg Documentation, Versión master

plugin_setting, <entity type> Can be used to change the value of the setting being saved

Params contains: - entity - The ElggEntity where the plugin setting is being saved - plugin_id - The
ID of the plugin for which the setting is being saved - name - The name of the setting being saved - value -
The original value of the setting being saved

Return value should be a scalar in order to be able to save it to the database. An error will be logged if this is not
the case.

relationship:url, <relationship_name> Filter the URL for the relationship object
$params['relationship'].

widget_settings, <widget_handler> Triggered when saving a widget settings $params['params'] for widget
$params['widget']. If handling saving the settings, the handler should return true to prevent the default
code from running.

handlers, widgets Triggered when a list of available widgets is needed. Plugins can conditionally add or remove
widgets from this list or modify attributes of existing widgets like context or multiple.

get_list, default_widgets Filters a list of default widgets to add for newly registered users. The list is an array of
arrays in the format:

array(
'name' => elgg_echo('name'),
'widget_columns' => 3,
'widget_context' => $widget_context,

'event_name' => $event_name,
'event_type' => $event_type,

'entity_type' => $entity_type,
'entity_subtype' => $entity_subtype,

)

public_pages, walled_garden Filters a list of URLs (paths) that can be seen by logged out users in a walled garden
mode. Handlers must return an array of regex strings that will allow access if matched. Please note that system
public routes are passed as the default value to the hook, and plugins must take care to not accidentally override
these values.

The $params array contains:

url - URL of the page being tested for public accessibility

volatile, metadata Triggered when exporting an entity through the export handler. This is rare. This allows handler
to handle any volatile (non-persisted) metadata on the entity. It’s preferred to use the to:object, <type>
hook.

maintenance:allow, url

Return boolean if the URL $params['current_url'] and the path $params['current_path']
is allowed during maintenance mode.

robots.txt, site Filter the robots.txt values for $params['site'].

config, amd Filter the AMD config for the requirejs library.

Plugins

Embed

embed_get_items, <active_section>

124 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

embed_get_sections, all

embed_get_upload_sections, all

Groups

profile_buttons, group Filters buttons (ElggMenuItem instances) to be registered in the title menu of the group
profile page

tool_options, group Filters a collection of tools available within a specific group:

The $return is \Elgg\Collections\Collection<\Elgg\Groups\Tool>, a collection of group
tools.

The $params array contains:

entity - \ElggGroup

HTMLawed

allowed_styles, htmlawed Filter the HTMLawed allowed style array.

config, htmlawed Filter the HTMLawed $config array.

spec, htmlawed Filter the HTMLawed $spec string (default empty).

Members

members:list, <page_segment> To handle the page /members/$page_segment, register for this hook and re-
turn the HTML of the list.

members:config, tabs This hook is used to assemble an array of tabs to be passed to the navigation/tabs view for the
members pages.

Web Services

rest, init Triggered by the web services rest handler. Plugins can set up their own authentication handlers, then return
true to prevent the default handlers from being registered.

rest:output, <method_name> Filter the result (and subsequently the output) of the API method

3.3.19 Internationalization

Make your UI translatable into many different languages.

If you’d like to contribute translations to Elgg, see the contributors” guide.

The default language is en for English. Elgg uses a fallback system for languages:

1. The language of the user

2. The site language

3. English

3.3. Developer Guides 125

Elgg Documentation, Versión master

Overview

Translations are stored in PHP files in the /languages directory of your plugin. Each file corresponds to a language.
The format is /languages/{language-code}.php where {language-code} is the ISO 639-1 short code
for the language. For example:

<?php // mod/example/languages/en.php

return [
'example:text' => 'Some example text',

];

To override an existing translation, include it in your plugin’s language file, and make sure your plugin is ordered later
on the Admin > Plugins page:

<?php // mod/better_example/languages/en.php

return [
'example:text' => 'Some better text!',

];

Nota: Unless you are overriding core’s or another plugin’s language strings, it is good practice for the language keys to
start with your plugin name. For example: yourplugin:success, yourplugin:title, etc. This helps avoid
conflicts with other language keys.

Server-side API

elgg_echo($key, $args, $language)

Output the translation of the key in the current language.

Example:

echo elgg_echo('example:text');

It also supports variable replacement using vsprintf syntax:

// 'welcome' => 'Welcome to %s, %s!'
echo elgg_echo('welcome', [

elgg_get_config('sitename'),
elgg_get_logged_in_user_entity()->getDisplayName(),

]);

To force which language should be used for translation, set the third parameter:

echo elgg_echo('welcome', [], $user->language);

To first test whether elgg_echo() can find a translation:

$key = 'key:that:might:not:exist';
if (!elgg_language_key_exists($key)) {

$key = 'fallback:key';
}

echo elgg_echo($key);

126 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Nota: Some APIs allow creating translations for new keys. Translators should always include an English trans-
lation as a fallback. This makes elgg_language_key_exists($key) a reliable way to predict whether
elgg_echo($key) will succeed.

Javascript API

elgg.echo(key, args)

This function is like elgg_echo in PHP.

Client-side translations are loaded asynchronously. Ensure translations are available by requiring the «elgg» AMD
module:

define(['elgg'], function(elgg) {
alert(elgg.echo('my_key'));

});

Translations are also available after the init, system JavaScript event.

3.3.20 JavaScript

Contents

AMD

• Executing a module in the current page

• Defining the Module

• Making modules dependent on other modules

• Passing settings to modules

• Setting the URL of a module

• Using traditional JS libraries as modules

Modules provided with Elgg

• Module elgg

• Module elgg/Ajax

• Module elgg/spinner

• Module elgg/popup

• Module elgg/widgets

• Module elgg/lightbox

• Module elgg/ckeditor

• Inline tabs component

Traditional scripts

Hooks

3.3. Developer Guides 127

Elgg Documentation, Versión master

• Registering hook handlers

• The handler function

• Triggering custom hooks

• Available hooks

Third-party assets

AMD

Developers should use the AMD (Asynchronous Module Definition) standard for writing JavaScript code in Elgg.

Here we’ll describe making and executing AMD modules. The RequireJS documentation for defining modules may
also be of use.

Executing a module in the current page

Telling Elgg to load an existing module in the current page is easy:

<?php
elgg_require_js("myplugin/say_hello");

On the client-side, this will asynchronously load the module, load any dependencies, and execute the module’s defini-
tion function, if it has one.

Defining the Module

Here we define a basic module that alters the page, by passing a «definition function» to define():

// in views/default/myplugin/say_hello.js

define(['jquery', 'elgg'], function($, elgg) {
$('body').append(elgg.echo('hello_world'));

});

The module’s name is determined by the view name, which here is myplugin/say_hello.js. We strip the .js
extension, leaving myplugin/say_hello.

Advertencia: The definition function must have one argument named require.

Making modules dependent on other modules

Below we refactor a bit so that the module depends on a new myplugin/hello module to provide the greeting:

// in views/default/myplugin/hello.js

define(['elgg'], function(elgg) {
return elgg.echo('hello_world');

});

128 Capítulo 3. Continue Reading

http://requirejs.org/docs/whyamd.html
http://requirejs.org/docs/api.html#define

Elgg Documentation, Versión master

// in views/default/myplugin/say_hello.js

define(['jquery', 'myplugin/hello'], function($, hello) {
$('body').append(hello);

});

Passing settings to modules

The elgg.data plugin hooks

The elgg module provides an object elgg.data which is populated from two server side hooks:

elgg.data, site: This filters an associative array of site-specific data passed to the client and cached.

elgg.data, page: This filters an associative array of uncached, page-specific data passed to the client.

Let’s pass some data to a module:

<?php

function myplugin_config_site(\Elgg\Hook $hook) {
$value = $hook->getValue();

// this will be cached client-side
$value['myplugin']['api'] = elgg_get_site_url() . 'myplugin-api';
$value['myplugin']['key'] = 'none';

return $value;
}

function myplugin_config_page(\Elgg\Hook $hook) {
$user = elgg_get_logged_in_user_entity();
if (!$user) {

return;
}

$value = $hook->getValue();

$value['myplugin']['key'] = $user->myplugin_api_key;

return $value;
}

elgg_register_plugin_hook_handler('elgg.data', 'site', 'myplugin_config_site');
elgg_register_plugin_hook_handler('elgg.data', 'page', 'myplugin_config_page');

define(['elgg'], function(elgg) {
var api = elgg.data.myplugin.api;
var key = elgg.data.myplugin.key; // "none" or a user's key

// ...
});

Nota: In elgg.data, page data overrides site data. Also note json_encode() is used to copy data client-side,

3.3. Developer Guides 129

Elgg Documentation, Versión master

so the data must be JSON-encodable.

Making a config module

You can use a PHP-based module to pass values from the server. To make the module myplugin/settings, create
the view file views/default/myplugin/settings.js.php (note the double extension .js.php).

<?php

// this will be cached client-side
$settings = [

'api' => elgg_get_site_url() . 'myplugin-api',
'key' => null,

];
?>
define(<?php echo json_encode($settings); ?>);

You must also manually register the view as an external resource:

<?php
// note the view name does not include ".php"
elgg_register_simplecache_view('myplugin/settings.js');

Nota: The PHP view is cached, so you should treat the output as static (the same for all users) and avoid session-
specific logic.

Setting the URL of a module

You may have an AMD script outside your views you wish to make available as a module.

The best way to accomplish this is by configuring the path to the file using the views section of the elgg-plugin.
php file in the root of your plugin:

<?php // elgg-plugin.php
return [

'views' => [
'default' => [

'underscore.js' => 'vendor/npm-asset/underscore/underscore.min.js',
],

],
];

If you’ve copied the script directly into your plugin instead of managing it with Composer, you can use something like
this instead:

<?php // elgg-plugin.php
return [

'views' => [
'default' => [

'underscore.js' => __DIR__ . '/node_modules/underscore/underscore.min.
→˓js',

],

(continué en la próxima página)

130 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

],
];

That’s it! Elgg will now load this file whenever the «underscore» module is requested.

Using traditional JS libraries as modules

It’s possible to support JavaScript libraries that do not declare themselves as AMD modules (i.e. they declare global
variables instead) if you shim them by setting exports and deps in elgg_define_js:

// set the path, define its dependencies, and what value it returns
elgg_define_js('jquery.form', [

'deps' => ['jquery'],
'exports' => 'jQuery.fn.ajaxForm',

]);

When this is requested client-side:

1. The jQuery module is loaded, as it’s marked as a dependency.

2. https://elgg.example.org/cache/125235034/views/default/jquery.form.js is loa-
ded and executed.

3. The value of window.jQuery.fn.ajaxForm is returned by the module.

Advertencia: Calls to elgg_define_js() must be in an init, system event handler.

Some things to note

1. Do not use elgg.provide() anymore nor other means to attach code to elgg or other global objects. Use
modules.

2. Return the value of the module instead of adding to a global variable.

3. Static (.js,.css,etc.) files are automatically minified and cached by Elgg’s simplecache system.

4. The configuration is also cached in simplecache, and should not rely on user-specific values like
get_current_language().

Modules provided with Elgg

Module elgg

elgg.echo()

Translate interface text

elgg.echo('example:text', ['arg1']);

elgg.system_message()

Display a status message to the user.

3.3. Developer Guides 131

Elgg Documentation, Versión master

elgg.system_message(elgg.echo('success'));

elgg.register_error()

Display an error message to the user.

elgg.register_error(elgg.echo('error'));

elgg.normalize_url()

Normalize a URL relative to the elgg root:

// "http://localhost/elgg/blog"
elgg.normalize_url('/blog');

elgg.forward()

Redirect to a new page.

elgg.forward('/blog');

This function automatically normalizes the URL.

elgg.parse_url()

Parse a URL into its component parts:

// returns {
// fragment: "fragment",
// host: "community.elgg.org",
// path: "/file.php",
// query: "arg=val"
// }
elgg.parse_url('http://community.elgg.org/file.php?arg=val#fragment');

elgg.get_page_owner_guid()

Get the GUID of the current page’s owner.

elgg.register_hook_handler()

Register a hook handler with the event system.

elgg.trigger_hook()

Emit a hook event in the event system.

value = elgg.trigger_hook('my_plugin:filter', 'value', {}, value);

elgg.security.refreshToken()

Force a refresh of all XSRF tokens on the page.

This is automatically called every 5 minutes by default.

The user will be warned if their session has expired.

elgg.security.addToken()

Add a security token to an object, URL, or query string:

132 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

// returns {
// __elgg_token: "1468dc44c5b437f34423e2d55acfdd87",
// __elgg_ts: 1328143779,
// other: "data"
// }
elgg.security.addToken({'other': 'data'});

// returns: "action/add?__elgg_ts=1328144079&__elgg_
→˓token=55fd9c2d7f5075d11e722358afd5fde2"
elgg.security.addToken("action/add");

// returns "?arg=val&__elgg_ts=1328144079&__elgg_
→˓token=55fd9c2d7f5075d11e722358afd5fde2"
elgg.security.addToken("?arg=val");

elgg.get_logged_in_user_entity()

Returns the logged in user as an JS ElggUser object.

elgg.get_logged_in_user_guid()

Returns the logged in user’s guid.

elgg.is_logged_in()

True if the user is logged in.

elgg.is_admin_logged_in()

True if the user is logged in and is an admin.

elgg.config.get_language()

Get the current page’s language.

There are a number of configuration values set in the elgg object:

// The root of the website.
elgg.config.wwwroot;
// The default site language.
elgg.config.language;
// The current page's viewtype
elgg.config.viewtype;
// The Elgg version (YYYYMMDDXX).
elgg.config.version;
// The Elgg release (X.Y.Z).
elgg.config.release;

Module elgg/Ajax

See the Ajax page for details.

Module elgg/spinner

The elgg/spinner module can be used to create an loading indicator fixed to the top of the window. This can be
used to give users feedback that the system is performing a longer running task. Using ajax features from elgg/Ajax
will do this by default. You can also use it in your own code.

3.3. Developer Guides 133

Elgg Documentation, Versión master

define(['elgg/spinner'], function (spinner) {
spinner.start();
// your code
spinner.stop();

});

Module elgg/popup

The elgg/popup module can be used to display an overlay positioned relatively to its anchor (trigger).

The elgg/popup module is loaded by default, and binding a popup module to an anchor is as simple as adding
rel="popup" attribute and defining target module with a href (or data-href) attribute. Popup module positio-
ning can be defined with data-position attribute of the trigger element.

echo elgg_format_element('div', [
'class' => 'elgg-module-popup hidden',
'id' => 'popup-module',

], 'Popup module content');

// Simple anchor
echo elgg_view('output/url', [

'href' => '#popup-module',
'text' => 'Show popup',
'rel' => 'popup',

]);

// Button with custom positioning of the popup
echo elgg_format_element('button', [

'rel' => 'popup',
'class' => 'elgg-button elgg-button-submit',
'text' => 'Show popup',
'data-href' => '#popup-module',
'data-position' => json_encode([

'my' => 'center bottom',
'at' => 'center top',

]),
]);

The elgg/popup module allows you to build out more complex UI/UX elements. You can open and close popup
modules programmatically:

define(['jquery', 'elgg/popup'], function($, popup) {
$(document).on('click', '.elgg-button-popup', function(e) {

e.preventDefault();

var $trigger = $(this);
var $target = $('#my-target');
var $close = $target.find('.close');

popup.open($trigger, $target, {
'collision': 'fit none'

});

$close.on('click', popup.close);

(continué en la próxima página)

134 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

});
});

You can use getOptions, ui.popup plugin hook to manipulate the position of the popup before it has been
opened. You can use jQuery open and close events to manipulate popup module after it has been opened or closed.

define(['jquery', 'elgg/Ajax'], function($, Ajax) {

$('#my-target').on('open', function() {
var $module = $(this);
var $trigger = $module.data('trigger');
var ajax = new Ajax();

ajax.view('my_module', {
beforeSend: function() {

$trigger.hide();
$module.html('').addClass('elgg-ajax-loader');

},
success: function(output) {

$module.removeClass('elgg-ajax-loader').html(output);
}

});
}).on('close', function() {

var $trigger = $(this).data('trigger');
$trigger.show();

});
});

Open popup modules will always contain the following data that can be accessed via $.data():

trigger - jQuery element used to trigger the popup module to open

position - An object defining popup module position that was passed to $.position()

By default, target element will be appended to $('body') thus altering DOM hierarchy. If you need to preserve
the DOM position of the popup module, you can add .elgg-popup-inline class to your trigger.

Module elgg/widgets

Plugins that load a widget layout via Ajax should initialize via this module:

require(['elgg/widgets'], function (widgets) {
widgets.init();

});

Module elgg/lightbox

Elgg is distributed with the Colorbox jQuery library. Please go to http://www.jacklmoore.com/colorbox for more
information on the options of this lightbox.

Use the following classes to bind your anchor elements to a lightbox:

elgg-lightbox - loads an HTML resource

elgg-lightbox-photo - loads an image resource (should be used to avoid displaying raw image bytes
instead of an img tag)

3.3. Developer Guides 135

http://www.jacklmoore.com/colorbox

Elgg Documentation, Versión master

elgg-lightbox-inline - displays an inline HTML element in a lightbox

elgg-lightbox-iframe - loads a resource in an iframe

You may apply colorbox options to an individual elgg-lightbox element by setting the attribute
data-colorbox-opts to a JSON settings object.

echo elgg_view('output/url', [
'text' => 'Open lightbox',
'href' => 'ajax/view/my_view',
'class' => 'elgg-lightbox',
'data-colorbox-opts' => json_encode([

'width' => '300px',
])

]);

Use "getOptions", "ui.lightbox" plugin hook to filter options passed to $.colorbox() whenever a
lightbox is opened.

elgg/lightbox AMD module should be used to open and close the lightbox programmatically:

define(['elgg/lightbox', 'elgg/spinner'], function(lightbox, spinner) {
lightbox.open({

html: '<p>Hello world!</p>',
onClosed: function() {

lightbox.open({
onLoad: spinner.start,
onComplete: spinner.stop,
photo: true,
href: 'https://elgg.org/cache/1457904417/default/community_theme/graphics/

→˓logo.png',
});

}
});

});

To support gallery sets (via rel attribute), you need to bind colorbox directly to a specific selector (note that this will
ignore data-colorbox-opts on all elements in a set):

require(['elgg/lightbox'], function(lightbox) {
var options = {

photo: true,
width: 500

};
lightbox.bind('a[rel="my-gallery"]', options, false); // 3rd attribute ensures

→˓binding is done without proxies
});

You can also resize the lightbox programmatically if needed:

define(['elgg/lightbox'], function(lightbox) {
lightbox.resize({

width: '300px'
});

});

If you wish your content to be loaded by the elgg/AjaxAMD module, which automaticly loads the JS dependencies,
you can pass the option ajaxLoadWithDependencies

136 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

define(['elgg/lightbox'], function(lightbox) {
lightbox.open({

href: 'some/view/with/js/dependencies',
ajaxLoadWithDependencies: true

});
});

Module elgg/ckeditor

This module can be used to add WYSIWYG editor to a textarea (requires ckeditor plugin to be enabled). Note that
WYSIWYG will be automatically attached to all instances of .elgg-input-longtext.

require(['elgg/ckeditor'], function (elggCKEditor) {
elggCKEditor.bind('#my-text-area');

// Toggle CKEditor
elggCKEditor.toggle('#my-text-area');

// Focus on CKEditor input
elggCKEditor.focus('#my-text-area');
// or
$('#my-text-area').trigger('focus');

// Reset CKEditor input
elggCKEditor.reset('#my-text-area');
// or
$('#my-text-area').trigger('reset');

});

Inline tabs component

Inline tabs component fires an open event whenever a tabs is open and, in case of ajax tabs, finished loading:

// Add custom animation to tab content
require(['jquery'], function($) {

$(document).on('open', '.theme-sandbox-tab-callback', function() {
$(this).find('a').text('Clicked!');
$(this).data('target').hide().show('slide', {

duration: 2000,
direction: 'right',
complete: function() {

alert('Thank you for clicking. We hope you enjoyed
→˓the show!');

$(this).css('display', ''); // .show() adds display
→˓property

}
});

});
});

3.3. Developer Guides 137

Elgg Documentation, Versión master

Traditional scripts

Although we highly recommend using AMD modules, and there is no Elgg API for loading the scripts, you can register
scripts in a hook handler to add elements to the head links;

elgg_register_plugin_hook_handler('head', 'page', $callback);

Hooks

The JS engine has a hooks system similar to the PHP engine’s plugin hooks: hooks are triggered and plugins can
register functions to react or alter information. There is no concept of Elgg events in the JS engine; everything in the
JS engine is implemented as a hook.

Registering hook handlers

Handler functions are registered using elgg.register_hook_handler(). Multiple handlers can be registered
for the same hook.

The handler function

The handler will receive 4 arguments:

hook - The hook name

type - The hook type

params - An object or set of parameters specific to the hook

value - The current value

The value will be passed through each hook. Depending on the hook, callbacks can simply react or alter data.

Triggering custom hooks

Plugins can trigger their own hooks:

define(['elgg'], function(elgg) {
elgg.trigger_hook('name', 'type', {params}, "value");

});

Available hooks

init, system Plugins should register their init functions for this hook. It is fired after Elgg’s JS is loaded and all plugin
boot modules have been initialized.

getOptions, ui.popup This hook is fired for pop up displays ("rel"="popup") and allows for customized place-
ment options.

getOptions, ui.lightbox This hook can be used to filter options passed to $.colorbox()

config, ckeditor This filters the CKEditor config object. Register for this hook in a plugin boot module. The defaults
can be seen in the module elgg/ckeditor/config.

138 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

prepare, ckeditor This hook can be used to decorate CKEDITOR global. You can use this hook to register new
CKEditor plugins and add event bindings.

ajax_request_data, * This filters request data sent by the elgg/Ajax module. See Ajax for details. The hook must
check if the data is a plain object or an instanceof FormData to piggyback the values using correct API.

ajax_response_data, * This filters the response data returned to users of the elgg/Ajax module. See Ajax for
details.

insert, editor This hook is triggered by the embed plugin and can be used to filter content before it is inserted into the
textarea. This hook can also be used by WYSIWYG editors to insert content using their own API (in this case
the handler should return false). See ckeditor plugin for an example.

Third-party assets

We recommend managing third-party scripts and styles with Composer. Elgg’s composer.json is configured to install
dependencies from the NPM or Yarn package repositories using Composer command-line tool. Core configuration
installs the assets from Asset Packagist (a repository managed by the Yii community).

Alternatively, you can install fxp/composer-asset-plugin globally to achieve the same results, but the insta-
llation and update takes much longer.

For example, to include jQuery, you could run the following Composer commands:

composer require npm-asset/jquery:~2.0

If you are using a starter-project, or pulling in Elgg as a composer dependency via a custom composer project, update
your composer.json with the following configuration:

{
"repositories": [

{
"type": "composer",
"url": "https://asset-packagist.org"

}
],

"config": {
"fxp-asset": {

"enabled": false
}

},
}

You can find additional information at Asset Packagist website.

3.3.21 Menus

Elgg contains helper code to build menus throughout the site.

Every single menu requires a name, as does every single menu item. These are required in order to allow easy overri-
ding and manipulation, as well as to provide hooks for theming.

Contents

Basic usage

3.3. Developer Guides 139

https://asset-packagist.org
https://asset-packagist.org

Elgg Documentation, Versión master

Admin menu

Advanced usage

Creating a new menu

Child Dropdown Menus

Theming

Toggling Menu Items

JavaScript

Basic usage

Basic functionalities can be achieved through these two functions:

elgg_register_menu_item() to add an item to a menu

elgg_unregister_menu_item() to remove an item from a menu

You normally want to call them from your plugin’s init function.

Examples

// Add a new menu item to the site main menu
elgg_register_menu_item('site', array(

'name' => 'itemname',
'text' => 'This is text of the item',
'href' => '/item/url',

));

// Remove the "Elgg" logo from the topbar menu
elgg_unregister_menu_item('topbar', 'elgg_logo');

Admin menu

You can also register page menu items to the admin backend menu. When registering for the admin menu you can
set the context of the menu items to admin so the menu items only show in the admin context. There are 3 default
sections to add your menu items to.

administer for daily tasks, usermanagement and other actionable tasks

configure for settings, configuration and utilities that configure stuff

information for statistics, overview of information or status

Advanced usage

You can get more control over menus by using plugin hooks and the public methods provided by the ElggMenuItem
class.

There are three hooks that can be used to modify a menu:

140 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

'parameters', 'menu:<menu name>' to add or modify parameters use for the menu building
(eg. sorting)

'register', 'menu:<menu name>' to add or modify items (especially in dynamic menus)

'prepare', 'menu:<menu name>' to modify the structure of the menu before it is displayed

When you register a plugin hook handler, replace the <menu name> part with the internal name of the menu.

The third parameter passed into a menu handler contains all the menu items that have been registered so far by Elgg
core and other enabled plugins. In the handler we can loop through the menu items and use the class methods to
interact with the properties of the menu item.

In some cases a more granular version of the register and prepare menu hooks exist with
menu:<menu name>:<type>:<subtype>, this applies when the menu gets provided an \ElggEntity
in $params['entity'] or an \ElggAnnotation in $params['annotation'] or an
\ElggRelationship in $params['relationship'].

Examples

Example 1: Change the URL for menu item called «albums» in the owner_block menu:

/**
* Initialize the plugin

*/
function my_plugin_init() {

// Register a plugin hook handler for the owner_block menu
elgg_register_plugin_hook_handler('register', 'menu:owner_block', 'my_owner_

→˓block_menu_handler');
}

/**
* Change the URL of the "Albums" menu item in the owner_block menu

*/
function my_owner_block_menu_handler(\Elgg\Hook $hook) {

$owner = $hook->getEntityParam();

// Owner can be either user or a group, so we
// need to take both URLs into consideration:
switch ($owner->getType()) {

case 'user':
$url = "album/owner/{$owner->guid}";
break;

case 'group':
$url = "album/group/{$owner->guid}";
break;

}

$items = $hook->getValue();
if ($items->has('albums')) {

$items->get('albums')->setURL($url);
}

return $items;
}

Example 2: Modify the entity menu for the ElggBlog objects

Remove the thumb icon

3.3. Developer Guides 141

Elgg Documentation, Versión master

Change the «Edit» text into a custom icon

/**
* Initialize the plugin

*/
function my_plugin_init() {

// Register a plugin hook handler for the entity menu
elgg_register_plugin_hook_handler('register', 'menu:entity', 'my_entity_menu_

→˓handler');
}

/**
* Customize the entity menu for ElggBlog objects

*/
function my_entity_menu_handler(\Elgg\Hook $hook) {

// The entity can be found from the $params parameter
$entity = $hook->getEntityParam();

// We want to modify only the ElggBlog objects, so we
// return immediately if the entity is something else
if (!$entity instanceof ElggBlog) {

return;
}

$items = $hook->getValue();

$items->remove('likes');

if ($items->has('edit')) {
$items->get('edit')->setText('Modify');
$items->get('edit')->icon = 'pencil';

}

return $items;
}

Creating a new menu

Elgg provides multiple different menus by default. Sometimes you may however need some menu items that don’t fit
in any of the existing menus. If this is the case, you can create your very own menu with the elgg_view_menu()
function. You must call the function from the view, where you want to menu to be displayed.

Example: Display a menu called «my_menu» that displays it’s menu items in alphapetical order:

// in a resource view
echo elgg_view_menu('my_menu', array('sort_by' => 'text'));

You can now add new items to the menu like this:

// in plugin init
elgg_register_menu_item('my_menu', array(

'name' => 'my_page',
'href' => 'path/to/my_page',
'text' => elgg_echo('my_plugin:my_page'),

));

Furthermore it is now possible to modify the menu using the hooks 'register', 'menu:my_menu' and

142 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

'prepare', 'menu:my_menu'.

Child Dropdown Menus

Child menus can be configured using child_menu factory option on the parent item.

child_menu options array accepts display parameter, which can be used to set the child menu to open as
dropdown or be displayed via toggle. All other key value pairs will be passed as attributes to the ul element.

// Register a parent menu item that has a dropdown submenu
elgg_register_menu_item('my_menu', array(

'name' => 'parent_item',
'href' => '#',
'text' => 'Show dropdown menu',
'child_menu' => [

'display' => 'dropdown',
'class' => 'elgg-additional-child-menu-class',
'data-position' => json_encode([

'at' => 'right bottom',
'my' => 'right top',
'collision' => 'fit fit',

]),
'data-foo' => 'bar',
'id' => 'dropdown-menu-id',

],
));

// Register a parent menu item that has a hidden submenu toggled when item is clicked
elgg_register_menu_item('my_menu', array(

'name' => 'parent_item',
'href' => '#',
'text' => 'Show submenu',
'child_menu' => [

'display' => 'dropdown',
'class' => 'elgg-additional-submenu-class',
'data-toggle-duration' => 'medium',
'data-foo' => 'bar2',
'id' => 'submenu-id',

],
));

Theming

The menu name, section names, and item names are all embedded into the HTML as CSS classes (normalized to
contain only hyphens, rather that underscores or colons). This increases the size of the markup slightly but provides
themers with a high degree of control and flexibility when styling the site.

Example: The following would be the output of the foo menu with sections alt and default containing items
baz and bar respectively.

<ul class="elgg-menu elgg-menu-foo elgg-menu-foo-alt">
<li class="elgg-menu-item elgg-menu-item-baz">

<ul class="elgg-menu elgg-menu-foo elgg-menu-foo-default">

<li class="elgg-menu-item elgg-menu-item-bar">

3.3. Developer Guides 143

Elgg Documentation, Versión master

Toggling Menu Items

There are situations where you wish to toggle menu items that are actions that are the opposite of each other and
ajaxify them. E.g. like/unlike, friend/unfriend, ban/unban, etc. Elgg has built-in support for this kind of actions. When
you register a menu item you can provide a name of the menu item (in the same menu) that should be toggled. An ajax
call will be made using the href of the menu item.

elgg_register_menu_item('my_menu', [
'name' => 'like',
'data-toggle' => 'unlike',
'href' => 'action/like',
'text' => elgg_echo('like'),

]);

elgg_register_menu_item('my_menu', [
'name' => 'unlike',
'data-toggle' => 'like',
'href' => 'action/unlike',
'text' => elgg_echo('unlike'),

]);

Nota: The menu items are optimistically toggled. This means the menu items are toggled before the actions finish. If
the actions fail, the menu items will be toggled back.

JavaScript

It is common that menu items rely on JavaScript. You can bind client-side events to menu items by placing your
JavaScript into AMD module and defining the requirement during the registration.

elgg_register_menu_item('my_menu', array(
'name' => 'hide_on_click',
'href' => '#',
'text' => elgg_echo('hide:on:click'),
'item_class' => '.hide-on-click',
'deps' => ['navigation/menu/item/hide_on_click'],

));

// in navigation/menu/item/hide_on_click.js
define(function(require) {

var $ = require('jquery');

$(document).on('click', '.hide-on-click', function(e) {
e.preventDefault();
$(this).hide();

});
});

3.3.22 Notifications

There are two ways to send notifications in Elgg:

Instant notifications

144 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Event-based notifications send using a notifications queue

Contents

Instant notifications

Enqueued notifications

Notification salutation and sign-off

Notification methods

Registering a new notification method

Sending the notifications using your own method

Subscriptions

Muted notifications

Temporarily disable notifications

Notification settings

Notification management

Instant notifications

The generic method to send a notification to a user is via the function notify_user(). It is normally used when we want
to notify only a single user. Notification like this might for example inform that someone has liked or commented the
user’s post.

The function usually gets called in an action file.

Example:

In this example a user ($user) is triggering an action to rate a post created by another user ($owner). After saving
the rating (ElggAnnotation $rating) to database, we could use the following code to send a notification about
the new rating to the owner.

// Subject of the notification
$subject = elgg_echo('ratings:notification:subject', array(), $owner->language);

// Summary of the notification
$summary = elgg_echo('ratings:notification:summary', array($user->getDisplayName()),
→˓$owner->language);

// Body of the notification message
$body = elgg_echo('ratings:notification:body', array(

$user->getDisplayName(),
$owner->getDisplayName(),
$rating->getValue() // A value between 1-5

), $owner->language);

$params = array(
'object' => $rating,
'action' => 'create',

(continué en la próxima página)

3.3. Developer Guides 145

http://reference.elgg.org/notification_8php.html#a9d8de7faa63baf2dcd5d42eb8f76eaa1

Elgg Documentation, Versión master

(proviene de la página anterior)

'summary' => $summary
);

// Send the notification
notify_user($owner->guid, $user->guid, $subject, $body, $params);

Nota: The language used by the recipient isn’t necessarily the same as the language of the person who triggers
the notification. Therefore you must always remember to pass the recipient’s language as the third parameter to
elgg_echo().

Nota: The 'summary' parameter is meant for notification plugins that only want to display a short message instead
of both the subject and the body. Therefore the summary should be terse but still contain all necessary information.

Enqueued notifications

On large sites there may be many users who have subscribed to receive notifications about a particular event. Sending
notifications immediately when a user triggers such an event might remarkably slow down page loading speed. This is
why sending of such notifications shoud be left for Elgg’s notification queue.

New notification events can be registered with the elgg_register_notification_event() function or in
the elgg-plugin configuration. Notifications about registered events will be sent automatically to all subscribed users.

This is the workflow of the notifications system:

1. Someone does an action that triggers an event within Elgg

The action can be create, update or delete

The target of the action can be any instance of the ElggEntity class (e.g. a Blog post)

2. The notifications system saves this event into a notifications queue in the database

3. When the pluging hook handler for the one-minute interval gets triggered, the event is taken from the queue and
it gets processed

4. Subscriptions are fetched for the user who triggered the event

By default this includes all the users who have enabled any notification method for the user at www.
site.com/notifications/personal/<username>

5. Plugins are allowed to alter the subscriptions using the [get, subscriptions] hook

6. Plugins are allowed to terminate notifications queue processing with the [send:before,
notifications] hook

7. Plugins are allowed to alter the notification parameters with the [prepare, notification] hook

8. Plugins are allowed to alter the notification subject/message/summary with the [prepare,
notification:<action>:<type>:<subtype>] hook

9. Plugins are allowed to format notification subject/message/summary for individual delivery methods with
[format, notification:<method>] hook

10. Notifications are sent to each subscriber using the methods they have chosen

Plugins can take over or prevent sending of each individual notification with the [send,
notification:<method>] hook

146 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

11. The [send:after, notifications] hook is triggered for the event after all notifications have been sent

Notification event registration example

Tell Elgg to send notifications when a new object of subtype «photo» is created:

/**
* Initialize the photos plugin

*/
function photos_init() {

elgg_register_notification_event('object', 'photo', array('create'));
}

Or in the elgg-plugin.php:

'notifications' => [
'object' => [

'photo' => [
'create' => true,

],
],

],

Nota: In order to send the event-based notifications you must have the one-minute CRON interval configured.

Contents of the notification message can be defined with the 'prepare',
'notification:[action]:[type]:[subtype]' hook.

Custom notification event registration example

Tell Elgg to send notifications when a new object of the subtype «album» is created:

// in the elgg-plugin.php
'notifications' => [

'object' => [
'photo' => [

'create' => PhotoAlbumCreateNotificationHandler::class, //
→˓this needs to be an extension of the \Elgg\Notifications\NotificationEventHandler
→˓class

],
],

],

//PhotoAlbumCreateNotificationHandler.php

class PhotoAlbumCreateNotificationHandler extends
→˓\Elgg\Notifications\NotificationEventHandler {

/**
* Overrule this function if you wish to modify the subscribers of this

→˓notification

*
* This will influence which subscribers are available in the 'get',

→˓'subscribers' hook
(continué en la próxima página)

3.3. Developer Guides 147

Elgg Documentation, Versión master

(proviene de la página anterior)

*/
public function getSubscriptions(): array {
}

/**
* Overrule this function if you wish to modify the subject of the

→˓notification

*
* A magic language key is checked for a default notification:

* 'notification:<action>:<type>:<subtype>:subject'

*/
protected function getNotificationSubject(\ElggUser $recipient, string

→˓$method): string {
}

/**
* Overrule this function if you wish to modify the body of the notification

*
* A magic language key is checked for a default notification:

* 'notification:<action>:<type>:<subtype>:body'

*/
protected function getNotificationBody(\ElggUser $recipient, string $method):

→˓string {
}

/**
* Overrule this function if you wish to modify the summary of the

→˓notification

*
* default: ''

*/
protected function getNotificationSummary(\ElggUser $recipient, string

→˓$method): string {
}

/**
* Overrule this function if you wish to modify the target url of the

→˓notification

*
* default: $event->object->getURL()

*/
protected function getNotificationURL(\ElggUser $recipient, string $method):

→˓string {
}

/**
* Overrule this function if you don't wish to allow the notification event

→˓to be configurable on the user notification settings page

*
* default: true

*/
public static function isConfigurableByUser(): bool {
}

}

Nota: Make sure the notification will be in the correct language by passing the reciepient’s language into the

148 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

elgg_echo() function.

Custom notification content example

Tell Elgg to use the function photos_prepare_notification() to format the contents of the notification
when a new objects of subtype “photo” is created:

/**
* Initialize the photos plugin

*/
function photos_init() {

elgg_register_notification_event('object', 'photo', array('create'));
elgg_register_plugin_hook_handler('prepare', 'notification:create:object:photo',

→˓'photos_prepare_notification');
}

/**
* Prepare a notification message about a new photo

*
* @param \Elgg\Hook $hook 'prepare', 'notification:create:object:photo'

* @return \Elgg\Notification\Notification

*/
function photos_prepare_notification(\Elgg\Hook $hook) {

$event = $hook->getParam('event');

$entity = $event->getObject();
$owner = $event->getActor();
$recipient = $hook->getParam('recipient');
$language = $hook->getParam('language');
$method = $hook->getParam('method');

/* @var $notification \Elgg\Notification\Notification */
$notification = $hook->getValue();

// Title for the notification
$notification->subject = elgg_echo('photos:notify:subject', [$entity->

→˓getDisplayName()], $language);

// Message body for the notification
$notification->body = elgg_echo('photos:notify:body', array(

$owner->getDisplayName(),
$entity->getDisplayName(),
$entity->getExcerpt(),
$entity->getURL()

), $language);

// Short summary about the notification
$notification->summary = elgg_echo('photos:notify:summary', [$entity->

→˓getDisplayName()], $language);

return $notification;
}

Nota: Make sure the notification will be in the correct language by passing the reciepient’s language into the

3.3. Developer Guides 149

Elgg Documentation, Versión master

elgg_echo() function.

Notification salutation and sign-off

Elgg will by default prepend a salutation to all outgoing notification body text. Also a sign-off will be appen-
ded. This means you will not need to add text like Hi Admin, or Kind regards, your friendly site
administrator to your notifications body. If for some reason you do not need this magic to happen, you can pre-
vent it by setting the notification parameter add_salutation to false. You can do this as part of the parameters
in notify_user() or in the prepare, notifications hook. You can change the salutation and sign-off
texts in the translations.

You can also customize the salutation by overruling the view notifications/elements/salutation the
sign-off can be customized by overruling the view notifications/elements/sign-off.

Notification methods

By default Elgg has three notification methods: email, delayed_email and the bundled site_notifications plugin.

Email

Will send an email notification to to the recipient.

Delayed email

Will save the notifications and deliver them in one bundled email at the interval the recipient has configured (daily or
weekly).

The availability of this delivery method can be configured by the site administrator in the Site settings section.

The layout of the bundled email can be customized by overruling the view email/delayed_email/
plain_text for the plain text part of the email and email/delayed_email/html for the HTML part of
the email.

Site notification

Will show the notification on the site.

Registering a new notification method

You can register a new notification method with the elgg_register_notification_method() function.

Example:

Register a handler that will send the notifications via SMS.

150 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

/**
* Initialize the plugin

*/
function sms_notifications_init() {

elgg_register_notification_method('sms');
}

After registering the new method, it will appear on the notification settings page at www.example.com/
notifications/personal/[username].

Sending the notifications using your own method

Besides registering the notification method, you also need to register a handler that takes care of actually sending the
SMS notifications. This happens with the 'send', 'notification:[method]' hook.

Example:

/**
* Initialize the plugin

*/
function sms_notifications_init () {

elgg_register_notification_method('sms');
elgg_register_plugin_hook_handler('send', 'notification:sms', 'sms_

→˓notifications_send');
}

/**
* Send an SMS notification

*
* @param \Elgg\Hook $hook 'send', 'notification:sms'

*
* @return bool

* @internal

*/
function sms_notifications_send(\Elgg\Hook $hook) {

/* @var \Elgg\Notifications\Notification $message */
$message = $hook->getParam('notification');

$recipient = $message->getRecipient();

if (!$recipient || !$recipient->mobile) {
return false;

}

// (A pseudo SMS API class)
$sms = new SmsApi();

return $sms->send($recipient->mobile, $message->body);
}

Subscriptions

In most cases Elgg core takes care of handling the subscriptions, so notification plugins don’t usually have to alter
them.

3.3. Developer Guides 151

Elgg Documentation, Versión master

Subscriptions can however be:

Added using the \ElggEntity::addSubscription() function

Removed using the \ElggEntity::removeSubscription() function

It’s possible to modify the recipients of a notification dynamically with the 'get', 'subscriptions' hook.

Example:

/**
* Initialize the plugin

*/
function discussion_init() {

elgg_register_plugin_hook_handler('get', 'subscriptions', 'discussion_get_
→˓subscriptions');
}

/**
* Get subscriptions for group notifications

*
* @param \Elgg\Hook $hook 'get', 'subscriptions'

*
* @return void|array

*/
function discussion_get_subscriptions(\Elgg\Hook $hook) {

$reply = $hook->getParam('event')->getObject();

if (!$reply instanceof \ElggDiscussionReply) {
return;

}

$subscriptions = $hook->getValue();

$group_guid = $reply->getContainerEntity()->container_guid;
$group_subscribers = elgg_get_subscriptions_for_container($group_guid);

return ($subscriptions + $group_subscribers);
}

Muted notifications

Notifications can be muted in order to no longer receive notifications, for example no longer receive notifications about
new comments on a discussion.

In order to mute notifications call \ElggEntity::muteNotifications($user_guid) the $user_guid
is defaulted to the current logged in user. This will cause all subscriptions on the entity to be removed and a special
flag will be set to know that notifications are muted.

The muting rules are applied after the subscribers of a notification event are reques-
ted and are applied for the following entities of the notification event: - the event actor
\Elgg\Notifications\NotificationEvent::getActor() - the event object entity
\Elgg\Notifications\NotificationEvent::getObject() - the event object container entity
\Elgg\Notifications\NotificationEvent::getObject()::getContainerEntity() - the
event object owner entity \Elgg\Notifications\NotificationEvent::getObject()::getOwnerEntity()

152 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

To unmute the notifications call \ElggEntity::unmuteNotifications($user_guid) the $user_guid
is defaulted to the current logged in user.

To check if a user has the notifications muted call \ElggEntity::hasMutedNotifications($user_guid)
the $user_guid is defaulted to the current logged in user.

Helper page

A helper page has been added which can be linked (for example in an email footer) to manage muting based on a
notification.

The page is required to be signed and use the route notifications:mute which needs: - entity_guid the
entity the notification is about - recipient_guid the recipient of the notification

Temporarily disable notifications

Users can temporarily disable all notifications by going to the Notification settings and set a start and end date for the
period they don’t wish to receive any notifications.

Notification settings

You can store and retreive notification settings of users with \ElggUser::setNotificationSetting() and
\ElggUser::getNotificationSettings().

// Setting a notification preference
// notification method: mail
// notification is enabled
// for the purpose 'group_join' (when omitted this is 'default')
$user->setNotificationSetting('mail', true, 'group_join');

// retrieving the preference
$settings = $user->getNotificationSettings('group_join');
// this wil result in an array with all the current notification methods and their
→˓state like:
// [
// 'mail' => true,
// 'site' => false,
// 'sms' => false,
//]

When a user has no setting yet for a non default purpose the system will fallback to the “default” notification setting.

Notification management

A generic menu hook handler is provided to manage notification subscription and muting. If
you wish to make it easy for users to subscribe to your entities register a menu hook on
register menu:<menu name>:<entity type>:<entity subtype> with the callback
Elgg\Notifications\RegisterSubscriptionMenuItemsHandler make sure an \ElggEntity in
$params['entity'] is provided. This will work for most elgg_view_menu() calls.

3.3. Developer Guides 153

Elgg Documentation, Versión master

3.3.23 Page ownership

One recurring task of any plugin will be to determine the page ownership in order to decide which actions
are allowed or not. Elgg has a number of functions related to page ownership and also offers plugin develo-
pers flexibility by letting the plugin handle page ownership requests as well. Determining the owner of a page
can be determined with elgg_get_page_owner_guid(), which will return the GUID of the owner. Alter-
natively, elgg_get_page_owner_entity() will retrieve the whole page owner entity. If the page already
knows who the page owner is, but the system doesn’t, the page can set the page owner by passing the GUID to
elgg_set_page_owner_guid($guid).

Nota: The page owner entity can be any ElggEntity. If you wish to only apply some setting in case of a user or a
group make sure you check that you have the correct entity.

Custom page owner handlers

Plugin developers can create page owner handlers, which could be necessary in certain cases, for
example when integrating third party functionality. The handler will be a function which will need
to get registered with elgg_register_plugin_hook_handler('page_owner', 'system',
'your_page_owner_function_name');. The handler will only need to return a value (an integer GUID)
when it knows for certain who the page owner is.

By default, the system autodetects the page_owner from the following elements:

Based on the route definition:

If the name starts with view or edit the parameters username and guid are checked

If the name starts with add or collection the parameters username, guid and container_guid are
checked

If in the route definition the value detect_page_owner is set to true the parameters username, guid
and container_guid are checked

The legacy URL detection is tried if the route detected didn’t result in a page owner:

The username URL parameter

The owner_guid URL parameter

The URL path

It then passes off to any page owner handlers defined using the plugin hook. If no page owner can be determined, the
page owner is set to 0, which is the same as the logged out user.

3.3.24 Permissions Check

Advertencia: As stated in the page, this method works only for granting write access to entities. You cannot use
this method to retrieve or view entities for which the user does not have read access.

Elgg provides a mechanism of overriding write permissions check through the permissions_check plugin hook . This is
useful for allowing plugin write to all accessible entities regardless of access settings. Entities that are hidden, however,
will still be unavailable to the plugin.

154 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Hooking permissions_check

In your plugin, you must register the plugin hook for permissions_check.

elgg_register_plugin_hook_handler('permissions_check', 'all', 'myplugin_permissions_
→˓check');

The override function

Now create the function that will be called by the permissions check hook. In this function we determine if the entity
(in parameters) has write access. Since it is important to keep Elgg secure, write access should be given only after
checking a variety of situations including page context, logged in user, etc. Note that this function can return 3 values:
true if the entity has write access, false if the entity does not, and null if this plugin doesn’t care and the security system
should consult other plugins.

function myplugin_permissions_check(\Elgg\Hook $hook) {
$has_access = determine_access_somehow();

if ($has_access === true) {
return true;

} else if ($has_access === false) {
return false;

}

return null;
}

Full Example

This is a full example using the context to determine if the entity has write access.

<?php

function myaccess_init() {
// override permissions for the myaccess context
elgg_register_plugin_hook_handler('permissions_check', 'all', 'myaccess_

→˓permissions_check');

// Register cron hook
elgg_register_plugin_hook_handler('cron', elgg_get_plugin_setting('period',

→˓'myaccess', 'fiveminute'), 'myaccess_cron');
}

/**
* Hook for cron event.

*/
function myaccess_cron(\Elgg\Hook $hook) {

elgg_push_context('myaccess_cron');

// returns all entities regardless of access permissions.
// will NOT return hidden entities.
$entities = get_entities();

(continué en la próxima página)

3.3. Developer Guides 155

Elgg Documentation, Versión master

(proviene de la página anterior)

elgg_pop_context();
}

/**
* Overrides default permissions for the myaccess context

*/
function myaccess_permissions_check(\Elgg\Hook $hook) {

if (elgg_in_context('myaccess_cron')) {
return true;

}

return null;
}

// Initialise plugin
register_elgg_event_handler('init', 'system', 'myaccess_init');

3.3.25 Plugins

Plugins must provide a composer.json file in the plugin root in order to be recognized by Elgg.

Contents

elgg-plugin.php

Bootstrap class

elgg-services.php

composer.json

Tests

Related

elgg-plugin.php

elgg-plugin.php is a static plugin configuration file. It is read by Elgg to configure various services, and must
return an array if present. It should not be included by plugins and is not guaranteed to run at any particular time.
Besides magic constants like __DIR__, its return value should not change. The currently supported sections are:

plugin - defines plugin information and dependencies

bootstrap - defines a class used to bootstrap the plugin

entities - defines entity types and classes, and optionally registers them for search

actions - eliminates the need for calling elgg_register_action()

routes - eliminates the need for calling elgg_register_route()

settings - eliminates the need for setting default values on each call to elgg_get_plugin_setting()

user_settings - eliminates the need for setting default values on each call to
elgg_get_plugin_user_setting()

views - allows plugins to alias vendor assets to a path within the Elgg’s view system

156 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

widgets - eliminates the need for calling elgg_register_widget_type()

events - eliminates the need for calling elgg_register_event_handler()

hooks - eliminates the need for calling elgg_register_plugin_hook_handler()

cli_commands - an array of Elgg/Cli/Command classes to extend the feature of elgg-cli

view_extensions - eliminates the need for calling elgg_extend_view() or
elgg_unextend_view()

theme - an array of theme variables

group_tools - an array of available group tool options

view_options - an array of views with extra options

notifications - an array of notification events

return [
'plugin' => [

'name' => 'Plugin Name', // readable plugin name
'activate_on_install' => true, // only used on a fresh install
'version' => '1.3.1', // version of the plugin
'dependencies' => [

// optional list op plugin dependencies
'blog' => [],
'activity' => [

'position' => 'after',
'must_be_active' => false,

],
'file' => [

'position' => 'before',
'version' => '>2', // composer notation of required

→˓version constraint
],

],
],

// Bootstrap must implement \Elgg\PluginBootstrapInterface
'bootstrap' => MyPluginBootstrap::class,

'entities' => [
[

// Register a new object subtype and tell Elgg to use a
→˓specific class to instantiate it

'type' => 'object',
'subtype' => 'my_object_subtype',
'class' => MyObjectClass::class,

'capabilities' => [
// Register this subtype for search
'searchable' => true,

'likable' => true,
],

],
],

'actions' => [
// Registers an action

(continué en la próxima página)

3.3. Developer Guides 157

Elgg Documentation, Versión master

(proviene de la página anterior)

// By default, action is registered with 'logged_in' access
// By default, Elgg will look for file in plugin's actions/

→˓directory: actions/my_plugin/action.php
'my_plugin/action/default' => [],

'my_plugin/action/custom_access' => [
'access' => 'public', // supports 'public', 'logged_in',

→˓'admin'
],

// you can use action controllers instead of action files by setting
→˓the controller parameters

// controller must be a callable that receives \Elgg\Request as the
→˓first and only argument

// in example below, MyActionController::__invoke(\Elgg\Request
→˓$request) will be called

'my_plugin/action/controller' => [
'controller' => MyActionController::class,

],
],

'routes' => [
// routes can be associated with resource views or controllers
'collection:object:my_object_subtype:all' => [

'path' => '/my_stuff/all',
'resource' => 'my_stuff/all', // view file is in resources/my_

→˓stuff/all
],

// similar to actions, routes can be associated with a callable
→˓controller that receives an instance of \Elgg\Request

'collection:object:my_object_subtype:json' => [
'path' => '/my_stuff/json',
'controller' => JsonDumpController::class,

],

// route definitions support other parameters, such as 'middleware',
→˓'requirements', 'defaults'

// see elgg_register_route() for all options
],

'widgets' => [
// register a new widget
// corresponds to a view in widgets/my_stuff/content
'my_stuff' => [

'description' => elgg_echo('widgets:my_stuff'),
'context' => ['profile', 'dashboard'],

],
],

'settings' => [
'plugin_setting_name' => 'plugin_setting_value',

],

'user_settings' => [
'user_setting_name' => 'user_setting_value',

],
(continué en la próxima página)

158 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

'views' => [
'default' => [

'cool_lib/' => __DIR__ . '/vendors/cool_lib/dist/',
],

],

'hooks' => [
'register' => [

'menu:owner_block' => [
'blog_owner_block_menu' => [

'priority' => 700,
],

],
],
'usersettings:save' => [

'user' => [
'_elgg_save_notification_user_settings' => [

→˓'unregister' => true],
],

],
],

'events' => [
'delete' => [

'object' => [
'file_handle_object_delete' => [

'priority' => 999,
],

],
],
'create' => [

'relationship' => [
'_elgg_send_friend_notification' => [],

],
],
'log' => [

'systemlog' => [
'Elgg\SystemLog\Logger::log' => ['unregister' =>

→˓true],
],

],
],

'cli_commands' => [
\My\Plugin\CliCommand::class,
'\My\Plugin\OtherCliCommand',

],

'view_extensions' => [
'elgg.js' => [

'bookmarks.js' => [],
],
'page/components/list' => [

'list/extension' => [
'priority' => 600,

],
(continué en la próxima página)

3.3. Developer Guides 159

Elgg Documentation, Versión master

(proviene de la página anterior)

],
'forms/usersettings/save' => [

'core/settings/account/password' => [
'unextend' => true,

],
],

],

'theme' => [
'body-background-color' => '#000',

],

'group_tools' => [
'activity' => [], // just use default behaviour
'blog', [

'default_on' => false,
],
'forum' => [

'unregister' => true, // unregisters the group tool option
],

],

'view_options' => [
'likes/popup' => [

'ajax' => true, // registers the view available via ajax
],
'likes/popup' => [

'ajax' => false, // unregisters the view available via ajax
],
'manifest.json' => [

'simplecache' => true, // register view as usable in the
→˓simplecache

],
],
'notifications' => [

'object' => [
'blog' => [

'publish' => true, // registers the event to be
→˓notified

],
'thewire' => [

'create' => false, // unregisters the event to be
→˓notified

],
'page' => [

'create' => MyPluginPageCreateEventHandler::class, //
→˓a custom event handler, needs to be an extension of a NotificationEventHandler

],
],

],
];

Bootstrap class

As of Elgg 3.0 the recommended way to bootstrap you plugin is to use a bootstrap class. This class must implement the
\Elgg\PluginBootstrapInterface interface. You can register you bootstrap class in the elgg-plugin.

160 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

php.

The bootstrap interface defines several function to be implemented which are called during different events in the
system booting process.

Ver también:

For more information about the different functions defined in the \Elgg\PluginBootstrapInterface please
read Plugin bootstrap

elgg-services.php

Plugins can attach their services to Elgg’s public DI container by providing PHP-DI definitions in elgg-services.
php in the root of the plugin directory.

This file must return an array of PHP-DI definitions. Services will by available via elgg().

return [
PluginService::class => \DI\object()->

→˓constructor(\DI\get(DependencyService::class)),
];

Plugins can then use PHP-DI API to autowire and call the service:

$service = elgg()->get(PluginService::class);

See PHP-DI documentation for a comprehensive list of definition and invokation possibilities.

composer.json

Since Elgg supports being installed as a Composer dependency, having your plugins also support Composer makes for
easier installation by site administrators. In order to make your plugin compatible with Composer you need to at least
have a composer.json file in the root of your plugin.

Here is an example of a composer.json file:

{
"name": "company/example_plugin",
"description": "Some description of the plugin",
"type": "elgg-plugin",
"keywords": ["elgg", "plugin"],
"license": "GPL-2.0-only",
"support": {

"source": "URL to your code repository",
"issues": "URL to your issue tracker"

},
"require": {

"composer/installers": "^1.0.8"
},
"conflict": {

"elgg/elgg": "<3.0"
}

}

Read more about the composer.json format on the Composer website.

Important parts in the composer.json file are:

name: the name of your plugin, keep this inline with the name of your plugin folder to ensure correct installation

3.3. Developer Guides 161

http://php-di.org
https://getcomposer.org/
https://getcomposer.org/

Elgg Documentation, Versión master

type: this will tell Composer where to install your plugin, ALWAYS keep this as elgg-plugin

require: the composer/installers requirement is to make sure Composer knows where to install your
plugin

As a suggestion, include a conflict rule with any Elgg version below your mininal required version, this will help
prevent the accidental installation of your plugin on an incompatible Elgg version.

After adding a composer.json file to your plugin project, you need to register your project on Packagist in order
for other people to be able to install your plugin.

Tests

It’s encouraged to create PHPUnit test for your plugin. All tests should be located in tests/phpunit/unit for
unit tests and tests/phpunit/integration for integration tests.

An easy example of adding test is the ViewStackTest, this will test that the views in your plugin are registered
correctly and have no syntax errors. To add this test create a file ViewStackTest.php in the folder tests/
phpunit/unit/<YourNameSpace>/<YourPluginName>/ with the content:

namespace <YourNameSpace>\<YourPluginName>;

/**
* @group ViewsService

*/
class ViewStackTest extends \Elgg\Plugins\ViewStackTest {

}

Nota: If you wish to see a better example, look in any of the Elgg core plugins.

Ver también:

Writing tests

Related

Plugin skeleton

The following is the standard for plugin structure in Elgg as of Elgg 2.0.

Example Structure

The following is an example of a plugin with standard structure. For further explanation of this structure, see the details
in the following sections. Your plugin may not need all the files listed

The following files for plugin example would go in /mod/example/

actions/
example/

action.php
other_action.php

classes/

(continué en la próxima página)

162 Capítulo 3. Continue Reading

https://packagist.org/

Elgg Documentation, Versión master

(proviene de la página anterior)

VendorNamespace/
PluginNamespace/

ExampleClass.php
languages/

en.php
vendors/

example_3rd_party_lib/
views/

default/
example/
component.css
component.js
component.png

forms/
example/

action.php
other_action.php

object/
example.php
example/

context1.php
context2.php

plugins/
example/

settings.php
usersettings.php

resources/
example/

all.css
all.js
all.php
owner.css
owner.js
owner.php

widgets/
example_widget/

content.php
edit.php

elgg-plugin.php
CHANGES.txt
COPYRIGHT.txt
INSTALL.txt
LICENSE.txt
README.txt
composer.json

Required Files

Plugins must provide a composer.json file in the plugin root in order to be recognized by Elgg.

Therefore the following is the minimally compliant structure:

mod/example/
composer.json

3.3. Developer Guides 163

Elgg Documentation, Versión master

Actions

Plugins should place scripts for actions an actions/ directory, and furthermore should use the name of the action
to determine the location within that directory.

For example, the action my/example/action would go in my_plugin/actions/my/example/action.
php. This makes it very obvious which script is associated with which action.

Similarly, the body of the form that submits to this action should be located in forms/my/example/action.
php. Not only does this make the connection b/w action handler, form code, and action name obvious, but it allows
you to use the elgg_view_form() function easily.

Text Files

Plugins may provide various *.txt as additional documentation for the plugin. These files must be in Markdown syntax
and will generate links on the plugin management sections.

README.txt should provide additional information about the plugin of an unspecified nature

COPYRIGHT.txt If included, must provide an explanation of the plugin’s copyright.

LICENSE.txt If included, must provide the text of the license that the plugin is released under.

INSTALL.txt If included, must provide additional instructions for installing the plugin if the process is sufficiently
complicated (e.g. if it requires installing third party libraries on the host machine, or requires acquiring an API
key from a third party).

CHANGES.txt If included, must provide a list of changes for their plugin, grouped by version number, with the most
recent version at the top.

Plugins may include additional *.txt files besides these, but no interface is given for reading them.

Pages

To render full pages, plugins should use resource views (which have names beginning with resources/). This
allows other plugins to easily replace functionality via the view system.

Nota: The reason we encourage this structure is

To form a logical relationship between urls and scripts, so that people examining the code can have an idea of
what it does just by examining the structure.

To clean up the root plugin directory, which historically has quickly gotten cluttered with the page handling
scripts.

Classes

Elgg provides PSR-0 autoloading out of every active plugin’s classes/ directory.

You’re encouraged to follow the PHP-FIG standards when writing your classes.

Nota: Files with a «.class.php» extension will not be recognized by Elgg.

164 Capítulo 3. Continue Reading

http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/

Elgg Documentation, Versión master

When organizing you classes Elgg does not require a specific structure. Use what works best for your plugin but keep
in mind that it should be easy to read, funtionality should be easy to find and having seperated functions into different
classes will improve maintainability and testability.

Vendors

Included third-party libraries of any kind should be included in the vendors/ folder in the plugin root. Though this
folder has no special significance to the Elgg engine, this has historically been the location where Elgg core stores its
third-party libraries, so we encourage the same format for the sake of consistency and familiarity.

Views

In order to override core views, a plugin’s views can be placed in views/, or an elgg-plugin.php config file
can be used for more detailed file/path mapping. See Views.

Javascript and CSS will live in the views system. See JavaScript.

Plugin Dependencies

In Elgg the plugin dependencies system is there to prevent plugins from being used on incompatible systems.

Contents

Overview

PHP version or extension

Require an Elgg plugin

Conflicts

Overview

The dependencies system is controlled through a plugin’s elgg-plugin.php file or composer.json. Plugin
authors can specify that a plugin:

Requires certain Elgg plugins, PHP version or PHP extensions.

Conflicts with certain Elgg versions or plugins.

PHP version or extension

Add a section in your composer.json as described in de Composer JSON reference

{
"require": {

"php": ">7.4",
"ext-json": "*"

}
}

3.3. Developer Guides 165

https://getcomposer.org/doc/04-schema.md#package-links

Elgg Documentation, Versión master

Require an Elgg plugin

Add a section to the elgg-plugin.php, also see Plugins

return [
'plugin' => [

'dependencies' => [
// optional list op plugin dependencies
'blog' => [], // blog needs to be active
'activity' => [

'position' => 'after', // in the plugin order this
→˓plugin must be after the activity plugin

'must_be_active' => false, // but the plugin isn't
→˓required to be active, but if active order will be checked

],
'file' => [

'position' => 'before', // file must be active and
→˓this plugin needs to be before the file plugin in the plugin order

'version' => '>2', // composer notation of required
→˓version constraint

],
],

],
];

Conflicts

Add a section in your composer.json as described in de Composer JSON reference

{
"conflict": {

"elgg/elgg": "<4.0",
"elgg/dataviews": "<1.0 || >= 1.5"

}
}

Plugin bootstrap

In order to bootstrap your plugin as of Elgg 3.0 you can use a bootstrap class. This class must
implement the \Elgg\PluginBootstrapInterface interface, but it’s recommended you extend the
\Elgg\PluginBootstrap abstract class as some preparations have already been done.

If you only need a limited subset of the bootstrap functions your class can also extend
the \Elgg\DefaultPluginBootstrap class, this class already has all the functions of
\Elgg\PluginBootstrapInterface implemented. So you can overload only the functions you need.

Contents

Registering the bootstrap class

Available functions

• ->load()

166 Capítulo 3. Continue Reading

https://getcomposer.org/doc/04-schema.md#package-links

Elgg Documentation, Versión master

• ->boot()

• ->init()

• ->ready()

• ->shutdown()

• ->activate()

• ->deactivate()

• ->upgrade()

Available helper functions

• ->elgg()

• ->plugin()

Registering the bootstrap class

You must register your bootstrap class in the elgg-plugin.php file.

return [
// Bootstrap must implement \Elgg\PluginBootstrapInterface
'bootstrap' => MyPluginBootstrap::class,

];

Available functions

->load()

Executed during plugins_load, system event

Allows the plugin to require additional files, as well as configure services prior to booting the plugin.

->boot()

Executed during plugins_boot:before, system event

Allows the plugin to register handlers for plugins_boot, system and init, system events, as well as imple-
ment boot time logic.

->init()

Executed during init, system event

Allows the plugin to implement business logic and register all other handlers.

->ready()

Executed during ready, system event

3.3. Developer Guides 167

Elgg Documentation, Versión master

Allows the plugin to implement logic after all plugins are initialized.

->shutdown()

Executed during shutdown, system event

Allows the plugin to implement logic during shutdown.

->activate()

Executed when plugin is activated, after activate, plugin event.

->deactivate()

Executed when plugin is deactivated, after deactivate, plugin event.

->upgrade()

Registered as handler for upgrade, system event

Allows the plugin to implement logic during system upgrade.

Available helper functions

This assumes your bootstrap class extends the \Elgg\PluginBootstrap abstract class or the
\Elgg\DefaultPluginBootstrap class.

->elgg()

Returns Elgg’s public DI container. This can be helpfull if you wish to register plugin hooks or event listeners.

$hooks = $this->elgg()->hooks;
$hooks->registerHandler('register', 'menu:entity', 'my_custom_menu_callback');

$events = $this->elgg()->events;
$events->registerHandler('create', 'object', MyCustomObjectHandler::class);

->plugin()

Returns plugin entity this bootstrap is related to. This makes it easier to get plugin settings.

$plugin = $this->plugin();
$my_setting = $plugin->getSetting('my_setting');

3.3.26 River

Elgg natively supports the «river», an activity stream containing descriptions of activities performed by site members.
This page gives an overview of adding events to the river in an Elgg plugin.

168 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Pushing river items

Items are pushed to the activity river through a function call, which you must include in your plugins for the items to
appear.

Here we add a river item telling that a user has created a new blog post:

<?php

elgg_create_river_item([
'view' => 'river/object/blog/create',
'action_type' => 'create',
'subject_guid' => $blog->owner_guid,
'object_guid' => $blog->getGUID(),

]);

All available parameters:

view => STR The view that will handle the river item (must exist)

action_type => STR An arbitrary string to define the action (e.g. “create”, “update”, “vote”, “review”, etc)

subject_guid => INT The GUID of the entity doing the action (default: the logged in user guid)

object_guid => INT The GUID of the entity being acted upon

target_guid => INT The GUID of the object entity’s container (optional)

access_id => INT The access ID of the river item (default: same as the object)

posted => INT The UNIX epoch timestamp of the river item (default: now)

annotation_id => INT The annotation ID associated with this river entry (optional)

When an item is deleted or changed, the river item will be updated automatically.

River views

As of Elgg 3.0 the view parameter is no longer required. A fallback logic has been created to check a series of views
for you:

1. /river/{$type}/{$subtype}/{$action_type}: eg. river/object/blog/create only the
create action will come to this view

2. river/{$type}/{$subtype}/default: eg. river/object/blog/default all river activity for
object blog will come here

3. river/{$type}/{$action_type}: eg. river/object/create all create actions for object
will come here

4. river/{$type}/default: eg. river/object/default all actions for all object will come here

5. river/elements/layout: ultimate fall back view, this should always be called in any of the river views
to make a consistent layout

Both type and subtype are based on the type and subtype of the object_guid for which the river item was
created.

3.3. Developer Guides 169

Elgg Documentation, Versión master

Summary

If no summary parameter is provided to the river/elements/layout the view will try to create it for you.
The basic result will be a text with the text Somebody did something on Object, where Somebody is based on
subject_guid and Object is based on object_guid. For both Somebody and Object links will be created.
These links are passed to a series of language keys so you can create a meaningfull summary.

The language keys are:

1. river:{$type}:{$subtype}:{$action_type}: eg. river:object:blog:create

2. river:{$type}:{$subtype}:default: eg. river:object:blog:default

3. river:{$type}:{$action_type}: eg. river:object:create

4. river:{$type}:default: eg. river:object:default

Custom river view

If you wish to add some more information to the river view, like an attachment (image, YouTube embed, etc), you
must specify the view when creating the river item. This view MUST exist.

We recommend /river/{type}/{subtype}/{action}, where:

{type} is the entity type of the content we’re interested in (object for objects, user for users, etc)

{subtype} is the entity subtype of the content we’re interested in (blog for blogs, photo_album for
albums, etc)

{action} is the action that took place (create, update, etc)

River item information will be passed in an object called $vars['item'], which contains the following important
parameters:

$vars['item']->subject_guid The GUID of the user performing the action

$vars['item']->object_guid The GUID of the entity being acted upon

Timestamps etc will be generated for you.

For example, the blog plugin uses the following code for its river view:

$item = elgg_extract('item', $vars);
if (!$item instanceof ElggRiverItem) {

return;
}

$blog = $item->getObjectEntity();
if (!$blog instanceof ElggBlog) {

return;
}

$vars['message'] = $blog->getExcerpt();

echo elgg_view('river/elements/layout', $vars);

3.3.27 Routing

Elgg has two mechanisms to respond to HTTP requests that don’t already go through the Actions and Simplecache
systems.

170 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

URL Identifier and Segments

After removing the site URL, Elgg splits the URL path by / into an array. The first element, the identifier, is shifted
off, and the remaining elements are called the segments. For example, if the site URL is http://example.com/
elgg/, the URL http://example.com/elgg/blog/owner/jane?foo=123 produces:

Identifier: 'blog'. Segments: ['owner', 'jane']. (the query string parameters are available via
get_input())

The site URL (home page) is a special case that produces an empty string identifier and an empty segments array.

Advertencia: URL identifier/segments should be considered potentially dangerous user input. Elgg uses
htmlspecialchars to escapes HTML entities in them.

Page Handling

Elgg offers a facility to manage your plugin pages via custom routes, enabling URLs like http://yoursite/
my_plugin/section. You can register a new route using elgg_register_route(), or via routes config
in elgg-plugin.php. Routes map to resource views, where you can render page contents.

// in your 'init', 'system' handler
elgg_register_route('my_plugin:section' [

'path' => '/my_plugin/section/{guid}/{subsection?}',
'resource' => 'my_plugin/section',
'requirements' => [

'guid' => '\d+',
'subsection' => '\w+',

],
]);

// in my_plugin/views/default/resources/my_plugin/section.php
$guid = elgg_extract('guid', $vars);
$subsection = elgg_extract('subsection', $vars);

// render content

In the example above, we have registered a new route that is accessible via http://yoursite/my_plugin/
section/<guid>/<subsection>. Whenever that route is accessed with a required guid segment and an op-
tional subsection segment, the router will render the specified my_plugin/section resource view and pass
the parameters extracted from the URL to your resource view with $vars.

Routes names

Route names can then be used to generate a URL:

$url = elgg_generate_url('my_plugin:section', [
'guid' => $entity->guid,
'subsection' => 'assets',

]);

The route names are unique across all plugins and core, so another plugin can override the route by registering different
parameters to the same route name.

3.3. Developer Guides 171

Elgg Documentation, Versión master

Route names follow a certain convention and in certain cases will be used to automatically resolve URLs, e.g. to
display an entity.

The following conventions are used in core and recommended for plugins:

view:<entity_type>:<entity_subtype> Maps to the entity profile page, e.g. view:user:user or
view:object:blog The path must contain a guid, or username for users

edit:<entity_type>:<entity_subtype> Maps to the form to edit the entity, e.g. edit:user:user or
edit:object:blog The path must contain a guid, or username for users If you need to add subresour-
ces, use suffixes, e.g. edit:object:blog:images, keeping at least one subresource as a default without
suffix.

add:<entity_type>:<entity_subtype> Maps to the form to add a new entity of a given type, e.g.
add:object:blog The path, as a rule, contains container_guid parameter

collection:<entity_type>:<entity_subtype>:<collection_type> Maps to listing pages. Common route names used
in core are, as follows:

collection:object:blog:all: list all blogs

collection:object:blog:owner: list blogs owned by a user with a given username

collection:object:blog:friends: list blogs owned by friends of the logged in user (or user
with a given username)

collection:object:blog:group: list blogs in a group

default:<entity_type>:<entity_subtype> Maps to the default page for a resource, e.g. the path /blog. Elgg happens
to use the «all» collection for these routes.

default:object:blog: handle the generic path /blog.

<entity_subtype> can be omitted from route names to register global routes applicable to all entities of a given
type. URL generator will first try to generate a URL using the subtype, and will then fallback to a route name without
a subtype. For example, user profiles are routed to the same resource view regardless of user subtype.

elgg_register_route('view:object:attachments', [
'path' => '/attachments/{guid}',
'resource' => 'attachments',

]);

elgg_register_route('view:object:blog:attachments', [
'path' => '/blog/view/{guid}/attachments',
'resource' => 'blog/attachments',

]);

$blog = get_entity($blog_guid);
$url = elgg_generate_entity_url($blog, 'view', 'attachments'); // /blog/view/$blog_
→˓guid/attachments

$other = get_entity($other_guid);
$url = elgg_generate_entity_url($other, 'view', 'attachments'); // /attachments/
→˓$other_guid

Route configuration

Segments can be defined using wildcards, e.g. profile/{username}, which will match all URLs that contain
profile/ followed by and arbitrary username.

172 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

To make a segment optional you can add a ? (question mark) to the wildcard name, e.g. profile/{username}/
{section?}. In this case the URL will be matched even if the section segment is not provided.

You can further constrain segments using regex requirements:

// elgg-plugin.php
return [

'routes' => [
'profile' => [

'path' => '/profile/{username}/{section?}',
'resource' => 'profile',
'requirements' => [

'username' => '[\p{L}\p{Nd}._-]+', // only allow
→˓valid usernames

'section' => '\w+', // can only contain alphanumeric
→˓characters

],
'defaults' => [

'section' => 'index',
],

],
]

];

By default, Elgg will set the following requirements for named URL segments:

$patterns = [
'guid' => '\d+', // only digits
'group_guid' => '\d+', // only digits
'container_guid' => '\d+', // only digits
'owner_guid' => '\d+', // only digits
'username' => '[\p{L}\p{Nd}._-]+', // letters, digits, underscores, dashes

];

Plugin dependent routes

If a route requires a specific plugin to be active this can be configured in the route configuration.

// elgg-plugin.php
return [

'routes' => [
'collection:object:blog:friends' => [

'path' => '/blog/friends/{username?}/{lower?}/{upper?}',
'resource' => 'blog/friends',
'required_plugins' => [

'friends', // route only allowed when friends plugin
→˓is active

],
],

]
];

3.3. Developer Guides 173

Elgg Documentation, Versión master

Route middleware

Route middleware can be used to prevent access to a certain route, or to perform some business logic before the route
is rendered. Middleware can be used, e.g. to implement a paywall, or to log analytics, or to set open graph metatags.

Elgg core implements several middleware handlers. The following middleware can be found in the namespace
\Elgg\Router\Middleware:

Gatekeeper

This gatekeeper will prevent access by non-authenticated users.

AdminGatekeeper

This gatekeeper will prevent access by non-admin users.

LoggedOutGatekeeper

This gatekeeper will prevent access by authenticated users.

AjaxGatekeeper

This gatekeeper will prevent access with non-xhr requests.

PageOwnerCanEditGatekeeper

This gatekeeper will prevent access if there is a pageowner detected and the pageowner can’t be editted.

GroupPageOwnerCanEditGatekeeper

This gatekeeper extends the PageOwnerCanEditGatekeeper but also requires the pageowner to be a
ElggGroup entity.

UserPageOwnerCanEditGatekeeper

This gatekeeper extends the PageOwnerCanEditGatekeeper but also requires the pageowner to be an
ElggUser entity.

CsrfFirewall

This middleware will prevent access without the correct CSRF tokens. This middleware will automatically be applied
to actions.

ActionMiddleware

This middleware will provide action related logic. This middleware will automatically be applied to actions.

174 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

SignedRequestGatekeeper

This gatekeeper will prevent access if the url has been tampered with. A secure URL can be generated using the
elgg_http_get_signed_url function.

UpgradeGatekeeper

This gatekeeper will prevent access if the upgrade URL is secured and the URL is invalid.

WalledGarden

This middleware will prevent access to a route if the site is configured for authenticated users only and there is no
authenticated user logged in. This middleware is automatically enabled for all routes. You can disable the walled
garden gatekeeper with a route config option.

Custom Middleware

Middleware handlers can be set to any callable that receives an instance of \Elgg\Request: The handler should
throw an instance of \Elgg\Exceptions\HttpException to prevent route access. The handler can return
an instance of \Elgg\Http\ResponseBuilder to prevent further implementation of the routing sequence (a
redirect response can be returned to re-route the request).

class MyMiddleware {

public function __invoke(\Elgg\Request $request) {
$entity = $request->getEntityParam();
if ($entity) {

// do stuff
} else {

throw new EntityNotFoundException();
}

}
}

elgg_register_route('myroute', [
'path' => '/myroute/{guid?}',
'resource' => 'myroute',
'middleware' => [

\Elgg\Router\Middleware\Gatekeeper::class,
MyMiddleware::class,

]
]);

Route controllers

In certain cases, using resource views is not appropriate. In these cases you can use a controller - any callable that
receives an instance of \Elgg\Request:

class MyController {

public function handleFoo(\Elgg\Request $request) {

(continué en la próxima página)

3.3. Developer Guides 175

Elgg Documentation, Versión master

(proviene de la página anterior)

elgg_set_http_header('Content-Type: application/json');
$data = [

'entity' => $request->getEntityParam(),
];
return elgg_ok_response($data);

}

}

elgg_register_route('myroute', [
'path' => '/myroute/{guid?}',
'controller' => [MyController::class, 'handleFoo'],

]);

The route:rewrite Plugin Hook

For URL rewriting, the route:rewrite hook (with similar arguments as route) is triggered very early, and allows
modifying the request URL path (relative to the Elgg site).

Here we rewrite requests for news/* to blog/*:

function myplugin_rewrite_handler(\Elgg\Hook $hook) {
$value = $hook->getValue();

$value['identifier'] = 'blog';

return $value;
}

elgg_register_plugin_hook_handler('route:rewrite', 'news', 'myplugin_rewrite_handler
→˓');

Advertencia: The hook must be registered directly in your plugin Bootstrap boot function. The init function
is too late.

Routing overview

For regular pages, Elgg’s program flow is something like this:

1. A user requests http://example.com/news/owner/jane.

2. Plugins are initialized.

3. Elgg parses the URL to identifier news and segments ['owner', 'jane'].

4. Elgg triggers the plugin hook route:rewrite, news (see above).

5. Elgg finds a registered route that matches the final route path, and renders a resource view associated with it. It
calls elgg_view_resource('blog/owner', $vars) where $vars contains the username.

6. The resources/blog/owner view gets the username via $vars['username'], and uses many other
views and formatting functions like elgg_view_layout() and elgg_view_page() to create the entire
HTML page.

7. PHP invokes Elgg’s shutdown sequence.

176 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

8. The user receives a fully rendered page.

Elgg’s coding standards suggest a particular URL layout, but there is no syntax enforced.

3.3.28 Search

Contents

Entity search

Search fields

Searchable types

Custom search types

Autocomplete and livesearch endpoint

Entity search

Elgg core provides flexible elgg_search(), which prepares custom search clauses and utilizes
elgg_get_entities() to fetch the results.

In addition to all parameters accepted by elgg_get_entities(), elgg_search() accepts the following:

query Search query

fields An array of names by property type to search in (see example below)

sort An array containing sorting options, including property, property_type and direction

type Entity type to search

subtype Optional entity subtype to search

search_type Custom search type (required if no type is provided)

partial_match Allow partial matches By default partial matches are allowed, meaning that elgg will be
matched when searching for el Exact matches may be helpful when you want to match tag values, e.g.
when you want to find all objects that are red and not darkred

tokenize Break down search query into tokens By default search queries are tokenized, meaning that we
will match elgg has been released when searching for elgg released

// List all users who list United States as their address or mention it in their
→˓description
$options = [

'type' => 'user',
'query' => 'us',
'fields' => [

'metadata' => ['description'],
'annotations' => ['location'],

],
'sort' => [

'property' => 'zipcode',
'property_type' => 'annotation',
'direction' => 'asc',

]

(continué en la próxima página)

3.3. Developer Guides 177

Elgg Documentation, Versión master

(proviene de la página anterior)

];

echo elgg_list_entities($options, 'elgg_search');

Search fields

You can customize search fields for each entity type/subtype, using search:fields hook:

// Let's remove search in location and add address field instead
elgg_register_plugin_hook_handler('search:fields', 'user', 'my_plugin_search_user_
→˓fields');

function my_plugin_search_user_fields(\Elgg\Hook $hook) {
$fields = $hook->getValue();
$location_key = array_search('location', $fields['annotations']);
if ($location_key) {

unset($fields[$location_key]['annotations']);
}

$fields['metadata'][] = 'address';

return $fields;
}

Searchable types

To register an entity type for search, use elgg_entity_enable_capability($type, $subtype,
'searchable'), or do so when defining an entity type in elgg-plugin.php.

Nota: The search plugin uses the entity capability searchable. This capability defines if an entity is searchable.

To combine search results or filter how search results are presented in the search plugin, use 'search:config',
'type_subtype_pairs' hook.

// Let's add places and place reviews as public facing entities
elgg_entity_enable_capability('object', 'place', 'searchable');
elgg_entity_enable_capability('object', 'place_review', 'searchable');

// Now let's include place reviews in the search results for places
elgg_register_plugin_hook_handler('search:options', 'object:place', 'my_plugin_place_
→˓search_options');
elgg_register_plugin_hook_handler('search:config', 'type_subtype_pairs', 'my_plugin_
→˓place_search_config');

// Add place review to search options as a subtype
function my_plugin_place_search_options(\Elgg\Hook $hook) {

$params = $hook->getParams();
if (isset($params['subtypes'])) {

$subtypes = (array) $params['subtypes'];
} else {

$subtypes = (array) elgg_extract('subtype', $params);

(continué en la próxima página)

178 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

}

if (!in_array('place', $subtypes)) {
return;

}

unset($params["subtype"]);

$subtypes[] = 'place_review';
$params['subtypes'] = $subtypes;

return $params;
}

// Remove place reviews as a separate entry in search sections
function my_plugin_place_search_config(\Elgg\Hook $hook) {

$types = $hook->getValue();

if (empty($types['object'])) {
return;

}

foreach ($types['object'] as $key => $subtype) {
if ($subtype == 'place_review') {

unset($types['object'][$key]);
}

}

return $types;
}

Custom search types

Elgg core only supports entity search. You can implement custom searches, e.g. using search query as a location and
listing entities by proximity to that location.

// Let's added proximity search type
elgg_register_plugin_hook_handler('search:config', 'search_types', function
→˓(\Elgg\Hook $hook) {

$search_types = $hook->getValue();
$search_types[] = 'promimity';

return $search_types;
});

// Let's add search options that will look for entities that have geo coordinates and
→˓order them by proximity to the query location
elgg_register_plugin_hook_handler('search:options', 'proximity', function (\Elgg\Hook
→˓$hook) {

$query = $hook->getParam('query');
$options = $hook->getValue();

// Let's presume we have a geocoding API

(continué en la próxima página)

3.3. Developer Guides 179

Elgg Documentation, Versión master

(proviene de la página anterior)

$coords = geocode($query);

// We are not using standard 'selects' options here, because counting queries do
→˓not use custom selects

$options['wheres']['proximity'] = function (QueryBuilder $qb, $alias) use ($lat,
→˓$long) {

$dblat = $qb->joinMetadataTable($alias, 'guid', 'geo:lat');
$dblong = $qb->joinMetadataTable($alias, 'guid', 'geo:long');

$qb->addSelect("(((acos(sin(($lat*pi()/180))

*sin(($dblat.value*pi()/180)) + cos(($lat*pi()/180))

*cos(($dblat.value*pi()/180))

*cos((($long-$dblong.value)*pi()/180)))))*180/pi())

*60*1.1515*1.60934
AS proximity");

$qb->orderBy('proximity', 'asc');

return $qb->merge([
$qb->compare("$dblat.value", 'is not null'),
$qb->compare("$dblong.value", 'is not null'),

]);
};

return $options;
});

Autocomplete and livesearch endpoint

Core provides a JSON endpoint for searching users and groups. These endpoints are used by input/
autocomplete and input/userpicker views.

// Get JSON results of a group search for 'class'
$json = file_get_contents('http://example.com/livesearch/groups?view=json&q=class');

You can add custom search types, by adding a corresponding resource view:

// Let's add an endpoint that will search for users that are not members of a group
// and render a userpicker for our invite form
echo elgg_view('input/userpicker', [

'handler' => 'livesearch/non_members',
'options' => [

// this will be sent as URL query elements
'group_guid' => $group_guid,

],
]);

// To enable /livesearch/non_members endpoint, we need to add a view
// in /views/json/resources/livesearch/non_members.php

$limit = get_input('limit', elgg_get_config('default_limit'));
$query = get_input('term', get_input('q'));
$input_name = get_input('name');

// We have passed this value to our input view, and we want to make sure

(continué en la próxima página)

180 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

// external scripts are not using it to mine data on group members
// so let's validate the HMAC that was generated by the userpicker input
$group_guid = (int) get_input('group_guid');

$data = [
'group_guid' => $group_guid,

];

// let's sort by key, in case we have more elements
ksort($data);

$hmac = elgg_build_hmac($data);
if (!$hmac->matchesToken(get_input('mac'))) {

// request does not originate from our input view
throw new \Elgg\Exceptions\Http\EntityPermissionsException();

}

elgg_set_http_header("Content-Type: application/json;charset=utf-8");

$options = [
'query' => $query,
'type' => 'user',
'limit' => $limit,
'sort' => 'name',
'order' => 'ASC',
'fields' => [

'metadata' => ['name', 'username'],
],
'item_view' => 'search/entity',
'input_name' => $input_name,
'wheres' => function (QueryBuilder $qb) use ($group_guid) {

$subquery = $qb->subquery('entity_relationships', 'er');
$subquery->select('1')

->where($qb->compare('er.guid_one', '=', 'e.guid'))
->andWhere($qb->compare('er.relationship', '=', 'member', ELGG_VALUE_

→˓STRING))
->andWhere($qb->compare('er.guid_two', '=', $group_guid, ELGG_VALUE_

→˓INTEGER));

return "NOT EXISTS ({$subquery->getSQL()})";
}

];

echo elgg_list_entities($options, 'elgg_search');

3.3.29 Services

Elgg uses the Elgg\Application class to load and bootstrap Elgg. In future releases this class will offer a set of
service objects for plugins to use.

Nota: If you have a useful idea, you can add a new service!

3.3. Developer Guides 181

Elgg Documentation, Versión master

Menus

elgg()->menus provides low-level methods for constructing menus. In general, menus should be passed to
elgg_view_menu for rendering instead of manual rendering.

3.3.30 Plugin settings

Contents

User settings

Group settings

Retrieving settings in your code

Setting values while in code

Default plugin (group|user) settings

You need to perform some extra steps if your plugin needs settings to be saved and controlled via the administration
panel:

Create a file in your plugin’s default view folder called plugins/your_plugin/settings.php, where
your_plugin is the name of your plugin’s directory in the mod hierarchy

Fill this file with the form elements you want to display together with internationalised text labels

Set the name attribute in your form components to params[`varname`] where varname is the name of
the variable. These will be saved as private settings attached to a plugin entity. So, if your variable is called
params[myparameter] your plugin (which is also passed to this view as $vars['entity']) will be
called $vars['entity']->myparameter

An example settings.php would look like:

echo elgg_view_field([
'#type' => 'select',
'#label' => elgg_echo('myplugin:settings:limit'),
'name' => 'params[limit]',
'value' => $vars['entity']->limit,
'options' => [5,8,12,15],

]);

Nota: You don’t need to add a save button or the form, this will be handled by the framework.

Nota: You cannot use form components that send no value when «off.» These include radio inputs and check boxes.

If your plugin settings require a cache flush you can add a (hidden) input on the form with the name “flush_cache” and
value “1”

elgg_view_field([
'#type' => 'hidden',
'name' => 'flush_cache',
'value' => 1,

]);

182 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

User settings

Your plugin might need to store per user settings too, and you would like to have your plugin’s options to appear in the
user’s settings page. This is also easy to do and follows the same pattern as setting up the global plugin configuration
explained earlier. The only difference is that instead of using a settings file you will use usersettings. So, the
path to the user edit view for your plugin would be plugins/<your_plugin>/usersettings.php.

Nota: The title of the usersettings form will default to the plugin name. If you want to change this, add a translation
for <plugin_id>:usersettings:title.

Group settings

If your plugin needs settings per group you can extend the view groups/edit/settings to show your settings.
The settings are shown during group creation and edit. In order for the settings to be saved correctly they need a name
in the format settings[<plugin id>][<setting name>].

Retrieving settings in your code

To retrieve settings from your code use:

$setting = elgg_get_plugin_setting($name, $plugin_id);

or for user settings:

$user_setting = elgg_get_plugin_user_setting($name, $user_guid, $plugin_id);

// or
$user = get_user($user_guid);
$user_setting = $user->getPluginSetting($plugin_id, $name);

where:

$name Is the value you want to retrieve

$user_guid Is the user you want to retrieve these for (defaults to the currently logged in user)

$plugin_name Is the name of the plugin (detected if run from within a plugin)

or for group settings:

$group = get_entity($group_guid);
$value = $group->getPluginSetting('<plugin id>', '<setting name>');

Setting values while in code

Values may also be set from within your plugin code, to do this use one of the following functions:

$plugin = elgg_get_plugin_from_id($plugin_id);
$plugin->setSetting($name, $value);

or for user settings:

$user = elgg_get_logged_in_user_entity();
$user->setPluginSetting($plugin_id, $name, $value);

3.3. Developer Guides 183

Elgg Documentation, Versión master

or for group settings:

$group = get_entity($group_guid);
$group->setPluginSetting($plugin_id, $name, $value);

Advertencia: The $plugin_id needs to be provided when setting plugin (user)settings.

Advertencia: Since plugin settings are saved as private settings only scalar values are allowed, so no objects or
arrays.

Default plugin (group|user) settings

If a plugin or a user not have a setting stored in the database, you sometimes have the need for a certain default value.
You can pass this when using the getter functions.

$user_setting = elgg_get_plugin_user_setting($name, $user_guid, $plugin_id, $default);

$plugin_setting = elgg_get_plugin_setting($name, $plugin_id, $default);

$group_setting = $group->getPluginSetting($plugin_id, $name, $default);

Alternatively you can also provide default plugin and user settings in the elgg-plugin.php file.

<?php

return [
'settings' => [

'key' => 'value',
],
'user_settings' => [

'key' => 'value',
],

];

Nota: Group settings don’t have a default value available in the elgg-plugin.php file.

3.3.31 Themes

Customize the look and feel of Elgg.

A theme is a type of plugin that overrides display aspects of Elgg.

This guide assumes you are familiar with:

Plugins

Views

184 Capítulo 3. Continue Reading

https://www.php.net/manual/en/function.is-scalar.php

Elgg Documentation, Versión master

Contents

Theming Principles and Best Practices

Create your plugin

Customize the CSS

• CSS variables

• View extension

• View overloading

• Icons

Tools

Customizing the front page

Theming Principles and Best Practices

No third-party CSS frameworks Elgg does not use a CSS framework, because such frameworks lock users into a
specific HTML markup, which in the end makes it much harder for plugins to collaborate on the appearance.
What’s is-primary in one theme, might be something else in the other. Having no framework allows plugins to
alter appearance using pure css, without having to overwrite views and append framework-specific selectors to
HTML markup elements.

/* BAD */
<div class="box has-shadow is-inline">

This is bad, because if the plugin wants to change the styling, it will have
→˓to either write really specific css

clearing all the attached styles, or replace the view entirely just to modify
→˓the markup
</div>

/* GOOD */
<div class="box-role">

This is good, because a plugin can just simply add .box-role rule
</div>
<style>

.box-role {
padding: 1rem;
display: inline-block;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
}

</style>

8-point grid system Elgg uses an 8-point grid system <https://builttoadapt.io/intro-to-the-8-point-grid-system-
d2573cde8632>, so sizing of elements, their padding, margins etc is done in increments and fractions of 8px.
Because our default font-size is 16px, we use fractions of rem, so 0.5rem = 8px. 8-point grid system makes
it a lot easier for developers to collaborate on styling elements: we no longer have to think if the padding should
be 5px or 6px.

/* BAD */
.menu > li {

margin: 2px 2px 2px 0;
}

(continué en la próxima página)

3.3. Developer Guides 185

Elgg Documentation, Versión master

(proviene de la página anterior)

.menu > li > a {
padding: 3px 5px;

}

/* GOOD */
.menu > li > a {

padding: 0.25rem 0.5rem;
}

Mobile first We write mobile-first CSS. We use two breakpoints: 50rem and 80rem (800px and 1280px at
16px/rem).

/* BAD: mobile defined in media blocks, different display types */

.menu > li {
display: inline-block;

}
@media screen and (max-width: 820px) {

.menu > li {
display: block;
width: 100%;

}
}

/* GOOD: mobile by default. Media blocks style larger viewports. */

.menu {
display: flex;
flex-direction: column;

}
@media screen and (min-width: 50rem) {

.menu {
flex-direction: row;

}
}

Flexbox driven Flexbox provides simplicity in stacking elements into grids. Flexbox is used for everything from
menus to layout elements. We avoid float and clearfix as they are hard to collaborate on and create lots
of room for failure and distortion.

/* BAD */
.heading:after {

visibility: hidden;
height: 0;
clear: both;
content: " ";

}
.heading > h2 {

float: left;
}
.heading > .controls {

float: right;
}

/* GOOD */

(continué en la próxima página)

186 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

.heading {
display: flex;
justify-content: flex-end;

}
.heading > h2 {

order: 1;
margin-right: auto;

}
.heading > .controls {

order: 2;
}

Symmetrical We maintain symmetry.

/* BAD */
.row .column:first-child {

margin-right: 10px;
}

/* GOOD */
.row {

margin: 0 -0.5rem;
}
.row .column {

margin: 0.5rem;
}

Simple color transitions We maintain 4 sets of colors for text, background and border: soft, mild, strong and
highlight. When transitioning to hover or active state, we go one level up, e.g. from soft to mild, or use
highlight. When transition to inactive or disabled state, we go one level down.

Increase the click area When working with nested anchors, we increase the click area of the anchor, rather than the
parent

/* BAD */
.menu > li {

margin: 5px;
padding: 5px 10px;

}

/* GOOD */
.menu > li {

margin: 0.5rem;
}
.menu > li > a {

padding: 0.5rem 1rem;
}

No z-index 999999 z-indexes are incremented with a step of 1.

Wrap HTML siblings We make sure that there are no orphaned strings within a parent and that siblings are wrapped
in a way that they can be targeted by CSS.

/* BAD */
<label>

Orphan
Sibling

(continué en la próxima página)

3.3. Developer Guides 187

Elgg Documentation, Versión master

(proviene de la página anterior)

</label>

/* GOOD */
<label>

Sibling
Sibling

</label>

/* BAD */
<div>

<h3>Title</h3>
<p>Subtitle</p>
<div class="right">This goes to the right</div>

</div>

/* GOOD */
<div>

<div class="left">
<h3>Title</h3>
<p>Subtitle</p>
</div>
<div class="right">This goes to the right</div>

</div>

Create your plugin

Create your plugin as described in the developer guide.

Create a new directory under mod/

Create a new elgg-plugin.php

Create a composer.json file describing your theme.

Customize the CSS

The css is split into several files based on what aspects of the site you’re theming. This allows you to tackle them one
at a time, giving you a chance to make real progress without getting overwhelmed.

Here is a list of the existing CSS views:

elements/buttons.css: Provides a way to style all the different kinds of buttons your site will use. There are 5
kinds of buttons that plugins will expect to be available: action, cancel, delete, submit, and special.

elements/chrome.css: This file has some miscellaneous look-and-feel classes.

elements/components.css: This file contains many “css objects” that are used all over the site: media block, list,
gallery, table, owner block, system messages, river, tags, photo, and comments.

elements/forms.css: This file determines what your forms and input elements will look like.

elements/icons.css: Contains styles for the icons and avatars used on your site.

elements/layout.css: Determines what your page layout will look like: sidebars, page wrapper, main body, hea-
der, footer, etc.

188 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

elements/modules.css: Lots of content in Elgg is displayed in boxes with a title and a content body. We called
these modules. There are a few kinds: info, aside, featured, dropdown, popup, widget. Widget styles are included
in this file too, since they are a subset of modules.

elements/navigation.css: This file determines what all your menus will look like.

elements/typography.css: This file determines what the content and headings of your site will look like.

rtl.css: Custom rules for users viewing your site in a right-to-left language.

admin.css: A completely separate theme for the admin area (usually not overridden).

elgg.css: Compiles all the core elements/* files into one file (DO NOT OVERRIDE).

elements/core.css: Contains base styles for the more complicated “css objects”. If you find yourself wanting to
override this, you probably need to report a bug to Elgg core instead (DO NOT OVERRIDE).

elements/reset.css: Contains a reset stylesheet that forces elements to have the same default

CSS variables

Elgg uses CssCrush for preprocessing CSS files. This gives us the flexibility of using global CSS variables. Plugins
should, wherever possible, use global CSS variables, and extend the core theme with their plugin variables, so they
can be simply altered by other plugins.

To add or alter variables, use the vars:compiler, css hook. Note that you may need to flush the cache to see
your changes in action.

For a list of default core variables, see engine/theme.php.

View extension

There are two ways you can modify views:

The first way is to add extra stuff to an existing view via the views_extensions section within your elgg-
plugin.php definition.

For example, the following configuration will add mytheme/css to Elgg’s core css file:

<?php
return [

'view_extensions' => [
'elgg.css' => [

'mytheme/css' => [],
],

],
];

View overloading

Plugins can have a view hierarchy, any file that exists here will replace any files in the existing core view hierarchy. . .
so for example, if my plugin has a file:

/mod/myplugin/views/default/elements/typography.css

it will replace:

/views/default/elements/typography.css

3.3. Developer Guides 189

Elgg Documentation, Versión master

But only when the plugin is active.

This gives you total control over the way Elgg looks and behaves. It gives you the option to either slightly modify or
totally replace existing views.

Icons

As of Elgg 2.0 the default Elgg icons come from the FontAwesome library. You can use any of these icons by calling:

elgg_view_icon('icon-name');

icon-name can be any of the FontAwesome icons without the fa--prefix.

By default you will get the solid styled variant of the icons. Postfixing the icon name with -solid, -regular or
-light allows you to target a specific style. Be advised; the light styled variant is only available as a FontAwesome
Pro licensed icon.

Tools

We’ve provided you with some development tools to help you with theming: Turn on the “Developers” plugin and go
to the “Theme Preview” page to start tracking your theme’s progress.

Customizing the front page

The main Elgg index page is served via a resource view.

Therefore, you can override it by providing your own resource file in your_plugin/views/default/
resources/index.php.

3.3.32 Writing a plugin upgrade

Every now and then there comes a time when a plugin needs to change the contents or the structure of the data it has
stored either in the database or the dataroot.

The motivation for this may be that the data structure needs to be converted to more efficient or flexible structure. Or
perhaps due to a bug the data items have been saved in an invalid way, and they needs to be converted to the correct
format.

Migrations and convertions like this may take a long time if there is a lot of data to be processed. This is why Elgg
provides the Elgg\Upgrade\Batch interface that can be used for implementing long-running upgrades.

Declaring a plugin upgrade

Plugin can communicate the need for an upgrade under the upgrades key in elgg-plugin.php file. Each value
of the array must be the fully qualified name of an upgrade class that implements the Elgg\Upgrade\Batch
interface.

Example from mod/blog/elgg-plugin.php file:

return [
'upgrades' => [

Blog\Upgrades\AccessLevelFix::class,
Blog\Upgrades\DraftStatusUpgrade::class,

(continué en la próxima página)

190 Capítulo 3. Continue Reading

http://fontawesome.io/
http://fontawesome.io/icons/

Elgg Documentation, Versión master

(proviene de la página anterior)

]
];

The class names in the example refer to the classes:

mod/blog/classes/Blog/Upgrades/AccessLevelFix

mod/blog/classes/Blog/Upgrades/DraftStatusUpgrade

Nota: Elgg core upgrade classes can be declared in engine/lib/upgrades/async-upgrades.php.

The upgrade class

A class implementing the Elgg\Upgrade\Batch interface has a lot of freedom on how it wants to handle the
actual processing of the data. It must however declare some constant variables and also take care of marking whether
each processed item was upgraded successfully or not.

The basic structure of the class is the following:

<?php

namespace Blog\Upgrades;

use Elgg\Upgrade\Batch;
use Elgg\Upgrade\Result;

/**
* Fixes invalid blog access values

*/
class AccessLevelFix implements Batch {

/**
* Version of the upgrade

*
* @return int

*/
public function getVersion() {

return 2016120300;
}

/**
* Should the run() method receive an offset representing all processed items?

*
* @return bool

*/
public function needsIncrementOffset() {

return true;
}

/**
* Should this upgrade be skipped?

*
* @return bool

*/
public function shouldBeSkipped() {

(continué en la próxima página)

3.3. Developer Guides 191

Elgg Documentation, Versión master

(proviene de la página anterior)

return false;
}

/**
* The total number of items to process in the upgrade

*
* @return int

*/
public function countItems() {

// return count of all blogs
}

/**
* Runs upgrade on a single batch of items

*
* @param Result $result Result of the batch (this must be returned)

* @param int $offset Number to skip when processing

*
* @return Result Instance of \Elgg\Upgrade\Result

*/
public function run(Result $result, $offset) {

// fix 50 blogs skipping the first $offset
}

}

Advertencia: Do not assume when your class will be instantiated or when/how often its public methods will be
called.

Class methods

getVersion()

This must return an integer representing the date the upgrade was added. It consists of eight digits and is in format
yyyymmddnn where:

yyyy is the year

mm is the month (with leading zero)

dd is the day (with leading zero)

nn is an incrementing number (starting from 00) that is used in case two separate upgrades have been added
during the same day

shouldBeSkipped()

This should return false unless the upgrade won’t be needed.

Advertencia: If true is returned the upgrade cannot be run later.

192 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

needsIncrementOffset()

If true, your run() method will receive as $offset the number of items aready processed. This is useful if you
are only modifying data, and need to use the $offset in a function like elgg_get_entities() to know how
many you’ve already handled.

If false, your run() method will receive as $offset the total number of failures. false should be used if your
process deletes or moves data out of the way of the process. E.g. if you delete 50 objects on each run(), you don’t
really need the $offset.

countItems()

Get the total number of items to process during the upgrade. If unknown, Batch::UNKNOWN_COUNT can be retur-
ned, but run() must manually mark the upgrade complete.

run()

This must perform a portion of the actual upgrade. And depending on how long it takes, it may be called multiple
times during a single request.

It receives two arguments:

$result: An instance of Elgg\Upgrade\Result object

$offset: The offset where the next upgrade portion should start (or total number of failures)

For each item the method processes, it must call either:

$result->addSuccesses(): If the item was upgraded successfully

$result->addFailures(): If it failed to upgrade the item

Both methods default to one item, but you can optionally pass in the number of items.

Additionally it can set as many error messages as it sees necessary in case something goes wrong:

$result->addError("Error message goes here")

If countItems() returned Batch::UNKNOWN_COUNT, then at some point run() must call
$result->markComplete() to finish the upgrade.

In most cases your run() method will want to pass the $offset parameter to one of the
elgg_get_entities() functions:

/**
* Process blog posts

*
* @param Result $result The batch result (will be modified and returned)

* @param int $offset Starting point of the batch

* @return Result Instance of \Elgg\Upgrade\Result;

*/
public function run(Result $result, $offset) {

$blogs = elgg_get_entitites([
'type' => 'object'
'subtype' => 'blog'
'offset' => $offset,

]);

(continué en la próxima página)

3.3. Developer Guides 193

Elgg Documentation, Versión master

(proviene de la página anterior)

foreach ($blogs as $blog) {
if ($this->fixBlogPost($blog)) {

$result->addSuccesses();
} else {

$result->addFailures();
$result->addError("Failed to fix the blog {$blog->guid}.");

}
}

return $result;
}

Administration interface

Each upgrade implementing the Elgg\Upgrade\Batch interface gets listed in the admin panel after triggering the
site upgrade from the Administration dashboard.

While running the upgrades Elgg provides:

Estimated duration of the upgrade

Count of processed items

Number of errors

Possible error messages

3.3.33 Views

Contents

Introduction

Using views

Views as templates

Views as cacheable assets

Views and third-party assets

• Specifying additional views directories

Viewtypes

Altering views via plugins

• Overriding views

• Extending views

• Altering view input

• Altering view output

• Replacing view output completely

Displaying entities

194 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

• Full and partial entity views

Listing entities

• Rendering a list with an alternate view

• Rendering a list as a table

Icons

• Generic icons

• Entity icons

Related

Introduction

Views are responsible for creating output. They handle everything from:

the layout of pages

chunks of presentation output (like a footer or a toolbar)

individual links and form inputs.

the images, js, and css needed by your web page

Using views

At their most basic level, the default views are just PHP files with snippets of html:

<h1>Hello, World!</h1>

Assuming this view is located at /views/default/hello.php, we could output it like so:

echo elgg_view('hello');

For your convenience, Elgg comes with quite a lot of views by default. In order to keep things manageable, they are
organized into subdirectories. Elgg handles this situation quite nicely. For example, our simple view might live in
/views/default/hello/world.php, in which case it would be called like so:

echo elgg_view('hello/world');

The name of the view simply reflects the location of the view in the views directory.

Views as templates

You can pass arbitrary data to a view via the $vars array. Our hello/world view might be modified to accept a
variable like so:

<h1>Hello, <?= $vars['name']; ?>!</h1>

In this case, we can pass an arbitrary name parameter to the view like so:

echo elgg_view('hello/world', ['name' => 'World']);

which would produce the following output:

3.3. Developer Guides 195

Elgg Documentation, Versión master

<h1>Hello, World!</h1>

Advertencia: Views don’t do any kind of automatic output sanitization by default. You are responsible for doing
the correct sanitization yourself to prevent XSS attacks and the like.

Views as cacheable assets

As mentioned before, views can contain JS, CSS, or even images.

Asset views must meet certain requirements:

They must not take any $vars parameters

They must not change their output based on global state like

• who is logged in

• the time of day

They must contain a valid file extension

• Bad: my/cool/template

• Good: my/cool/template.html

For example, suppose you wanted to load some CSS on a page. You could define a view mystyles.css, which
would look like so:

/* /views/default/mystyles.css */
.mystyles-foo {

background: red;
}

Nota: Leave off the trailing «.php» from the filename and Elgg will automatically recognize the view as cacheable.

To get a URL to this file, you would use elgg_get_simplecache_url:

// Returns "https://mysite.com/.../289124335/default/mystyles.css
elgg_get_simplecache_url('mystyles.css');

Elgg automatically adds the magic numbers you see there for cache-busting and sets long-term expires headers on the
returned file.

Advertencia: Elgg may decide to change the location or structure of the returned URL in a future release for
whatever reason, and the cache-busting numbers change every time you flush Elgg’s caches, so the exact URL is
not stable by design.

With that in mind, here’s a couple anti-patterns to avoid:

Don’t rely on the exact structure/location of this URL

Don’t try to generate the URLs yourself

Don’t store the returned URLs in a database

On the page you want to load the css, call:

196 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

elgg_require_css('mystyles');

Views and third-party assets

The best way to serve third-party assets is through views. However, instead of manually copy/pasting the assets into
the right location in /views/*, you can map the assets into the views system via the "views" key in your plugin’s
elgg-plugin.php config file.

The views value must be a 2 dimensional array. The first level maps a viewtype to a list of view mappings. The
secondary lists map view names to file paths, either absolute or relative to the Elgg root directory.

If you check your assets into source control, point to them like this:

<?php // mod/example/elgg-plugin.php
return [

// view mappings
'views' => [

// viewtype
'default' => [

// view => /path/from/filesystem/root
'js/jquery-ui.js' => __DIR__ . '/node_modules/components-jqueryui/jquery-

→˓ui.min.js',
],

],
];

To point to assets installed with composer, use install-root-relative paths by leaving off the leading slash:

<?php // mod/example/elgg-plugin.php
return [

'views' => [
'default' => [

// view => path/from/install/root
'js/jquery-ui.js' => 'vendor/npm-asset/components-jqueryui/jquery-ui.min.

→˓js',
],

],
];

Elgg core uses this feature extensively, though the value is returned directly from /engine/views.php.

Nota: You don’t have to use NPM, Composer Asset Plugin or any other script for managing your plugin’s assets, but
we highly recommend using a package manager of some kind because it makes upgrading so much easier.

Specifying additional views directories

In elgg-plugin.php you can also specify directories to be scanned for views. Just provide a view name prefix
ending with / and a directory path (like above).

<?php // mod/file/elgg-plugin.php
return [

'views' => [
'default' => [

(continué en la próxima página)

3.3. Developer Guides 197

Elgg Documentation, Versión master

(proviene de la página anterior)

'file/icon/' => __DIR__ . '/graphics/icons',
],

],
];

With the above, files found within the icons folder will be interpreted as views. E.g. the view file/icon/
general.gif will be created and mapped to mod/file/graphics/icons/general.gif.

Nota: This is a fully recursive scan. All files found will be brought into the views system.

Multiple paths can share the same prefix, just give an array of paths:

<?php // mod/file/elgg-plugin.php
return [

'views' => [
'default' => [

'file/icon/' => [
__DIR__ . '/graphics/icons',
__DIR__ . '/more_icons', // processed 2nd (may override)

],
],

],
];

Viewtypes

You might be wondering: «Why /views/default/hello/world.php instead of just /views/hello/
world.php?».

The subdirectory under /views determines the viewtype of the views below it. A viewtype generally corresponds to
the output format of the views.

The default viewtype is assumed to be HTML and other static assets necessary to render a responsive web page in a
desktop or mobile browser, but it could also be:

RSS

ATOM

JSON

Mobile-optimized HTML

TV-optimized HTML

Any number of other data formats

You can force Elgg to use a particular viewtype to render the page by setting the view input variable like so: https:/
/mysite.com/?view=rss.

You could also write a plugin to set this automatically using the elgg_set_viewtype() function. For example,
your plugin might detect that the page was accessed with an iPhone’s browser string, and set the viewtype to iphone
by calling:

elgg_set_viewtype('iphone');

The plugin would presumably also supply a set of views optimized for those devices.

198 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Altering views via plugins

Without modifying Elgg’s core, Elgg provides several ways to customize almost all output:

You can override a view, completely changing the file used to render it.

You can extend a view by prepending or appending the output of another view to it.

You can alter a view’s inputs by plugin hook.

You can alter a view’s output by plugin hook.

Overriding views

Views in plugin directories always override views in the core directory; however, when plugins override the views of
other plugins, later plugins take precedent.

For example, if we wanted to customize the hello/world view to use an h2 instead of an h1, we could create a
file at /mod/example/views/default/hello/world.php like this:

<h2>Hello, <?= $vars['name']; ?></h2>

Nota: When considering long-term maintenance, overriding views in the core and bundled plugins has a cost: Upgra-
des may bring changes in views, and if you have overridden them, you will not get those changes.

You may instead want to alter the input or the output of the view via plugin hooks.

Nota: Elgg caches view locations. This means that you should disable the system cache while developing with views.
When you install the changes to a production environment you must flush the caches.

Extending views

There may be other situations in which you don’t want to override the whole view, you just want to prepend or append
some more content to it. In Elgg this is called extending a view.

For example, instead of overriding the hello/world view, we could extend it like so:

elgg_extend_view('hello/world', 'hello/greeting');

If the contents of /views/default/hello/greeting.php is:

<h2>How are you today?</h2>

Then every time we call elgg_view('hello/world');, we’ll get:

<h1>Hello, World!</h1>
<h2>How are you today?</h2>

You can prepend views by passing a value to the 3rd parameter that is less than 500:

3.3. Developer Guides 199

Elgg Documentation, Versión master

// appends 'hello/greeting' to every occurrence of 'hello/world'
elgg_extend_view('hello/world', 'hello/greeting');

// prepends 'hello/greeting' to every occurrence of 'hello/world'
elgg_extend_view('hello/world', 'hello/greeting', 450);

All view extensions should be registered in your plugin’s elgg-plugin.php.

Altering view input

It may be useful to alter a view’s $vars array before the view is rendered.

Before each view rendering the $vars array is filtered by the plugin hook ["view_vars", $view_name]. Each
registered handler function is passed these arguments:

$hook - the string "view_vars"

$view_name - the view name being rendered (the first argument passed to elgg_view())

$returnvalue - the modified $vars array

$params - an array containing:

• vars - the original $vars array, unaltered

• view - the view name

• viewtype - The viewtype being rendered

Altering view input example

Here we’ll alter the default pagination limit for the comments view:

elgg_register_plugin_hook_handler('view_vars', 'page/elements/comments', 'myplugin_
→˓alter_comments_limit');

function myplugin_alter_comments_limit(\Elgg\Hook $hook) {
$vars = $hook->getValue();

// only 10 comments per page
$vars['limit'] = elgg_extract('limit', $vars, 10);

return $vars;
}

Altering view output

Sometimes it is preferable to alter the output of a view instead of overriding it.

The output of each view is run through the plugin hook ["view", $view_name] before being returned by
elgg_view(). Each registered handler function is passed these arguments:

$hook - the string "view"

$view_name - the view name being rendered (the first argument passed to elgg_view())

$result - the modified output of the view

200 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

$params - an array containing:

• viewtype - The viewtype being rendered

To alter the view output, the handler just needs to alter $returnvalue and return a new string.

Altering view output example

Here we’ll eliminate breadcrumbs that don’t have at least one link.

elgg_register_plugin_hook_handler('view', 'navigation/breadcrumbs', 'myplugin_alter_
→˓breadcrumb');

function myplugin_alter_breadcrumb($hook, $type, $returnvalue, $params) {
// we only want to alter when viewtype is "default"
if ($params['viewtype'] !== 'default') {

return $returnvalue;
}

// output nothing if the content doesn't have a single link
if (false === elgg_strpos($returnvalue, '<a ')) {

return '';
}

// returning nothing means "don't alter the returnvalue"
}

Replacing view output completely

You can pre-set the view output by setting $vars['__view_output']. The value will be returned as a string.
View extensions will not be used and the view hook will not be triggered.

elgg_register_plugin_hook_handler('view_vars', 'navigation/breadcrumbs', 'myplugin_no_
→˓page_breadcrumbs');

function myplugin_no_page_breadcrumbs(\Elgg\Hook $hook) {
if (elgg_in_context('pages')) {

return ['__view_output' => ""];
}

}

Nota: For ease of use you can also use a already existing default hook callback to prevent output
\Elgg\Values::preventViewOutput

Displaying entities

If you don’t know what an entity is, check this page out first.

The following code will automatically display the entity in $entity:

echo elgg_view_entity($entity);

3.3. Developer Guides 201

Elgg Documentation, Versión master

As you’ll know from the data model introduction, all entities have a type (object, site, user or group), and optionally a
subtype (which could be anything - “blog”, “forumpost”, “banana”).

elgg_view_entity will automatically look for a view called type/subtype; if there’s no subtype, it will look
for type/type. Failing that, before it gives up completely it tries type/default.

RSS feeds in Elgg generally work by outputting the object/default view in the “rss” viewtype.

For example, the view to display a blog post might be object/blog. The view to display a user is user/default.

Full and partial entity views

elgg_view_entity actually has a number of parameters, although only the very first one is required. The first
three are:

$entity - The entity to display

$viewtype - The viewtype to display in (defaults to the one we’re currently in, but it can be forced - eg to
display a snippet of RSS within an HTML page)

$full_view - Whether to display a full version of the entity. (Defaults to true.)

This last parameter is passed to the view as $vars['full_view']. It’s up to you what you do with it; the usual
behaviour is to only display comments and similar information if this is set to true.

Listing entities

This is then used in the provided listing functions. To automatically display a list of blog posts (see the full tutorial),
you can call:

echo elgg_list_entities([
'type' => 'object',
'subtype' => 'blog',

]);

This function checks to see if there are any entities; if there are, it first displays the navigation/pagination
view in order to display a way to move from page to page. It then repeatedly calls elgg_view_entity on each
entity before returning the result.

Note that elgg_list_entities allows the URL to set its limit and offset options, so set those explicitly if
you need particular values (e.g. if you’re not using it for pagination).

Elgg knows that it can automatically supply an RSS feed on pages that use elgg_list_entities. It initializes
the ["head","page"] plugin hook (which is used by the header) in order to provide RSS autodiscovery, which is
why you can see the orange RSS icon on those pages in some browsers.

Entity listings will default try to load entity owners and container owners. If you want to prevent this you can turn this
off.

echo elgg_list_entities([
'type' => 'object',
'subtype' => 'blog',

// disable owner preloading
'preload_owners' => false,

]);

202 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

See also this background information on Elgg’s database.

If you want to show a message when the list does not contain items to list, you can pass a no_results message or
true for the default message. If you want even more controle over the no_results message you can also pass a
Closure (an anonymous function).

echo elgg_list_entities([
'type' => 'object',
'subtype' => 'blog',

'no_results' => elgg_echo('notfound'),
]);

Rendering a list with an alternate view

You can define an alternative view to render list items using 'item_view' parameter.

In some cases, default entity views may be unsuitable for your needs. Using item_view allows you to customize the
look, while preserving pagination, list’s HTML markup etc.

Consider these two examples:

echo elgg_list_entities([
'type' => 'group',
'relationship' => 'member',
'relationship_guid' => elgg_get_logged_in_user_guid(),
'inverse_relationship' => false,
'full_view' => false,

]);

echo elgg_list_entities([
'type' => 'group',
'relationship' => 'invited',
'relationship_guid' => (int) $user_guid,
'inverse_relationship' => true,
'item_view' => 'group/format/invitationrequest',

]);

In the first example, we are displaying a list of groups a user is a member of using the default group view. In the second
example, we want to display a list of groups the user was invited to.

Since invitations are not entities, they do not have their own views and can not be listed using elgg_list_*. We are
providing an alternative item view, that will use the group entity to display an invitation that contains a group name
and buttons to access or reject the invitation.

Rendering a list as a table

Since 2.3 you can render lists as tables. Set $options['list_type'] = 'table' and provide an array of
TableColumn objects as $options['columns']. The service elgg()->table_columns provides several
methods to create column objects based around existing views (like page/components/column/*), properties,
or methods.

In this example, we list the latest my_plugin objects in a table of 3 columns: entity icon, the display name, and a
friendly format of the time.

3.3. Developer Guides 203

Elgg Documentation, Versión master

echo elgg_list_entities([
'type' => 'object',
'subtype' => 'my_plugin',

'list_type' => 'table',
'columns' => [

elgg()->table_columns->icon(),
elgg()->table_columns->getDisplayName(),
elgg()->table_columns->time_created(null, [

'format' => 'friendly',
]),

],
]);

See the Elgg\Views\TableColumn\ColumnFactory class for more details on how columns are specified and
rendered. You can add or override methods of elgg()->table_columns in a variety of ways, based on views,
properties/methods on the items, or given functions.

Icons

Elgg has support for two kind of icons: generic icons to help with styling (eg. show delete icon) and Entity icons (eg.
user avatar).

Generic icons

As of Elgg 2.0 the generic icons are based on the FontAwesome library. You can get any of the supported icons by
calling elgg_view_icon($icon_name, $vars); where:

$icon_name is the FontAwesome name (without fa-) for example user

$vars is optional, for example you can set an additional class

elgg_view_icon() calls the view output/icon with the given icon name and outputs all the correct classes
to render the FontAwesome icon. If you wish to replace an icon with another icon you can write a view_vars,
output/icon hook to replace the icon name with your replacement.

For backwards compatibility some older Elgg icon names are translated to a corresponding FontAwesome icon.

Entity icons

To view an icon belowing to an Entity call elgg_view_entity_icon($entity, $size, $vars); where:

$entity is the ElggEntity you wish to show the icon for

$size is the requestes size. Default Elgg supports large, medium, small, tiny and topbar (master
is also available, but don’t use it)

$vars in order to pass additional information to the icon view

elgg_view_entity_icon() calls a view in the order:

icon/<type>/<subtype>

icon/<type>/default

icon/default

204 Capítulo 3. Continue Reading

http://fontawesome.io/icons/

Elgg Documentation, Versión master

So if you wish to customize the layout of the icon you can overrule the corresponding view.

An example of displaying a user avatar is

// get the user
$user = elgg_get_logged_in_user_entity();

// show the small icon
echo elgg_view_entity_icon($user, 'small');

// don't add the user_hover menu to the icon
echo elgg_view_entity_icon($user, 'small', [

'use_hover' => false,
]);

Related

Page structure best practice

Elgg pages have an overall pageshell, a main layout and several page elements. It’s recommended to always use the
default layout as all page elements can be controlled using that layout.

If you’re not using the default layout you can call

$layout_area = elgg_view_layout($layout_name, [
'content' => $content,
'section' => $section,

]);

The different page elements are passed as an array in the second parameter. The array keys correspond to elements
in the layout. The array values contain the html that should be displayed in those areas:

$layout_area = elgg_view_layout('default', [
'content' => $content,

]);

$layout_area = elgg_view_layout('default', [
'content' => $content,
'sidebar' => $sidebar,

]);

You can then, ultimately, pass this into the elgg_view_page function:

echo elgg_view_page($title, $layout_area);

If you’re using the default layout you can also pass the array with page elements directly to elgg_view_page:

echo elgg_view_page($title, [
'content' => $content,
'sidebar' => $sidebar,

]);

You can control many of the page elements:

echo elgg_view_page('This is the browser title', [
'title' => 'This is the page title',

(continué en la próxima página)

3.3. Developer Guides 205

Elgg Documentation, Versión master

(proviene de la página anterior)

'content' => $content,
'sidebar' => false, // no default sidebar
'sidebar_alt' => $sidebar_alt, // show an alternate sidebar

]);

Ver también:

Have a look at the page/layouts/default view to find out more information about the supported page elements

Simplecache

Ver también:

Performance

Views

The Simplecache is a mechanism designed to alleviate the need for certain views to be regenerated dynamically.
Instead, they are generated once, saved as a static file, and served in a way that entirely bypasses the Elgg engine.

If Simplecache is turned off (which can be done from the administration panel), these views will be served as normal,
with the exception of site CSS.

The criteria for whether a view is suitable for the Simplecache is as follows:

The view must not change depending on who or when it is being looked at

The view must not depend on variables fed to it (except for global variables like site URL that never change)

Regenerating the Simplecache

You can regenerate the Simplecache at any time by:

Loading /upgrade.php, even if you have nothing to upgrade

In the admin panel click on “Flush the caches”

Enabling or disabling a plugin

Reordering your plugins

Using the Simplecache in your plugins

Registering views with the Simplecache

You can register a view with the Simplecache with the following function at init-time:

elgg_register_simplecache_view($viewname);

Accessing the cached view

If you registered a JavaScript or CSS file with Simplecache and put in the view folder as
your_view.js or your_view.css you can very easily get the url to this cached view by calling
elgg_get_simplecache_url($view). For example:

$js = elgg_get_simplecache_url('your_view.js');
$css = elgg_get_simplecache_url('your_view.css');

206 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Page/elements/foot vs footer

page/elements/footer is the content that goes inside this part of the page:

<div class="elgg-page-footer">
<div class="elgg-inner">

<!-- page/elements/footer goes here -->
</div>

</div>

Its content is visible to end users and usually where you would put a sitemap or other secondary global navigation,
copyright info, powered by elgg, etc.

page/elements/foot is inserted just before the ending </body> tag and is mostly meant as a place to insert
scripts that don’t already work with elgg_require_js('amd/module');. In other words, you should never
override this view and probably don’t need to extend it either. Just use the elgg_*_js functions instead

3.3.34 Walled Garden

Elgg supports a «Walled Garden» mode. In this mode, almost all pages are restricted to logged in users. This is useful
for sites that don’t allow public registration.

Activating Walled Garden mode

To activate Walled Garden mode in Elgg, go to the Administration section. On the right sidebar menu, under the
«Configure» section, expand «Settings,» then click on «Advanced.»

From the Advanced Settings page, find the option labelled «Restrict pages to logged-in users.» Enable this option,
then click «Save» to switch your site into Walled Garden mode.

Exposing pages through Walled Gardens

Many plugins extend Elgg by adding pages. Walled Garden mode will prevent these pages from being viewed by
logged out users. Elgg uses plugin hook to manage which pages are visible through the Walled Garden.

Plugin authors must register pages as public if they should be viewable through Walled Gardens:

by setting 'walled' => false in route configuration

by responding to the public_pages, walled_garden plugin hook. The returned value is an array of
regexp expressions for public pages.

The following code shows how to expose http://example.org/my_plugin/public_page through a Walled Garden. This
assumes the plugin has registered a route for my_plugin/public_page.

// Preferred way
elgg_register_route('my_plugin:public_page', [

'path' => '/my_plugin/public_page',
'resource' => 'my_plugin/public_page',
'walled' => false,

]);

// Legacy approach
elgg_register_plugin_hook_handler('public_pages', 'walled_garden', 'my_plugin_walled_
→˓garden_public_pages');

(continué en la próxima página)

3.3. Developer Guides 207

http://example.org/my_plugin/public_page

Elgg Documentation, Versión master

(proviene de la página anterior)

function my_plugin_walled_garden_public_pages(\Elgg\Hook $hook) {
$pages = $hook->getValue();

$pages[] = 'my_plugin/public_page';

return $pages;
}

3.3.35 Web services

Build an HTTP API for your site.

Elgg provides a powerful framework for building web services. This allows developers to expose functionality to other
web sites and desktop applications along with doing integrations with third-party web applications. While we call the
API RESTful, it is actually a REST/RPC hybrid similar to the APIs provided by sites like Flickr and Twitter.

To create an API for your Elgg site, you need to do 4 things:

enable the web services plugin

expose methods

setup API authentication

setup user authentication

Additionally, you may want to control what types of authentication are available on your site. This will also be covered.

Contents

Security

Exposing methods

• Response formats

• Parameters

• Receive parameters as associative array

API authentication

• Key-based authentication

• Signature-based authentication

User authentication

Building out your API

Determining the authentication available

Related

Security

It is crucial that the web services are consumed via secure protocols. Do not enable web services if your site is not
served via HTTPs. This is especially important if you allow API key only authentication.

208 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

If you are using third-party tools that expose API methods, make sure to carry out a thorough security audit. You
may want to make sure that API authentication is required for ALL methods, even if they require user authentication.
Methods that do not require API authentication can be easily abused to spam your site.

Ensure that the validity of API keys is limited and provide mechanisms for your API clients to renew their keys.

Exposing methods

The function to use to expose a method is elgg_ws_expose_function(). As an example, let’s assume you want
to expose a function that echos text back to the calling application. The function could look like this

function my_echo($string) {
return $string;

}

Since we are providing this function to allow developers to test their API clients, we will require neither API authen-
tication nor user authentication. This call registers the function with the web services API framework:

elgg_ws_expose_function(
"test.echo",
"my_echo",
[

"string" => [
'type' => 'string',

]
],
'A testing method which echos back a string',
'GET',
false,
false

);

If you add this code to a plugin and then go to http://yoursite.com/services/api/rest/json/?method=system.api.list, you
should now see your test.echo method listed as an API call. Further, to test the exposed method from a web browser,
you could hit the url: http://yoursite.com/services/api/rest/json/?method=test.echo&string=testing and you should see
JSON data like this:

{
"status":0,
"result":"testing"

}

Plugins can filter the output of individual API methods by registering a handler for 'rest:output',$method
plugin hook.

Response formats

JSON is the default format, however XML and serialized PHP can be fetched by enabling the data_views plugin
and substituting xml or php in place of json in the above URLs.

You can also add additional response formats by defining new viewtypes.

3.3. Developer Guides 209

http://yoursite.com/services/api/rest/json/?method=system.api.list
http://yoursite.com/services/api/rest/json/?method=test.echo&string=testing

Elgg Documentation, Versión master

Parameters

Parameters expected by each method should be listed as an associative array, where the key represents the parameter
name, and the value contains an array with type, default and required fields.

Values submitted with the API request for each parameter should match the declared type. API will throw on exception
if validation fails.

Recognized parameter types are:

integer (or int)

boolean (or bool) 'false', 0 and '0' will evaluate to false the rest will evaluate to true

string

float

array

Unrecognized types will throw an API exception.

You can use additional fields to describe your parameter, e.g. description.

elgg_ws_expose_function(
'test.greet',
'my_greeting',
[

'name' => [
'type' => 'string',
'required' => true,
'description' => 'Name of the person to be greeted by the API

→˓',
],
'greeting' => [

'type' => 'string',
'required' => false,
'default' => 'Hello',
'description' => 'Greeting to be used, e.g. "Good day" or "Hi"

→˓',
],

],
'A testing method which greets the user with a custom greeting',
'GET',
false,
false

);

Nota: If a missing parameter has no default value, the argument will be null. Before Elgg v2.1, a bug caused later
arguments to be shifted left in this case.

Receive parameters as associative array

If you have a large number of method parameters, you can force the execution script to invoke the callback function
with a single argument that contains an associative array of parameter => input pairs (instead of each parameter being
a separate argument). To do that, set $assoc to true in elgg_ws_expose_function().

210 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

function greet_me($values) {
$name = elgg_extract('name', $values);
$greeting = elgg_extract('greeting', $values, 'Hello');
return "$greeting, $name";

}

elgg_ws_expose_function(
"test.greet",
"greet_me",
[

"name" => [
'type' => 'string',

],
"greeting" => [

'type' => 'string',
'default' => 'Hello',
'required' => false,

],
],
'A testing method which echos a greeting',
'GET',
false,
false,
true // $assoc makes the callback receive an associative array

);

Nota: If a missing parameter has no default value, null will be used.

API authentication

You may want to control access to some of the functions that you expose. Perhaps you are exposing functions in order
to integrate Elgg with another open source platform on the same server. In that case, you only want to allow that other
application access to these methods. Another possibility is that you want to limit what external developers have access
to your API. Or maybe you want to limit how many calls a developer can make against your API in a single day.

In all of these cases, you can use Elgg’s API authentication functions to control access. Elgg provides two built-in met-
hods to perform API authentication: key based and HMAC signature based. You can also add your own authentication
methods. The key based approach is very similar to what Google, Flickr, or Twitter. Developers can request a key (a
random string) and pass that key with all calls that require API authentication. The keys are stored in the database and
if an API call is made without a key or a bad key, the call is denied and an error message is returned.

Key-based authentication

As an example, let’s write a function that returns the number of users that have viewed the site in the last x minutes.

function count_active_users($minutes=10) {
$seconds = 60 * $minutes;
$count = count(find_active_users($seconds, 9999));
return $count;

}

Now, let’s expose it and make the number of minutes an optional parameter:

3.3. Developer Guides 211

Elgg Documentation, Versión master

elgg_ws_expose_function(
"users.active",
"count_active_users",
[

"minutes" => [
'type' => 'int',
'required' => false,

],
],
'Number of users who have used the site in the past x minutes',
'GET',
true,
false

);

This function is now available and if you check system.api.list, you will see that it requires API authentica-
tion. If you hit the method with a web browser, it will return an error message about failing the API authentication.
To test this method, you need an API key. As of Elgg 3.2 API keys can be generated by the webservices plugin.
It will return a public and private key and you will use the public key for this kind of API authentication. Grab
a key and then do a GET request with your browser on this API method passing in the key string as the parame-
ter api_key. It might look something like this: http://yoursite.com/services/api/rest/xml/?method=users.active&api_
key=1140321cb56c71710c38feefdf72bc462938f59f.

Signature-based authentication

The HMAC Authentication is similar to what is used with OAuth or Amazon’s S3 service. This involves both the
public and private key. If you want to be very sure that the API calls are coming from the developer you think they
are coming from and you want to make sure the data is not being tampered with during transmission, you would use
this authentication method. Be aware that it is much more involved and could turn off developers when there are other
sites out there with key-based authentication.

User authentication

So far you have been allowing developers to pull data out of your Elgg site. Now we’ll move on to pushing data into
Elgg. In this case, it is going to be done by a user. Maybe you have created a desktop application that allows your
Users to post to the wire without going to the site. You need to expose a method for posting to the wire and you
need to make sure that a user cannot post using someone else’s account. Elgg provides a token-based approach for
user authentication. It allows a user to submit their username and password in exchange for a token using the method
auth.gettoken. This token can then be used for some amount of time to authenticate all calls to the API before it
expires by passing it as the parameter auth_token. If you do not want to have your users trusting their passwords
to 3rd-party applications, you can also extend the current capability to use an approach like OAuth.

Let’s write our wire posting function:

function my_post_to_wire($text) {

$text = elgg_substr($text, 0, 140);

$access = ACCESS_PUBLIC;

// returns guid of wire post
return thewire_save_post($text, $access, "api");

}

212 Capítulo 3. Continue Reading

http://yoursite.com/services/api/rest/xml/?method=users.active&api_key=1140321cb56c71710c38feefdf72bc462938f59f
http://yoursite.com/services/api/rest/xml/?method=users.active&api_key=1140321cb56c71710c38feefdf72bc462938f59f

Elgg Documentation, Versión master

Exposing this function is the same as the previous except we require user authentication and we’re going to make this
use POST rather than GET HTTP requests.

elgg_ws_expose_function(
"thewire.post",
"my_post_to_wire",
[

"text" => [
'type' => 'string',

],
],
'Post to the wire. 140 characters or less',
'POST',
true,
true

);

Please note that you will not be able to test this using a web browser as you did with the other methods. You need to
write some client code to do this.

Building out your API

As soon as you feel comfortable with Elgg’s web services API framework, you will want to step back and design
your API. What sort of data are you trying to expose? Who or what will be API users? How do you want them to get
access to authentication keys? How are you going to document your API? Be sure to take a look at the APIs created
by popular Web 2.0 sites for inspiration. If you are looking for 3rd party developers to build applications using your
API, you will probably want to provide one or more language-specific clients.

Determining the authentication available

Elgg’s web services API uses a type of pluggable authentication module (PAM) architecture to manage how users and
developers are authenticated. This provides you the flexibility to add and remove authentication modules. Do you want
to not use the default user authentication PAM but would prefer using OAuth? You can do this.

The first step is registering a callback function for the rest, init plugin hook:

register_plugin_hook('rest', 'init', 'rest_plugin_setup_pams');

Then in the callback function, you register the PAMs that you want to use:

function rest_plugin_setup_pams() {
// user token can also be used for user authentication
register_pam_handler('elgg_ws_pam_auth_usertoken');

// simple API key check
register_pam_handler('elgg_ws_pam_auth_api_key', "sufficient", "api");

// override the default pams
return true;

}

Related

3.3. Developer Guides 213

http://en.wikipedia.org/wiki/Pluggable_Authentication_Modules

Elgg Documentation, Versión master

HMAC Authentication

Elgg’s RESTful API framework provides functions to support a HMAC signature scheme for API authentication. The
client must send the HMAC signature together with a set of special HTTP headers when making a call that requires
API authentication. This ensures that the API call is being made from the stated client and that the data has not been
tampered with.

The HMAC must be constructed over the following data:

The public API key identifying you to the Elgg api server as provided by the APIAdmin plugin

The private API Key provided by Elgg (that is companion to the public key)

The current unix time in seconds

A nonce to guarantee two requests the same second have different signatures

URL encoded string representation of any GET variable parameters, eg method=test.test&foo=bar

If you are sending post data, the hash of this data

Some extra information must be added to the HTTP header in order for this data to be correctly processed:

X-Elgg-apikey - The public API key

X-Elgg-time - Unix time used in the HMAC calculation

X-Elgg-nonce - a random string

X-Elgg-hmac - The HMAC as base64 encoded

X-Elgg-hmac-algo - The algorithm used in the HMAC calculation

If you are sending POST data you must also send:

X-Elgg-posthash - The hash of the POST data

X-Elgg-posthash-algo - The algorithm used to produce the POST data hash

Content-type - The content type of the data you are sending (if in doubt use application/
octet-stream)

Content-Length - The length in bytes of your POST data

Elgg provides a sample API client that implements this HMAC signature:
\Elgg\WebServices\ElggApiClient. It serves as a good reference on how to implement it.

Supported hashing algorithms

sha256: recommended

sha1: fast however less secure

md5: weak and will be removed in the future

Post hash calculation

The post hash needs to be calculated over all the post data using one of the supported hashing algorithms. The result of
the hashing needs to be reported in the X-Elgg-posthash header and the used hashing algorithm must be reported
in the X-Elgg-posthash-algo header.

214 Capítulo 3. Continue Reading

https://en.wikipedia.org/wiki/HMAC

Elgg Documentation, Versión master

HMAC hash calculation

The overall HMAC needs to be calculated over the following data (in order) using the API secret as the HMAC secret
and with one of the supported hashing algorithms:

1. a UNIX timestamp, report this timestamp in the X-Elgg-time header

2. a random string, report this string in the X-Elgg-nonce header

3. the public API key, report this API key in the X-Elgg-apikey header

4. the url query string (for example method=test.test&foo=bar)

5. when the request is a POST add the posthash as reported in the X-Elgg-posthash header

The resulting string needs to be base64 encoded and then url encoded and be repoted in the X-Elgg-hmac header.
The used hashing algorithm needs to be reported in the X-Elgg-hmac-algo.

Hashing cache

For security reasons each HMAC hash needs to be unique, all submitted hashes are stored for 25 hours to prevent
reuse.

API results

Contents

Success result structure

Error result structure

Default status codes

Success result structure

A successful API result looks like this:

{
"status": 0,
"result": "API result"

}

Depending on the API call result can contain any type of content (string, number, array, object, etc.).

An example of a numberic result (for example a user count):

{
"status": 0,
"result": 10

}

An example of an object result (for example a user):

3.3. Developer Guides 215

Elgg Documentation, Versión master

{
"status": 0,
"result": {

"name": "Some user",
"username": "apiexample",
"email": "user@example.com"

}
}

Error result structure

When an API call fails the result will look like this:

{
"status": -1,
"message": "The reason the API call failed"

}

Default status codes

The status field always contains a number representing the result. Any value other than 0 is considered an error.

0: This is a success result

-1: This is a generic error result

-20: The user authentication token is missing, is invalid or has expired

-30: The api key has been disabled

-31: The api key is inactive

-32: The api key is invalid

Developers can implement their own status codes to represent different error states, so the request doesn’t have to rely
on the error message to know what went wrong.

Nota: result and message can contain messages in different languages. This is depending on the user language
when using user authenticated API calls or the site langauge for other API calls. Keep in mind that the language can
change, eighter by the user or by a site administrator for the site language.

3.3.36 Widgets

Widgets are content areas that users can drag around their page to customize the layout. They can typically be custo-
mized by their owner to show more/less content and determine who sees the widget. By default Elgg provides plugins
for customizing the profile page and dashboard via widgets.

Contents

Structure

Register the widget

216 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

• Multiple widgets

• Magic widget name and description

• How to restrict where widgets can be used

• Allow multiple widgets on the same page

• Register widgets in a hook

• Modify widget properties of existing widget registration

Default widgets

Structure

To create a widget, create two views:

widgets/widget/edit

widgets/widget/content

content.php is responsible for all the content that will output within the widget. The edit.php file contains any
extra edit functions you wish to present to the user. You do not need to add access level as this comes as part of the
widget framework.

Nota: Using HTML checkboxes to set widget flags is problematic because if unchecked, the checkbox input is omitted
from form submission. The effect is that you can only set and not clear flags. The «input/checkboxes» view will not
work properly in a widget’s edit panel.

Register the widget

Once you have created your edit and view pages, you need to initialize the plugin widget.

The easiest way to do this is to add the widgets section to your elgg-plugin.php config file.

return [
'widgets' => [

'filerepo' => [
'context' => ['profile'],

],
]

];

Alternatively you can also use an function to add a widget. This is done within the plugins init() function.

// Add generic new file widget
elgg_register_widget_type([

'id' => 'filerepo',
'name' => elgg_echo('widgets:filerepo:name'),
'description' => elgg_echo('widgets:filerepo:description'),
'context' => ['profile'],

]);

Nota: The only required attribute is the id.

3.3. Developer Guides 217

Elgg Documentation, Versión master

Multiple widgets

It is possible to add multiple widgets for a plugin. You just initialize as many widget directories as you need.

// Add generic new file widget
elgg_register_widget_type([

'id' => 'filerepo',
'name' => elgg_echo('widgets:filerepo:name'),
'description' => elgg_echo('widgets:filerepo:description'),
'context' => ['profile'],

]);

// Add a second file widget
elgg_register_widget_type([

'id' => 'filerepo2',
'name' => elgg_echo('widgets:filerepo2:name'),
'description' => elgg_echo('widgets:filerepo2:description'),
'context' => ['dashboard'],

]);

// Add a third file widget
elgg_register_widget_type([

'id' => 'filerepo3',
'name' => elgg_echo('widgets:filerepo3:name'),
'description' => elgg_echo('widgets:filerepo3:description'),
'context' => ['profile', 'dashboard'],

]);

Make sure you have the corresponding directories within your plugin views structure:

'Plugin'
/views

/default
/widgets

/filerepo
/edit.php
/content.php

/filerepo2
/edit.php
/content.php

/filerepo3
/edit.php
/content.php

Magic widget name and description

When registering a widget you can omit providing a name and a description. If a translation in the following
format is provided, they will be used. For the name: widgets:<widget_id>:name and for the description
widgets:<widget_id>:description. If you make sure these translation are available in a translation file,
you have very little work registering the widget.

elgg_register_widget_type(['id' => 'filerepo']);

218 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

How to restrict where widgets can be used

The widget can specify the context that it can be used in (just profile, just dashboard, etc.).

elgg_register_widget_type([
'id' => 'filerepo',
'context' => ['profile', 'dashboard', 'other_context'],

]);

Allow multiple widgets on the same page

By default you can only add one widget of the same type on the page. If you want more of the same widget on the
page, you can specify this when registering the widget:

elgg_register_widget_type([
'id' => 'filerepo',
'multiple' => true,

]);

Register widgets in a hook

If, for example, you wish to conditionally register widgets you can also use a hook to register widgets.

function my_plugin_init() {
elgg_register_plugin_hook_handler('handlers', 'widgets', 'my_plugin_conditional_

→˓widgets_hook');
}

function my_plugin_conditional_widgets_hook(\Elgg\Hook $hook) {
if (!elgg_is_active_plugin('file')) {

return;
}

$return = $hook->getValue();

$return[] = \Elgg\WidgetDefinition::factory([
'id' => 'filerepo',

]);

return $return;
}

Modify widget properties of existing widget registration

If, for example, you wish to change the allowed contexts of an already registered widget you can do so by re-registering
the widget with elgg_register_widget_type as it will override an already existing widget definition. If you
want even more control you can also use the handlers, widgets hook to change the widget definition.

function my_plugin_init() {
elgg_register_plugin_hook_handler('handlers', 'widgets', 'my_plugin_change_widget_

→˓definition_hook');
}

(continué en la próxima página)

3.3. Developer Guides 219

Elgg Documentation, Versión master

(proviene de la página anterior)

function my_plugin_change_widget_definition_hook(\Elgg\Hook $hook) {
$return = $hook->getValue();

foreach ($return as $key => $widget) {
if ($widget->id === 'filerepo') {

$return[$key]->multiple = false;
}

}

return $return;
}

Default widgets

If your plugin uses the widget canvas, you can register default widget support with Elgg core, which will handle
everything else.

To announce default widget support in your plugin, register for the get_list, default_widgets plugin hook:

elgg_register_plugin_hook_handler('get_list', 'default_widgets', 'my_plugin_default_
→˓widgets_hook');

function my_plugin_default_widgets_hook(\Elgg\Hook $hook) {
$return = $hook->getValue();

$return[] = [
'name' => elgg_echo('my_plugin'),
'widget_context' => 'my_plugin',
'widget_columns' => 3,

'event_name' => 'create',
'event_type' => 'user',
'entity_type' => 'user',
'entity_subtype' => ELGG_ENTITIES_ANY_VALUE,

];

return $return;
}

In the plugin hook handler, push an array into the return value defining your default widget support and when to create
default widgets. Arrays require the following keys to be defined:

name - The name of the widgets page. This is displayed on the tab in the admin interface.

widget_context - The context the widgets page is called from. (If not explicitly set, this is your plugin’s id.)

widget_columns - How many columns the widgets page will use.

event_name - The Elgg event name to create new widgets for. This is usually create.

event_type - The Elgg event type to create new widgets for.

entity_type - The entity type to create new widgets for.

entity_subtype - The entity subtype to create new widgets for. The can be ELGG_ENTITIES_ANY_VALUE to
create for all entity types.

To have widgets be created you need to register the following plugin hook:

220 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

elgg_register_plugin_hook_handler('create', 'object',
→˓'Elgg\Widgets\CreateDefaultWidgetsHandler');

When an object triggers an event that matches the event, entity_type, and entity_subtype parameters passed, Elgg
core will look for default widgets that match the widget_context and will copy them to that object’s owner_guid and
container_guid. All widget settings will also be copied.

3.4 Tutorials

Walk through all the required steps in order to customize Elgg.

The instructions are detailed enough that you don’t need much previous experience with Elgg.

3.4.1 Hello world

This tutorial shows you how to create a new plugin that consists of a new page with the text «Hello world» on it.

Before anything else, you need to install Elgg.

In this tutorial we will pretend your site’s URL is https://elgg.example.com.

First, create a directory that will contain the plugin’s files. It should be located under the mod/ directory which is
located in your Elgg installation directory. So in this case, create mod/hello/.

Composer file

Elgg requires that your plugin has a composer file that contains information about the plugin. Therefore, in the directory
you just created, create a file called composer.json and copy this code into it:

{
"name": "elgg/hello",
"type": "elgg-plugin",
"description": "Hello World plugin",
"license": "GPL-2.0-only",
"require": {

"composer/installers": "^1.0.8"
}

}

Registering a route

The next step is to register a route which has the purpose of handling request that users make to the URL https://
elgg.example.com/hello.

Update elgg-plugin.php to look like this:

<?php

return [
'routes' => [

'default:hello' => [
'path' => '/hello',

(continué en la próxima página)

3.4. Tutorials 221

Elgg Documentation, Versión master

(proviene de la página anterior)

'resource' => 'hello',
],

],
];

This registration tells Elgg that it should call the resource view hello when a user navigates to https://elgg.
example.com/hello.

View file

Create mod/hello/views/default/resources/hello.php with this content:

<?php

echo elgg_view_page('Hello', [
'title' => 'Hello world!',
'content' => 'My first page!',

]);

The code creates an array of parameters to be given to the elgg_view_layout() function, including:

The title of the page

The contents of the page

Filter which is left empty because there’s currently nothing to filter

This creates the basic layout for the page. The layout is then run through elgg_view_page() which assembles
and outputs the full page.

Last step

Finally, activate the plugin through your Elgg administrator page: https://elgg.example.com/admin/
plugins (the new plugin appears at the bottom).

You can now go to the address https://elgg.example.com/hello/ and you should see your new page!

3.4.2 Customizing the Home Page

To override the homepage, just override Elgg’s resources/index view by creating a file at /views/default/
resources/index.php.

Any output from this view will become your new homepage.

You can take a similar approach with any other page in Elgg or official plugins.

3.4.3 Building a Blog Plugin

This tutorial will teach you how to create a simple blog plugin. The basic functions of the blog will be creating posts,
saving them and viewing them. The plugin duplicates features that are found in the bundled blog plugin. You can
disable the bundled blog plugin if you wish, but it is not necessary since the features do not conflict each other.

222 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Contents

Create the plugin’s directory and composer file

Create the form for creating a new blog post

Create a page for composing the blogs

Create the action file for saving the blog post

Create elgg-plugin.php

Create a page for viewing a blog post

Create the object view

Trying it out

Displaying a list of blog posts

The end

Prerequisites:

Install Elgg

Create the plugin’s directory and composer file

First, choose a simple and descriptive name for your plugin. In this tutorial, the name will be my_blog. Then, create
a directory for your plugin in the /mod/ directory found in your Elgg installation directory. Other plugins are also
located in /mod/. In this case, the name of the directory should be /mod/my_blog/. This directory is the root of
your plugin and all the files that you create for the new plugin will go somewhere under it.

Next, in the root of the plugin, create the plugin’s composer file, composer.json.

See Plugins for more information about the composer file.

Create the form for creating a new blog post

Create a file at /mod/my_blog/views/default/forms/my_blog/save.php that contains the form body.
The form should have input fields for the title, body and tags of the my_blog post. It does not need form tag markup.

echo elgg_view_field([
'#type' => 'text',
'#label' => elgg_echo('title'),
'name' => 'title',
'required' => true,

]);

echo elgg_view_field([
'#type' => 'longtext',
'#label' => elgg_echo('body'),
'name' => 'body',
'required' => true,

]);

echo elgg_view_field([
'#type' => 'tags',
'#label' => elgg_echo('tags'),

(continué en la próxima página)

3.4. Tutorials 223

Elgg Documentation, Versión master

(proviene de la página anterior)

'#help' => elgg_echo('tags:help'),
'name' => 'tags',

]);

$submit = elgg_view_field(array(
'#type' => 'submit',
'#class' => 'elgg-foot',
'value' => elgg_echo('save'),

));
elgg_set_form_footer($submit);

Notice how the form is calling elgg_view_field() to render inputs. This helper function maintains consistency
in field markup, and is used as a shortcut for rendering field elements, such as label, help text, and input. See Forms +
Actions.

You can see a complete list of input views in the /vendor/elgg/elgg/views/default/input/ directory.

It is recommended that you make your plugin translatable by using elgg_echo() whenever there is a string of text
that will be shown to the user. Read more at Internationalization.

Create a page for composing the blogs

Create the file /mod/my_blog/views/default/resources/my_blog/add.php. This page will view the
form you created in the above section.

<?php

// set the title
$title = "Create a new my_blog post";

// add the form to the main column
$content = elgg_view_form("my_blog/save");

// optionally, add the content for the sidebar
$sidebar = "";

// draw the page, including the HTML wrapper and basic page layout
echo elgg_view_page($title, [

'content' => $content,
'sidebar' => $sidebar

]);

The function elgg_view_form("my_blog/save") views the form that you created in the previous section. It
also automatically wraps the form with a <form> tag and the necessary attributes as well as anti-csrf tokens.

The form’s action will be "<?= elgg_get_site_url() ?>action/my_blog/save".

Create the action file for saving the blog post

The action file will save the my_blog post to the database. Create the file /mod/my_blog/actions/my_blog/
save.php:

<?php
// get the form inputs
$title = elgg_get_title_input('title');

(continué en la próxima página)

224 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

$body = get_input('body');
$tags = string_to_tag_array(get_input('tags'));

// create a new my_blog object and put the content in it
$blog = new ElggObject();
$blog->title = $title;
$blog->description = $body;
$blog->tags = $tags;

// the object can and should have a subtype
$blog->setSubtype('my_blog');

// for now, make all my_blog posts public
$blog->access_id = ACCESS_PUBLIC;

// owner is logged in user
$blog->owner_guid = elgg_get_logged_in_user_guid();

// save to database
// if the my_blog was saved, we want to display the new post
// otherwise, we want to register an error and forward back to the form
if ($blog->save()) {

return elgg_ok_response('', "Your blog post was saved.", $blog->getURL());
} else {

return elgg_error_response("The blog post could not be saved.");
}

As you can see in the above code, Elgg objects have several fields built into them. The title of the my_blog post is
stored in the title field while the body is stored in the description field. There is also a field for tags which are
stored as metadata.

Objects in Elgg are a subclass of something called an «entity». Users, sites, and groups are also subclasses of entity.
An entity’s subtype allows granular control for listing and displaying, which is why every entity should have a subtype.
In this tutorial, the subtype «my_blog» identifies a my_blog post, but any alphanumeric string can be a valid subtype.
When picking subtypes, be sure to pick ones that make sense for your plugin.

Create elgg-plugin.php

The /mod/my_blog/elgg-plugin.php file is used to declare various functionalities of the plugin. It can, for
example, be used to configure entities, actions, widgets and routes.

<?php

return [
'entities' => [

[
'type' => 'object',
'subtype' => 'my_blog',
'capabilities' => [

'searchable' => true,
],

],
],
'actions' => [

'my_blog/save' => [],

(continué en la próxima página)

3.4. Tutorials 225

Elgg Documentation, Versión master

(proviene de la página anterior)

],
'routes' => [

'view:object:blog' => [
'path' => '/my_blog/view/{guid}/{title?}',
'resource' => 'my_blog/view',

],
'add:object:blog' => [

'path' => '/my_blog/add/{guid?}',
'resource' => 'my_blog/add',

],
'edit:object:blog' => [

'path' => '/my_blog/edit/{guid}/{revision?}',
'resource' => 'my_blog/edit',
'requirements' => [

'revision' => '\d+',
],

],
],

];

Registering the save action will make it available as /action/my_blog/save. By default, all actions are available
only to logged in users. If you want to make an action available to only admins or open it up to unauthenticated users,
you can pass ['access' => 'admin'] or ['access' => 'public'] when registering the action.

Create a page for viewing a blog post

To be able to view a my_blog post on its own page, you need to make a view page. Create the file /mod/my_blog/
views/default/resources/my_blog/view.php:

<?php

// get the entity
$guid = elgg_extract('guid', $vars);
$my_blog = get_entity($guid);

// get the content of the post
$content = elgg_view_entity($my_blog, array('full_view' => true));

echo elgg_view_page($my_blog->getDisplayName(), [
'content' => $content,

]);

This page has much in common with the add.php page. The biggest differences are that some information is ex-
tracted from the my_blog entity, and instead of viewing a form, the function elgg_view_entity is called. This
function gives the information of the entity to something called the object view.

Create the object view

When elgg_view_entity is called or when my_blogs are viewed in a list for example, the object view will
generate the appropriate content. Create the file /mod/my_blog/views/default/object/my_blog.php:

<?php

(continué en la próxima página)

226 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

echo elgg_view('output/longtext', array('value' => $vars['entity']->description));
echo elgg_view('output/tags', array('tags' => $vars['entity']->tags));

As you can see in the previous section, each my_blog post is passed to the object view as $vars['entity'].
($vars is an array used in the views system to pass variables to a view.)

The last line takes the tags on the my_blog post and automatically displays them as a series of clickable links. Search
is handled automatically.

(If you’re wondering about the «default» in /views/default/, you can create alternative views. RSS,
OpenDD, FOAF, mobile and others are all valid view types.)

Trying it out

Go to your Elgg site’s administration page, list the plugins and activate the my_blog plugin.

The page to create a new my_blog post should now be accessible at https://elgg.example.com/my_blog/
add, and after successfully saving the post, you should see it viewed on its own page.

Displaying a list of blog posts

Let’s also create a page that lists my_blog entries that have been created.

Create /mod/my_blog/views/default/resources/my_blog/all.php:

<?php
$titlebar = "All Site My_Blogs";
$pagetitle = "List of all my_blogs";

$body = elgg_list_entities(array(
'type' => 'object',
'subtype' => 'my_blog',

));

echo elgg_view_page($titlebar, [
'title' => $pagetitle,
'content' => $body,

]);

The elgg_list_entities function grabs the latest my_blog posts and passes them to the object view file. Note
that this function returns only the posts that the user can see, so access restrictions are handled transparently. The
function (and its cousins) also transparently handles pagination and even creates an RSS feed for your my_blogs if
you have defined that view.

The list function can also limit the my_blog posts to those of a specified user. For example, the function
elgg_get_logged_in_user_guid grabs the Global Unique IDentifier (GUID) of the logged in user, and by
giving that to elgg_list_entities, the list only displays the posts of the current user:

echo elgg_list_entities(array(
'type' => 'object',
'subtype' => 'my_blog',
'owner_guid' => elgg_get_logged_in_user_guid()

));

Next, you will need to register your route to return the new page when the URL is set to /my_blog/all. Configure
the routes section in elgg-plugin.php to contain the following:

3.4. Tutorials 227

Elgg Documentation, Versión master

'routes' => [
'collection:object:my_blog:all' => [

'path' => '/my_blog/all',
'resource' => 'my_blog/all',

],
],

Now, if the URL contains /my_blog/all, the user will see an «All Site My_Blogs» page.

You might also want to update the object view to handle different kinds of viewing, because otherwise the list of all
my_blogs will also show the full content of all my_blogs. Change /mod/my_blog/views/default/object/
my_blog.php to look like this:

<?php
$full = elgg_extract('full_view', $vars, FALSE);

// full view
if ($full) {

echo elgg_view('output/longtext', array('value' => $vars['entity']->description));
echo elgg_view('output/tags', array('tags' => $vars['entity']->tags));

// list view or short view
} else {

// make a link out of the post's title
echo elgg_view_title(

elgg_view('output/url', array(
'href' => $vars['entity']->getURL(),
'text' => $vars['entity']->getDisplayName(),
'is_trusted' => true,

)));
echo elgg_view('output/tags', array('tags' => $vars['entity']->tags));

}

Now, if full_view is true (as it was pre-emptively set to be in this section), the object view will show the post’s
content and tags (the title is shown by view.php). Otherwise the object view will render just the title and tags of the
post.

The end

There’s much more that could be done, but hopefully this gives you a good idea of how to get started.

3.4.4 Integrating a Rich Text Editor

Build your own wysiwyg plugin.

Elgg is bundled with a plugin for CKEditor, and previously shipped with TinyMCE support. However, if you have a
wysiwyg that you prefer, you could use this tutorial to help you build your own.

All forms in Elgg should try to use the provided input views located in views/default/input. If these views are
used, then it is simple for plugin authors to replace a view, in this case input/longtext, with their wysiwyg.

Add the WYSIWYG library code

Now you need to upload TinyMCE into a directory in your plugin. We strongly encourage you to use composer to
manage third-party dependencies, since it is so much easier to upgrade and maintain that way:

228 Capítulo 3. Continue Reading

http://ckeditor.com/
http://www.tinymce.com/

Elgg Documentation, Versión master

composer require npm-asset/tinymce

Tell Elgg when and how to load TinyMCE

Now that you have:

created your start file

intialized the plugin

uploaded the wysiwyg code

It is time to tell Elgg how to apply TinyMCE to longtext fields.

We’re going to do that by extending the input/longtext view and including some javascript. Create a view
tinymce/longtext and add the following code:

<?php

/**
* Elgg long text input with the tinymce text editor intacts

* Displays a long text input field

*/

?>
<!-- include tinymce -->
<script language="javascript" type="text/javascript" src="<?php echo $vars['url']; ?>
→˓mod/tinymce/tinymce/jscripts/tiny_mce/tiny_mce.js"></script>
<!-- intialise tinymce, you can find other configurations here http://wiki.moxiecode.
→˓com/examples/tinymce/installation_example_01.php -->
<script language="javascript" type="text/javascript">

tinyMCE.init({
mode : "textareas",
theme : "advanced",
theme_advanced_buttons1 : "bold,italic,underline,separator,strikethrough,

→˓justifyleft,justifycenter,justifyright, justifyfull,bullist,numlist,undo,redo,link,
→˓unlink,image,blockquote,code",

theme_advanced_buttons2 : "",
theme_advanced_buttons3 : "",
theme_advanced_toolbar_location : "top",
theme_advanced_toolbar_align : "left",
theme_advanced_statusbar_location : "bottom",
theme_advanced_resizing : true,
extended_valid_elements : "a[name|href|target|title|onclick],

→˓img[class|src|border=0|alt|title|hspace|vspace|width|height|align|onmouseover|onmouseout|name],
→˓

hr[class|width|size|noshade],font[face|size|color|style],span[class|align|style]"
});
</script>

Then, in your plugin’s elgg-plugin.php file extend the input/longtext view:

return [
'view_extensions' => [

'input/longtext' => [
'tinymce/longtext' => [],

],

(continué en la próxima página)

3.4. Tutorials 229

Elgg Documentation, Versión master

(proviene de la página anterior)

],
];

That’s it! Now every time someone uses input/longtext TinyMCE will be loaded and applied to that textarea.

3.4.5 Basic Widget

Create a widget that will display “Hello, World!” and optionally any text the user wants.

In Elgg, widgets are those components that you can drag onto your profile or admin dashboard.

This tutorial assumes you are familiar with basic Elgg concepts such as:

Views

Plugins

You should review those if you get confused along the way.

Contents

Adding the widget view code

Registering your widget

Allow user customization

Adding the widget view code

Elgg automatically scans particular directories under plugins looking for particular files. Views make it easy to add
your display code or do other things like override default Elgg behavior. For now, we will just be adding the view code
for your widget. Create a file at /views/default/widgets/helloworld/content.php. “helloworld” will
be the name of your widget within the hello plugin. In this file add the code:

<?php

echo "Hello, world!";

This will add these words to the widget canvas when it is drawn. Elgg takes care of loading the widget.

Registering your widget

Elgg needs to be told explicitly that the plugin contains a widget so that it will scan the widget views directory. This is
done by registering the widget in your elgg-plugin.php:

<?php
return [

'widgets' => [
'helloworld' => [

'name' => 'Hello, world!',
'description' => 'The "Hello, world!" widget',

],
],

];

230 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Now go to your profile page using a web browser and add the “hello, world” widget. It should display “Hello, world!”.

Nota: For real widgets, it is always a good idea to support Internationalization.

Allow user customization

Click on the edit link on the toolbar of the widget that you’ve created. You will notice that the only control it gives you
by default is over access (over who can see the widget).

Suppose you want to allow the user to control what greeting is displayed in the widget. Just as Elgg automatically
loads content.php when viewing a widget, it loads edit.php when a user attempts to edit a widget. Put the
following code into /views/default/widgets/helloworld/edit.php:

<div>
<label>Message:</label>
<?php

//This is an instance of the ElggWidget class that represents our widget.
$widget = $vars['entity'];

// Give the user a plain text box to input a message
echo elgg_view('input/text', array(

'name' => 'params[message]',
'value' => $widget->message,
'class' => 'hello-input-text',

));
?>

</div>

Notice the relationship between the values passed to the “name” and the “value” fields of input/text. The name of
the input text box is params[message] because Elgg will automatically handle widget variables put in the array
params. The actual php variable name will be message. If we wanted to use the field greeting instead of
message we would pass the values params[greeting] and $widget->greeting respectively.

The reason we set the “value” option of the array is so that the edit view remembers what the user typed in the previous
time he changed the value of his message text.

Now to display the user’s message we need to modify content.php to use this message variable. Edit /views/
default/widgets/helloworld/content.php and change it to:

<?php

$widget = $vars['entity'];

// Always use the corresponding output/* view for security!
echo elgg_view('output/text', array('value' => $widget->message));

You should now be able to enter a message in the text box and see it appear in the widget.

3.5 Design Docs

Gain a deep understanding of how Elgg works and why it’s built the way it is.

3.5. Design Docs 231

Elgg Documentation, Versión master

3.5.1 Actions

Actions are the primary way users interact with an Elgg site.

Overview

An action in Elgg is the code that runs to make changes to the database when a user does something. For example,
logging in, posting a comment, and making a blog post are actions. The action script processes input, makes the
appropriate modifications to the database, and provides feedback to the user about the action.

Action Handler

Actions are registered during the boot process by calling elgg_register_action(). All actions URLs start with
action/ and are served by Elgg’s front end controller through the action service. This approach is different from
traditional PHP applications that send information to a specific file. The action service performs CSRF security checks,
and calls the registered action script file, then optionally forwards the user to a new page. By using the action service
instead of a single script file, Elgg automatically provides increased security and extensibility.

See Forms + Actions for details on how to register and construct an action. To look at the core actions, check out the
directory /actions.

3.5.2 Database

A thorough discussion of Elgg’s data model design and motivation.

Contents

Overview

Datamodel

Entities

• Types

• Subtypes

• Subtype Gotchas

• GUIDs

ElggObject

ElggUser

ElggSite

ElggGroup

• The Groups plugin

• Writing a group-aware plugin

Ownership

Containers

Annotations

232 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

• Adding an annotation

• Reading annotations

• Useful helper functions

Metadata

• The simple case

• Reading metadata as objects

• Common mistakes

Relationships

• Working with relationships

Access Control

• Access controls in the data model

• How access affects data retrieval

• Write access

Schema

• InnoDB

• Main tables

• Secundairy tables

Overview

In Elgg, everything runs on a unified data model based on atomic units of data called entities.

Plugins are discouraged from interacting directly with the database, which creates a more stable system and a better
user experience because content created by different plugins can be mixed together in consistent ways. With this
approach, plugins are faster to develop, and are at the same time much more powerful.

Every entity in the system inherits the ElggEntity class. This class controls access permissions, ownership, con-
tainment and provides consistent API for accessing and updating entity properties.

You can extend entities with extra information in two ways:

Metadata: This information describes the entity, it is usually added by the author of the entity when the entity is
created or updated. Examples of metadata include tags, ISBN number or a third-party ID, location, geocoordi-
nates etc. Think of metadata as a simple key-value storage.

Annotations: This information extends the entity with properties usually added by a third party. Such proper-
ties include ratings, likes, and votes.

The main differences between metadata and annotations:

metadata does not have owners, while annotations do

metadata is not access controlled, while annotations are

metadata is preloaded when entity is constructed, while annotations are only loaded on demand

These differences might have implications for performance and your business logic, so consider carefully, how you
would like to attach data to your entities.

3.5. Design Docs 233

Elgg Documentation, Versión master

In certain cases, it may be benefitial to avoid using metadata and annotations and create new entities instead and
attaching them via container_guid or a relationship.

Datamodel

Figura 9: The Elgg data model diagram

Entities

ElggEntity is the base class for the Elgg data model and supports a common set of properties and methods.

A numeric Globally Unique IDentifier (See GUIDs).

Access permissions. (When a plugin requests data, it never gets to touch data that the current user doesn’t have
permission to see.)

An arbitrary subtype (more below).

An owner.

The site that the entity belongs to.

A container, used to associate content with a group or a user.

234 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Types

Actual entities will be instances of four different subclasses, each having a distinct type property and their own addi-
tional properties and methods.

Type PHP class Represents
object ElggObject Most user-created content, like blog posts, uploads, and bookmarks.
group ElggGroup An organized group of users with its own profile page
user ElggUser A user of the system
site ElggSite The site served by the Elgg installation

Each type has its own extended API. E.g. users can be friends with other users, group can have members, while objects
can be liked and commented on.

Subtypes

Each entity must define a subtype, which plugins use to further specialize the entity. Elgg makes it easy to query
specific for entities of a given subtype(s), as well as assign them special behaviors and views.

Subtypes are most commonly given to instances of ElggEntity to denote the kind of content created. E.g. the blog
plugin creates objects with subtype "blog".

By default, users, groups and sites have the subtypes of user, group and site respectively.

Plugins can use custom entity classes that extend the base type class. To do so, they need to register their class at
runtime (e.g. in the 'init','system' handler), using elgg_set_entity_class(). For example, the blog
plugin could use elgg_set_entity_class('object', 'blog', \ElggBlog::class).

Plugins can use elgg-plugin.php to define entity class via shortcut entities parameter.

Subtype Gotchas

Before an entity’s save() method is called, the subtype must be set by writing a string to the subtype
property.

Subtype cannot be changed after saving.

GUIDs

A GUID is an integer that uniquely identifies every entity in an Elgg installation (a Globally Unique IDentifier). It’s
assigned automatically when the entity is first saved and can never be changed.

Some Elgg API functions work with GUIDs instead of ElggEntity objects.

ElggObject

The ElggObject entity type represents arbitrary content within an Elgg install; things like blog posts, uploaded
files, etc.

Beyond the standard ElggEntity properties, ElggObjects also support:

title The title of the object (HTML escaped text)

description A description of the object (HTML)

3.5. Design Docs 235

Elgg Documentation, Versión master

Most other data about the object is generally stored via metadata.

ElggUser

The ElggUser entity type represents users within an Elgg install. These will be set to disabled until their accounts
have been activated (unless they were created from within the admin panel).

Beyond the standard ElggEntity properties, ElggUsers also support:

name The user’s plain text name. e.g. «Hugh Jackman»

username Their login name. E.g. «hjackman»

password A hashed version of their password

email Their email address

language Their default language code.

code Their session code (moved to a separate table in 1.9).

last_action The UNIX timestamp of the last time they loaded a page

prev_last_action The previous value of last_action

last_login The UNIX timestamp of their last log in

prev_last_login the previous value of last_login

ElggSite

The ElggSite entity type represents your Elgg installation (via your site URL).

Beyond the standard ElggEntity properties, ElggSites also support:

name The site name

description A description of the site

url The address of the site

ElggGroup

The ElggGroup entity type represents an association of Elgg users. Users can join, leave, and post content to groups.

Beyond the standard ElggEntity properties, ElggGroups also support:

name The group’s name (HTML escaped text)

description A description of the group (HTML)

ElggGroup has addition methods to manage content and membership.

The Groups plugin

Not to be confused with the entity type ElggGroup, Elgg comes with a plugin called «Groups» that provides a
default UI/UX for site users to interact with groups. Each group is given a discussion forum and a profile page linking
users to content within the group.

You can alter the user experience via the traditional means of extending plugins or completely replace the Groups
plugin with your own.

236 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Writing a group-aware plugin

Plugin owners need not worry too much about writing group-aware functionality, but there are a few key points:

Adding content

By passing along the group as container_guid via a hidden input field, you can use a single form and action to
add both user and group content.

Use ElggEntity->canWriteToContainer(0, $type, $subtype) to determine whether or not the cu-
rrent user has the right to add content to a group.

Be aware that you will then need to pass the container GUID or username to the page responsible for posting and
the accompanying value, so that this can then be stored in your form as a hidden input field, for easy passing to your
actions. Within a «create» action, you’ll need to take in this input field and save it as a property of your new element
(defaulting to the current user’s container):

$user = elgg_get_logged_in_user_entity();
$container_guid = (int) get_input('container_guid');

if ($container_guid) {
$container = get_entity($container_guid);

if (!$container instanceof \ElggEntity || !$container->canWriteToContainer($user->
→˓guid, 'object', 'my_content_subtype')) {

return elgg_error_response(elgg_echo('actionunauthorized'));
}

} else {
$container_guid = elgg_get_logged_in_user_guid();

}

$object = new ElggObject();
$object->container_guid = $container_guid;

...

// redirect to the created object
return elgg_ok_response('', $object->getURL());

Ownership

Entities have a owner_guid GUID property, which defines its owner. Typically this refers to the GUID of a user,
although sites and users themselves often have no owner (a value of 0).

The ownership of an entity dictates, in part, whether or not you can access or edit that entity.

Containers

In order to easily search content by group or by user, content is generally set to be «contained» by either the user who
posted it, or the group to which the user posted. This means the new object’s container_guid property will be set
to the GUID of the current ElggUser or the target ElggGroup.

E.g., three blog posts may be owned by different authors, but all be contained by the group they were posted to.

3.5. Design Docs 237

Elgg Documentation, Versión master

Note: This is not always true. Comment entities are contained by the object commented upon, and in some 3rd party
plugins the container may be used to model a parent-child relationship between entities (e.g. a «folder» object contai-
ning a file object).

Annotations

Annotations are pieces of data attached to an entity that allow users to leave ratings, or other relevant feedback. A poll
plugin might register votes as annotations.

Annotations are stored as instances of the ElggAnnotation class.

Each annotation has:

An internal annotation type (like comment)

A value (which can be a string or integer)

An access permission distinct from the entity it’s attached to

An owner

Like metadata, values are stored as strings unless the value given is a PHP integer (is_int($value) is true), or
unless the $vartype is manually specified as integer.

Adding an annotation

The easiest way to annotate is to use the annotate method on an entity, which is defined as:

public function annotate(
$name, // The name of the annotation type (eg 'comment')
$value, // The value of the annotation
$access_id = 0, // The access level of the annotation
$owner_id = 0, // The annotation owner, defaults to current user
$vartype = "" // 'text' or 'integer'

)

For example, to leave a rating on an entity, you might call:

$entity->annotate('rating', $rating_value, $entity->access_id);

Reading annotations

To retrieve annotations on an object, you can call the following method:

$annotations = $entity->getAnnotations(
$name, // The type of annotation
$limit, // The number to return
$offset, // Any indexing offset
$order, // 'asc' or 'desc' (default 'asc')

);

If your annotation type largely deals with integer values, a couple of useful mathematical functions are provided:

238 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

$averagevalue = $entity->getAnnotationsAvg($name); // Get the average value
$total = $entity->getAnnotationsSum($name); // Get the total value
$minvalue = $entity->getAnnotationsMin($name); // Get the minimum value
$maxvalue = $entity->getAnnotationsMax($name); // Get the maximum value

Useful helper functions

Comments

If you want to provide comment functionality on your plugin objects, the following function will provide the full
listing, form and actions:

function elgg_view_comments(ElggEntity $entity)

Metadata

Metadata in Elgg allows you to store extra data on an entity beyond the built-in fields that entity supports. For
example, ElggObjects only support the basic entity fields plus title and description, but you might want to include
tags or an ISBN number. Similarly, you might want users to be able to save a date of birth.

Under the hood, metadata is stored as an instance of the ElggMetadata class, but you don’t need to worry about
that in practice (although if you’re interested, see the ElggMetadata class reference). What you need to know is:

Metadata has an owner, which may be different to the owner of the entity it’s attached to

You can potentially have multiple items of each type of metadata attached to a single entity

Like annotations, values are stored as strings unless the value given is a PHP integer (is_int($value) is
true), or unless the $value_type is manually specified as integer (see below).

Nota: As of Elgg 3.0, metadata no longer have access_id.

The simple case

Adding metadata

To add a piece of metadata to an entity, just call:

$entity->metadata_name = $metadata_value;

For example, to add a date of birth to a user:

$user->dob = $dob_timestamp;

Or to add a couple of tags to an object:

$object->tags = array('tag one', 'tag two', 'tag three');

When adding metadata like this:

The owner is set to the currently logged-in user

3.5. Design Docs 239

Elgg Documentation, Versión master

Reassigning a piece of metadata will overwrite the old value

This is suitable for most purposes. Be careful to note which attributes are metadata and which are built in to the entity
type that you are working with. You do not need to save an entity after adding or updating metadata. You do need to
save an entity if you have changed one of its built in attributes. As an example, if you changed the access id of an
ElggObject, you need to save it or the change isn’t pushed to the database.

Nota: As of Elgg 3.0, metadata’s access_id property is ignored.

Reading metadata

To retrieve metadata, treat it as a property of the entity:

$tags_value = $object->tags;

Note that this will return the absolute value of the metadata. To get metadata as an ElggMetadata object, you will need
to use the methods described in the finer control section below.

If you stored multiple values in this piece of metadata (as in the «tags» example above), you will get an array of all
those values back. If you stored only one value, you will get a string or integer back. Storing an array with only one
value will return a string back to you. E.g.

$object->tags = array('tag');
$tags = $object->tags;
// $tags will be the string "tag", NOT array('tag')

To always get an array back, simply cast to an array;

$tags = (array)$object->tags;

Reading metadata as objects

elgg_get_metadata is the best function for retrieving metadata as ElggMetadata objects:

E.g., to retrieve a user’s DOB

elgg_get_metadata(array(
'metadata_name' => 'dob',
'metadata_owner_guid' => $user_guid,

));

Or to get all metadata objects:

elgg_get_metadata(array(
'metadata_owner_guid' => $user_guid,
'limit' => 0,

));

Common mistakes

240 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

«Appending» metadata

Note that you cannot «append» values to metadata arrays as if they were normal php arrays. For example, the following
will not do what it looks like it should do.

$object->tags[] = "tag four";

Trying to store hashmaps

Elgg does not support storing ordered maps (name/value pairs) in metadata. For example, the following does not work
as you might first expect it to:

// Won't work!! Only the array values are stored
$object->tags = array('one' => 'a', 'two' => 'b', 'three' => 'c');

You can instead store the information like so:

$object->one = 'a';
$object->two = 'b';
$object->three = 'c';

Storing GUIDs in metadata

Though there are some cases to store entity GUIDs in metadata, Relationships are a much better construct for relating
entities to each other.

Relationships

Relationships allow you to bind entities together. Examples: an artist has fans, a user is a member of an organization,
etc.

The class ElggRelationship models a directed relationship between two entities, making the statement:

«{subject} is a {noun} of {target}.»

API name Models Represents
guid_one The subject Which entity is being bound
relationship The noun The type of relationship
guid_two The target The entity to which the subject is bound

The type of relationship may alternately be a verb, making the statement:

«{subject} {verb} {target}.»

E.g. User A «likes» blog post B

Each relationship has direction. Imagine an archer shoots an arrow at a target; The arrow moves in one direction,
binding the subject (the archer) to the target.

A relationship does not imply reciprocity. A follows B does not imply that B follows A.

Relationships_ do not have access control. They’re never hidden from view and can be edited with code at any
privilege level, with the caveat that the entities in a relationship may be invisible due to access control!

3.5. Design Docs 241

Elgg Documentation, Versión master

Working with relationships

Creating a relationship

E.g. to establish that «$user is a fan of $artist» (user is the subject, artist is the target):

// option 1
$success = add_entity_relationship($user->guid, 'fan', $artist->guid);

// option 2
$success = $user->addRelationship($artist->guid, 'fan');

This triggers the event [create, relationship], passing in the created ElggRelationship object. If a handler returns
false, the relationship will not be created and $success will be false.

Verifying a relationship

E.g. to verify that «$user is a fan of $artist»:

if (check_entity_relationship($user->guid, 'fan', $artist->guid)) {
// relationship exists

}

Note that, if the relationship exists, check_entity_relationship() returns an ElggRelationship object:

$relationship = check_entity_relationship($user->guid, 'fan', $artist->guid);
if ($relationship) {

// use $relationship->id or $relationship->time_created
}

Deleting a relationship

E.g. to be able to assert that «$user is no longer a fan of $artist»:

$was_removed = remove_entity_relationship($user->guid, 'fan', $artist->guid);

This triggers the event [delete, relationship], passing in the associated ElggRelationship object. If a handler
returns false, the relationship will remain, and $was_removed will be false.

Other useful functions:

delete_relationship() : delete by ID

remove_entity_relationships() : delete those relating to an entity

Finding relationships and related entities

Below are a few functions to fetch relationship objects and/or related entities. A few are listed below:

get_entity_relationships() : fetch relationships by subject or target entity

get_relationship() : get a relationship object by ID

elgg_get_entities() : fetch entities in relationships in a variety of ways

242 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

E.g. retrieving users who joined your group in January 2014.

$entities = elgg_get_entities(array(
'relationship' => 'member',
'relationship_guid' => $group->guid,
'inverse_relationship' => true,

'relationship_created_time_lower' => 1388534400, // January 1st 2014
'relationship_created_time_upper' => 1391212800, // February 1st 2014

));

Access Control

Granular access controls are one of the fundamental design principles in Elgg, and a feature that has been at the centre
of the system throughout its development. The idea is simple: a user should have full control over who sees an item of
data he or she creates.

Access controls in the data model

In order to achieve this, every entity and annotation contains an access_id property, which in turn corresponds to
one of the pre-defined access controls or an entry in the access_collections database table.

Pre-defined access controls

ACCESS_PRIVATE (value: 0) Private.

ACCESS_LOGGED_IN (value: 1) Logged in users.

ACCESS_PUBLIC (value: 2) Public data.

User defined access controls

You may define additional access groups and assign them to an entity, or annotation. A number of functions have been
defined to assist you; see the Access Control Lists for more information.

How access affects data retrieval

All data retrieval functions above the database layer - for example elgg_get_entities will only return items that
the current user has access to see. It is not possible to retrieve items that the current user does not have access to. This
makes it very hard to create a security hole for retrieval.

Write access

The following rules govern write access:

The owner of an entity can always edit it

The owner of a container can edit anything therein (note that this does not mean that the owner of a group can
edit anything therein)

Admins can edit anything

3.5. Design Docs 243

Elgg Documentation, Versión master

You can override this behaviour using a plugin hook called permissions_check, which passes the entity in
question to any function that has announced it wants to be referenced. Returning true will allow write access;
returning false will deny it. See the plugin hook reference for permissions_check for more details.

Schema

The database contains a number of primary and secondary tables. You can follow schema changes in engine/
schema/migrations/

The character set of the database should be utf8mb4, this will provide full unicode character support when storing
data.

InnoDB

As of Elgg 3.0 the database uses the InnoDB engine. In order for a correct installation or migration some settings may
need to be adjusted in the database settings.

innodb_large_prefix should be on

innodb_file_format should be Barracuda

innodb_file_per_table should be 1

Main tables

This is a description of the main tables. Keep in mind that in a given Elgg installation, the tables will have a prefix
(typically «elgg_»).

Table: entities

This is the main Entities table containing Elgg users, sites, objects and groups. When you first install Elgg this is
automatically populated with your first site.

It contains the following fields:

guid An auto-incrementing counter producing a GUID that uniquely identifies this entity in the system

type The type of entity - object, user, group or site

subtype A subtype of entity

owner_guid The GUID of the owner’s entity

container_guid The GUID this entity is contained by - either a user or a group

access_id Access controls on this entity

time_created Unix timestamp of when the entity is created

time_updated Unix timestamp of when the entity was updated

enabled If this is “yes” an entity is accessible, if “no” the entity has been disabled (Elgg treats it as if it were
deleted without actually removing it from the database)

244 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Table: metadata

This table contains Metadata, extra information attached to an entity.

id A unique IDentifier

entity_guid The entity this is attached to

name The name string

value The value string

value_type The value class, either text or an integer

time_created Unix timestamp of when the metadata is created

enabled If this is “yes” an item is accessible, if “no” the item has been disabled

Table: annotations

This table contains Annotations, this is distinct from Metadata.

id A unique IDentifier

entity_guid The entity this is attached to

name The name string

value The value string

value_type The value class, either text or an integer

owner_guid The owner GUID of the owner who set this annotation

access_id An Access controls on this annotation

time_created Unix timestamp of when the annotation is created.

enabled If this is “yes” an item is accessible, if “no” the item has been disabled

Table: relationships

This table defines Relationships, these link one entity with another.

guid_one The GUID of the subject entity.

relationship The type of the relationship.

guid_two The GUID of the target entity.

Secundairy tables

Table: access_collections

This table defines Access Collections, which grant users access to Entities or Annotations.

id A unique IDentifier

*name The name of the access collection

owner_guid The GUID of the owning entity (eg. a user or a group)

3.5. Design Docs 245

Elgg Documentation, Versión master

subtype the subtype of the access collection (eg. friends or group_acl)

3.5.3 Events and Plugin Hooks

Contents

Overview

• Elgg Events vs. Plugin Hooks

Elgg Events

• Before and After Events

• Elgg Event Handlers

• Register to handle an Elgg Event

• Trigger an Elgg Event

• Trigger an Elgg Event sequence

Plugin Hooks

• Plugin Hook Handlers

• Register to handle a Plugin Hook

• Trigger a Plugin Hook

• Unregister Event/Hook Handlers

• Handler Calling Order

Overview

Elgg has an event system that can be used to replace or extend core functionality.

Plugins influence the system by creating handlers (callables such as functions and methods) and registering them to
handle two types of events: Elgg Events and Plugin Hooks.

When an event is triggered, a set of handlers is executed in order of priority. Each handler is passed arguments and has
a chance to influence the process. After execution, the «trigger» function returns a value based on the behavior of the
handlers.

Ver también:

List of events in core

List of plugin hooks in core

Elgg Events vs. Plugin Hooks

The main differences between Elgg Events and Plugin Hooks are:

1. Most Elgg events can be cancelled; unless the event is an «after» event, a handler that returns false can cancel
the event, and no more handlers are called.

2. Plugin hooks cannot be cancelled; all handlers are always called.

246 Capítulo 3. Continue Reading

http://php.net/manual/en/language.types.callable.php

Elgg Documentation, Versión master

3. Plugin hooks pass an arbitrary value through the handlers, giving each a chance to alter along the way.

Elgg Events

Elgg Events are triggered when an Elgg object is created, updated, or deleted; and at important milestones while the
Elgg framework is loading. Examples: a blog post being created or a user logging in.

Unlike Plugin Hooks, most Elgg events can be cancelled, halting the execution of the handlers, and possibly cancelling
an some action in the Elgg core.

Each Elgg event has a name and an object type (system, user, object, relationship name, annotation, group) describing
the type of object passed to the handlers.

Before and After Events

Some events are split into «before» and «after». This avoids confusion around the state of the system while in flux.
E.g. Is the user logged in during the [login, user] event?

Before Events have names ending in «:before» and are triggered before something happens. Like traditional events,
handlers can cancel the event by returning false.

After Events, with names ending in «:after», are triggered after something happens. Unlike traditional events, handlers
cannot cancel these events; all handlers will always be called.

Where before and after events are available, developers are encouraged to transition to them, though older events will
be supported for backwards compatibility.

Elgg Event Handlers

Elgg event handlers are callables:

<?php

/**
* @param \Elgg\Event $event The event object

*
* @return bool if false, the handler is requesting to cancel the event

*/
function event_handler(\Elgg\Event $event) {

...
}

In event_handler, the Event object has various methods for getting the name, object type, and object of the
event. See the Elgg\Event class for details.

If a handler returns false, the event is cancelled, preventing execution of the other handlers. All other return values
are ignored.

Register to handle an Elgg Event

Register your handler to an event using elgg_register_event_handler:

3.5. Design Docs 247

Elgg Documentation, Versión master

<?php

elgg_register_event_handler($event, $object_type, $handler, $priority);

Parameters:

$event The event name.

$object_type The object type (e.g. «user» or «object») or “all” for all types on which the event is fired.

$handler The callback of the handler function.

$priority The priority - 0 is first and the default is 500.

Object here does not refer to an ElggObject but rather a string describing any object in the framework: system,
user, object, relationship, annotation, group.

Example:

<?php

// Register the function myPlugin_handle_create_object() to handle the
// create object event with priority 400.
elgg_register_event_handler('create', 'object', 'myPlugin_handle_create_object', 400);

Advertencia: If you handle the «update» event on an object, avoid calling save() in your event handler. For one
it’s probably not necessary as the object is saved after the event completes, but also because save() calls another
«update» event and makes $object->getOriginalAttributes() no longer available.

Invokable classes as handlers

You may use a class with an __invoke() method as a handler. Just register the class name and it will be instantiated
(with no arguments) for the lifetime of the event (or hook).

<?php

namespace MyPlugin;

class UpdateObjectHandler {
public function __invoke(\Elgg\Event $event) {

}
}

// in init, system
elgg_register_event_handler('update', 'object', MyPlugin\UpdateObjectHandler::class);

Trigger an Elgg Event

You can trigger a custom Elgg event using elgg_trigger_event:

<?php

if (elgg_trigger_event($event, $object_type, $object)) {

(continué en la próxima página)

248 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

// Proceed with doing something.
} else {

// Event was cancelled. Roll back any progress made before the event.
}

For events with ambiguous states, like logging in a user, you should use Before and After Events by calling
elgg_trigger_before_event or elgg_trigger_after_event. This makes it clear for the event handler
what state to expect and which events can be cancelled.

<?php

// handlers for the user, login:before event know the user isn't logged in yet.
if (!elgg_trigger_before_event('login', 'user', $user)) {

return false;
}

// handlers for the user, login:after event know the user is logged in.
elgg_trigger_after_event('login', 'user', $user);

Parameters:

$event The event name.

$object_type The object type (e.g. «user» or «object»).

$object The object (e.g. an instance of ElggUser or ElggGroup)

The function will return false if any of the selected handlers returned false and the event is stoppable, otherwise
it will return true.

Trigger an Elgg Event sequence

Instead of triggering the :before and :after event manually, it’s possible to trigger an event sequence. This will
trigger the :before event, then the actual event and finally the :after event.

elgg()->events->triggerSequence($event, $type, $object, $callable);

When called with for example 'cache:clear', 'system' the following three events are triggered

'cache:clear:before', 'system'

'cache:clear', 'system'

'cache:clear:after', 'system'

Parameters:

$event The event name.

$object_type The object type (e.g. «user» or «object»).

$object The object (e.g. an instance of ElggUser or ElggGroup)

$callable Callable to run on successful event, before event:after

Plugin Hooks

Plugin Hooks provide a way for plugins to collaboratively determine or alter a value. For example, to decide whether
a user has permission to edit an entity or to add additional configuration options to a plugin.

3.5. Design Docs 249

Elgg Documentation, Versión master

A plugin hook has a value passed into the trigger function, and each handler has an opportunity to alter the value
before it’s passed to the next handler. After the last handler has completed, the final value is returned by the trigger.

Plugin Hook Handlers

Hook handlers are callables with the following prototype:

<?php

/**
* @param \Elgg\Hook $hook The hook object

*
* @return mixed if not null, this will be the new value of the plugin hook

*/
function plugin_hook_handler(\Elgg\Hook $hook) {

...
}

In plugin_hook_handler, the Hook object has various methods for getting the name, type, value, and parameters
of the hook. See the Elgg\Hook interface for details.

If the handler returns no value (or null explicitly), the plugin hook value is not altered. Otherwise the returned value
becomes the new value of the plugin hook, and it will then be available as $hook->getValue() in the next handler.

Register to handle a Plugin Hook

Register your handler to a plugin hook using elgg_register_plugin_hook_handler:

<?php

elgg_register_plugin_hook_handler($hook, $type, $handler, $priority);

Parameters:

$hook The name of the plugin hook.

$type The type of the hook or “all” for all types.

$handler The callback of the handler function.

$priority The priority - 0 is first and the default is 500.

Type can vary in meaning. It may mean an Elgg entity type or something specific to the plugin hook name.

Example:

<?php

// Register the function myPlugin_hourly_job() to be called with priority 400.
elgg_register_plugin_hook_handler('cron', 'hourly', 'myPlugin_hourly_job', 400);

Trigger a Plugin Hook

You can trigger a custom plugin hook using elgg_trigger_plugin_hook:

250 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

<?php

// filter $value through the handlers
$value = elgg_trigger_plugin_hook($hook, $type, $params, $value);

Parameters:

$hook The name of the plugin hook.

$type The type of the hook or “all” for all types.

$params Arbitrary data passed from the trigger to the handlers.

$value The initial value of the plugin hook.

Advertencia: The $params and $value arguments are reversed between the plugin hook handlers and trigger
functions!

Unregister Event/Hook Handlers

The functions elgg_unregister_event_handler and elgg_unregister_plugin_hook_handler
can be used to remove handlers already registered by another plugin or Elgg core. The parameters are in the same
order as the registration functions, except there’s no priority parameter.

<?php

elgg_unregister_event_handler('login', 'user', 'myPlugin_handle_login');

Anonymous functions or invokable objects cannot be unregistered, but dynamic method callbacks can be unregistered
by giving the static version of the callback:

<?php

$obj = new MyPlugin\Handlers();
elgg_register_plugin_hook_handler('foo', 'bar', [$obj, 'handleFoo']);

// ... elsewhere

elgg_unregister_plugin_hook_handler('foo', 'bar', 'MyPlugin\Handlers::handleFoo');

Even though the event handler references a dynamic method call, the code above will successfully remove the handler.

Handler Calling Order

Handlers are called first in order of priority, then registration order.

Nota: Before Elgg 2.0, registering with the all keywords caused handlers to be called later, even if they were
registered with lower priorities.

3.5. Design Docs 251

Elgg Documentation, Versión master

3.5.4 Internationalization

Elgg 1.0+ departs from previous versions in that it uses a custom text array rather than gettext. This improves system
performance and reliability of the translation system.

TODO: more plz

3.5.5 AMD

Overview

If you want to use JavaScript in Elgg: we use a AMD (Asynchronous Module Definition) compatible system.

This discusses the benefits of using AMD in Elgg.

Why AMD?

We have been working hard to make Elgg’s JavaScript more maintainable and useful. We made some strides in 1.8
with the introduction of the «elgg» JavaScript object and library, but have quickly realized the approach we were
taking was not scalable.

The size of JS on the web is growing quickly, and JS in Elgg is growing too. We want Elgg to be able to offer a solution
that makes JS development as productive and maintainable as possible going forward.

The reasons to choose AMD are plenteous and well-documented. Let’s highlight just a few of the most relevant reasons
as they relate to Elgg specifically.

1. Simplified dependency management

AMD modules load asynchronously and execute as soon as their dependencies are available, so this eliminates the need
to specify «priority» and «location» when registering JS libs in Elgg. Also, you don’t need to worry about explicitly
loading a module’s dependencies in PHP. The AMD loader (RequireJS in this case) takes care of all that hassle for
you. It’s also possible have text dependencies with the RequireJS text plugin, so client-side templating should be a
breeze.

2. AMD works in all browsers. Today.

Elgg developers are already writing lots of JavaScript. We know you want to write more. We cannot accept waiting
5-10 years for a native JS modules solution to be available in all browsers before we can organize our JavaScript in a
maintainable way.

3. You do not need a build step to develop in AMD.

We like the edit-refresh cycle of web development. We wanted to make sure everyone developing in Elgg could
continue experiencing that joy. Synchronous module formats like Closure or CommonJS just weren’t an option for us.
But even though AMD doesn’t require a build step, it is still very build-friendly. Because of the define() wrapper,
it’s possible to concatenate multiple modules into a single file and ship them all at once in a production environment.1

1 This is not currently supported by Elgg core, but we’ll be looking into it since reducing round-trips is critical for a good first-view experience,
especially on mobile devices.

252 Capítulo 3. Continue Reading

http://requirejs.org/docs/whyamd.html
http://httparchive.org/trends.php?s=All&minlabel=Feb+11+2011&maxlabel=Feb+1+2013#bytesJS&reqJS
http://requirejs.org/docs/whyamd.html
http://requirejs.org/docs/api.html#text

Elgg Documentation, Versión master

AMD is a battle-tested and well thought out module loading system for the web today. We’re very thankful for the
work that has gone into it, and are excited to offer it as the standard solution for JavaScript development in Elgg
starting with Elgg 1.9.

3.5.6 Security

Elgg’s approach to the various security issues common to all web applications.

Truco: To report a potential vulnerability in Elgg, email security@elgg.org.

Contents

Passwords

• Password validation

• Password hashing

• Password throttling

• Password resetting

Sessions

• Session fixation

• «Remember me» cookie

Alternative authentication

HTTPS

XSS

CSRF / XSRF

Signed URLs

SQL Injection

Privacy

Hardening

Passwords

Password validation

The only restriction that Elgg places on a password is that it must be at least 6 characters long by default, though this
may be changed in /elgg-config/settings.php. Additional criteria can be added by a plugin by registering
for the registeruser:validate:password plugin hook.

Password hashing

Passwords are never stored in plain text, only salted hashes produced with bcrypt. This is done via the standard
password_hash() function. On older systems, the password-compat polyfill is used, but the algorithm is

3.5. Design Docs 253

mailto:security@elgg.org

Elgg Documentation, Versión master

identical.

Elgg installations created before version 1.10 may have residual «legacy» password hashes created using salted MD5.
These are migrated to bcrypt as users log in, and will be completely removed when a system is upgraded to Elgg 3.0.
In the meantime we’re happy to assist site owners to manually remove these legacy hashes, though it would force those
users to reset their passwords.

Password throttling

Elgg has a password throttling mechanism to make dictionary attacks from the outside very difficult. A user is only
allowed 5 login attempts over a 5 minute period.

Password resetting

If a user forgets his password, a new random password can be requested. After the request, an email is sent with a
unique URL. When the user visits that URL, a new random password is sent to the user through email.

Sessions

Elgg uses PHP’s session handling with custom handlers. Session data is stored in the database. The session cookie
contains the session id that links the user to the browser. The user’s metadata is stored in the session including GUID,
username, email address.

The session’s lifetime is controlled through the server’s PHP configuration and additionally through options in the
/elgg-config/settings.php.

Session fixation

Elgg protects against session fixation by regenerating the session id when a user logs in.

«Remember me» cookie

To allow users to stay logged in for a longer period of time regardless of whether the browser has been closed, Elgg uses
a cookie (default called elggperm) that contains what could be considered a super session identifier. This identifier is
stored in a cookies table. When a session is being initiated, Elgg checks for the presence of the elggperm cookie. If it
exists and the session code in the cookie matches the code in the cookies table, the corresponding user is automatically
logged in.

When a user changes their password all existing permanent cookie codes are removed from the database.

The lifetime of the persistent cookie can be controlled in the /elgg-config/settings.php file. The default lifetime is 30
days. The database records for the persistent cookies will be removed after the lifetime expired.

Alternative authentication

Nota: This section is very hand-wavy

254 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

To replace Elgg’s default user authentication system, a plugin could replace the default login action with its own.
Better would be to register a PAM handler using register_pam_handler() which handles the authentication of
the user based on the new requirements.

HTTPS

Nota: You must enable SSL support on your server for any of these techniques to work.

You can serve your whole site over SSL by changing the site URL to include «https» instead of just «http».

XSS

Filtering is used in Elgg to make XSS attacks more difficult. The purpose of the filtering is to remove Javascript and
other dangerous input from users.

Filtering is performed through the function filter_tags(). This function takes in a string and returns a filtered
string. It triggers a validate, input plugin hook.

By default Elgg comes with the htmLawed filtering code. Developers can drop in any additional or replacement
filtering code as a plugin.

The filter_tags() function is called on any user input as long as the input is obtained through a call to
get_input(). If for some reason a developer did not want to perform the default filtering on some user input,
the get_input() function has a parameter for turning off filtering.

CSRF / XSRF

Elgg generates security tokens to prevent cross-site request forgery. These are embedded in all forms and state-
modifying AJAX requests as long as the correct API is used. Read more in the Forms + Actions developer guide.

Signed URLs

It’s possible to protect URLs with a unique signature. Read more in the Forms + Actions developer guide.

SQL Injection

Elgg’s API sanitizes all input before issuing DB queries. Read more in the Database design doc.

Privacy

Elgg uses an ACL system to control which users have access to various pieces of content. Read more in the Database
design doc.

Hardening

Site administrators can configure settings which will help with hardening the website. Read more in the Administrator
guide Security.

3.5. Design Docs 255

http://en.wikipedia.org/wiki/Cross-site_request_forgery

Elgg Documentation, Versión master

3.5.7 Loggable

Loggable is an interface inherited by any class that wants events relating to its member objects to be saved to the
system log. ElggEntity and ElggExtender both inherit Loggable.

Loggable defines several class methods that are used in saving to the default system log, and can be used to define
your own (as well as for other purposes):

getSystemLogID() Return a unique identifier for the object for storage in the system log. This is likely to
be the object’s GUID

getClassName() Return the class name of the object

getType() Return the object type

getSubtype() Get the object subtype

getObjectFromID($id) For a given ID, return the object associated with it

Database details

The default system log is stored in the system_log database table. It contains the following fields:

id - A unique numeric row ID

object_id - The GUID of the entity being acted upon

object_class - The class of the entity being acted upon (eg ElggObject)

object_type - The type of the entity being acted upon (eg object)

object_subtype - The subtype of the entity being acted upon (eg blog)

event - The event being logged (eg create or update)

performed_by_guid - The GUID of the acting entity (the user performing the action)

owner_guid - The GUID of the user which owns the entity being acted upon

access_id - The access restriction associated with this log entry

time_created - The UNIX epoch timestamp of the time the event took place

3.6 Contributor Guides

Participate in making Elgg even better.

Elgg is a community-driven project. It relies on the support of volunteers to succeed. Here are some ways you can
help:

3.6.1 Writing Code

Understand Elgg’s standards and processes to get your changes accepted as quickly as possible.

Contents

License agreement

256 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Pull requests

Coding Standards

Testing

Coding best practices

Deprecating APIs

License agreement

By submitting a patch you are agreeing to license the code under a GPLv2 license and MIT license.

Pull requests

Pull requests (PRs) are the best way to get code contributed to Elgg core. The core development team uses them even
for the most trivial changes.

For new features, submit a feature request or talk to us first and make sure the core team approves of your direction
before spending lots of time on code.

Checklists

Use these markdown checklists for new PRs on github to ensure high-quality contributions and help everyone unders-
tand the status of open PRs.

Bugfix PRs:

- [] Commit messages are in the standard format
- [] Includes regression test
- [] Includes documentation update (if applicable)
- [] Is submitted against the correct branch
- [] Has LGTM from at least one core developer

Feature PRs:

- [] Commit messages are in the standard format
- [] Includes tests
- [] Includes documentation
- [] Is submitted against the correct branch
- [] Has LGTM from at least two core developers

Choosing a branch to submit to

The following table assumes the latest stable release is 2.1.

3.6. Contributor Guides 257

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://en.wikipedia.org/wiki/MIT_License
https://github.com/Elgg/Elgg/issues
http://community.elgg.org/groups/profile/211069/feedback-and-planning

Elgg Documentation, Versión master

Type of change Branch to submit against
Security fix Don’t! Email security@elgg.org for guidance.
Bug fix 1.12 (or 2.1 if the 1.12 fix is too complex)
Performance 2.x
Deprecation 2.x
Minor feature 2.x
Major feature master
Has any breaking change master

If you’re not sure which branch to submit against, just ask!

The difference between minor and major feature is subjective and up to the core team.

Commit message format

We require a particular format to allow releasing more often, and with improved changelogs and source history. Just
follow these steps:

1. Start with the type by selecting the last category which applies from this list:

docs - only docs are being updated

chore - this include refactoring, code style changes, adding missing tests, CI stuff, etc.

perf - the primary purpose is to improve performance

fix - this fixes a bug

deprecate - the change deprecates any part of the API

break - the change breaks any part of the API

feature - this adds a new user-facing or developer feature

removed - this removes a user-facing or developer feature

security - the change affects a security issue in any way. Please do not push this commit to any public
repo. Instead contact security@elgg.org.

E.g. if your commit refactors to fix a bug, it’s still a «fix». If that bug is security-related, however, the type must
be «security» and you should email security@elgg.org before proceeding. When in doubt, make your best guess
and a reviewer will provide guidance.

2. In parenthesis, add the component, a short string which describes the subsystem being changed.

Some examples: views, i18n, seo, a11y, cache, db, session, router, <plugin_name>.

3. Add a colon, a space, and a brief summary of the changes, which will appear in the changelog.

No line may exceed 100 characters in length, so keep your summary concise.

258 Capítulo 3. Continue Reading

mailto:security@elgg.org
mailto:security@elgg.org
mailto:security@elgg.org

Elgg Documentation, Versión master

Good summary Bad summary (problem)
page owners see their own owner
blocks on pages

bug fix (vague)

bar view no longer dies if “foo” not
set

updates views/default/bar.php so bar view no longer. . . (redundant in-
fo)

narrows river layout to fit iPhone alters the river layout (vague)
elgg_foo() handles arrays for $bar in elgg_foo() you can now pass an array for $bar and the function

will. . . (move detail to description)
removes link color from comments
header in river

fixes db so that. . . (redundant info)

requires non-empty title when sa-
ving pages

can save pages with no title (confusingly summarizes old behavior)

4. (recommended) Skip a line and add a description of the changes. Include the motivation for making them,
any info about back or forward compatibility, and any rationale of why the change had to be done a certain way.
Example:

We speed up the Remember Me table migration by using a single INSERT INTO . . . SELECT query
instead of row-by-row. This migration takes place during the upgrade to 1.9.

Unless your change is trivial/obvious, a description is required.

5. If the commit resolves a GitHub issue, skip a line and add Fixes # followed by the issue number. E.g. Fixes
#1234. You can include multiple issues by separating with commas.

GitHub will auto-close the issue when the commit is merged. If you just want to reference an issue, use Refs
instead.

When done, your commit message will have the format:

type(component): summary

Optional body
Details about the solution.
Opportunity to call out as breaking change.

Closes/Fixes/Refs #123, #456, #789

Here is an example of a good commit message:

perf(upgrade): speeds up migrating remember me codes

We speed up the Remember Me table migration by using a single INSERT INTO ... SELECT
→˓query instead of row-by-row.
This migration takes place during the upgrade to 1.9.

Fixes #6204

Rewriting commit messages

If your PR does not conform to the standard commit message format, we’ll ask you to rewrite it.

To edit just the last commit:

1. Amend the commit: git commit --amend (git opens the message in a text editor).

2. Change the message and save/exit the editor.

3.6. Contributor Guides 259

Elgg Documentation, Versión master

3. Force push your branch: git push -f your_remote your_branch (your PR with be updated).

4. Rename the PR title to match

Otherwise you may need to perform an interactive rebase:

1. Rebase the last N commits: git rebase -i HEAD~N where N is a number. (Git will open the
git-rebase-todo file for editing)

2. For the commits that need to change, change pick to r (for reword) and save/exit the editor.

3. Change the commit message(s), save/exit the editor (git will present a file for each commit that needs rewording).

4. git push -f your_remote your_branch to force push the branch (updating your PR).

5. Rename the PR title to match

Coding Standards

Elgg uses set of standards that are based partially on PEAR and PSR2 standards. You can view the ruleset in vendor/
elgg/sniffs/elgg.xml.

To check your code for standard violations (provided you have installed Elgg with dev dependencies), run:

phpcs --standard=vendor/elgg/sniffs/elgg.xml -s path/to/dir/to/check

To automatically fix fixable violations, run:

phpcbf --standard=vendor/elgg/sniffs/elgg.xml path/to/dir/to/fix

Testing

Elgg has automated tests for both PHP and JavaScript functionality. All new contributions are required to come with
appropriate tests.

Ver también:

Writing tests

General guidelines

Break tests up by the behaviors you want to test and use names that describe the behavior. E.g.:

Not so good: One big method testAdd().

Better: Methods testAddingZeroChangesNothing and testAddingNegativeNumberSubtracts

Strive for componentized designs that allow testing in isolation, without large dependency graphs or DB access. Injec-
ting dependencies is key here.

PHP Tests

PHPUnit

Located in engine/tests/phpunit, this is our preferred test suite. It uses no DB access, and has only superficial
access to the entities API.

260 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

We encourage you to create components that are testable in this suite if possible.

Consider separating storage from your component so at least business logic can be tested here.

Depend on the Elgg\Filesystem* classes rather than using PHP filesystem functions.

Testing interactions between services

Ideally your tests would construct your own isolated object graphs for direct manipulation, but this isn’t always possi-
ble.

If your test relies on Elgg’s Internal Services (_elgg_services() returns a Elgg\Di\InternalContainer),
realize that it maintains a singleton instance for most services it hands out, and many services keep their own local
references to these services as well.

Due to these local references, replacing services on the SP within a test often will not have the desired effect. Instead,
you may need to use functionality baked into the services themselves:

The events and hooks services have methods backup() and restore().

The logger service has methods disable() and enable().

Jasmine Tests

Test files must be named *Test.js and should go in either js/tests/ or next to their source files in views/
default/**.js. Karma will automatically pick up on new *Test.js files and run those tests.

Test boilerplate

define(['elgg'], function(elgg) {
describe("This new test", function() {

it("fails automatically", function() {
expect(true).toBe(false);

});
});

});

Running the tests

Elgg uses Karma with Jasmine to run JS unit tests.

You will need to have nodejs and yarn installed.

First install all the development dependencies:

yarn

Run through the tests just once and then quit:

yarn test

You can also run tests continuously during development so they run on each save:

3.6. Contributor Guides 261

http://karma-runner.github.io/0.8/index.html
http://pivotal.github.io/jasmine/

Elgg Documentation, Versión master

karma start js/tests/karma.conf.js

Debugging JS tests

You can run the test suite inside Chrome dev tools:

yarn run chrome

This will output a URL like http://localhost:9876/.

1. Open the URL in Chrome, and click «Debug».

2. Open Chrome dev tools and the Console tab.

3. Reload the page.

If you alter a test you’ll have to quit Karma with Ctrl-c and restart it.

Coding best practices

Make your code easier to read, easier to maintain, and easier to debug. Consistent use of these guidelines means less
guess work for developers, which means happier, more productive developers.

General coding

Don’t Repeat Yourself

If you are copy-pasting code a significant amount of code, consider whether there’s an opportunity to reduce duplica-
tion by introducing a function, an additional argument, a view, or a new component class.

E.g. If you find views that are identical except for a single value, refactor into a single view that takes an option.

Note: In a bugfix release, some duplication is preferrable to refactoring. Fix bugs in the simplest way possible and
refactor to reduce duplication in the next minor release branch.

Embrace SOLID and GRASP

Use these principles for OO design to solve problems using loosely coupled components, and try to make all compo-
nents and integration code testable.

Whitespace is free

Don’t be afraid to use it to separate blocks of code. Use a single space to separate function params and string concate-
nation.

Variable names

Use self-documenting variable names. $group_guids is better than $array.

Avoid double-negatives. Prefer $enable = true to $disable = false.

262 Capítulo 3. Continue Reading

http://nikic.github.io/2011/12/27/Dont-be-STUPID-GRASP-SOLID.html

Elgg Documentation, Versión master

Interface names

Use the pattern Elgg\{Namespace}\{Name}.

Do not include an I prefix or an Interface suffix.

We do not include any prefix or suffix so that we’re encouraged to:

name implementation classes more descriptively (the «default» name is taken).

type-hint on interfaces, because that is the shortest, easiest thing to do.

Name implementations like Elgg\{Namespace}\{Interface}\{Implementation}.

Functions

Where possible, have functions/methods return a single type. Use empty values such as array(), "", or 0 to indicate
no results.

Be careful where valid return values (like "0") could be interpreted as empty.

Functions not throwing an exception on error should return false upon failure.

Nota: Particularly low-level, non-API functions/methods (e.g. entity_row_to_elggstar), which should not fail under
normal conditions, should throw instead of returning false.

Functions returning only boolean should be prefaced with is_ or has_ (eg, elgg_is_logged_in(),
elgg_has_access_to_entity()).

Ternary syntax

Acceptable only for single-line, non-embedded statements.

Minimize complexity

Minimize nested blocks and distinct execution paths through code. Use Return Early to reduce nesting levels and
cognitive load when reading code.

Use comments effectively

Good comments describe the «why.» Good code describes the «how.» E.g.:

Bad:

// increment $i only when the entity is marked as active.
foreach ($entities as $entity) {

if ($entity->active) {
$i++;

}
}

Good:

3.6. Contributor Guides 263

http://www.mrclay.org/2013/09/18/when-reasonable-return-early/

Elgg Documentation, Versión master

// find the next index for inserting a new active entity.
foreach ($entities as $entity) {

if ($entity->active) {
$i++;

}
}

Always include a comment if it’s not obvious that something must be done in a certain way. Other developers looking
at the code should be discouraged from refactoring in a way that would break the code.

// Can't use empty()/boolean: "0" is a valid value
if (elgg_is_empty($str)) {

throw new \Elgg\Exceptions\Http\BadRequestException(elgg_echo('foo:string_cannot_
→˓be_empty'));
}

Commit effectively

Err on the side of atomic commits which are highly focused on changing one aspect of the system.

Avoid mixing in unrelated changes or extensive whitespace changes. Commits with many changes are scary and
make pull requests difficult to review.

Use visual git tools to craft highly precise and readable diffs.

Include tests

When at all possible include unit tests for code you add or alter.

Keep bugfixes simple

Avoid the temptation to refactor code for a bugfix release. Doing so tends to introduce regressions, breaking functio-
nality in what should be a stable release.

PHP guidelines

These are the required coding standards for Elgg core and all bundled plugins. Plugin developers are strongly encou-
raged to adopt these standards.

Developers should first read the PSR-2 Coding Standard Guide.

Elgg’s standards extend PSR-2, but differ in the following ways:

Indent using one tab character, not spaces.

Opening braces for classes, methods, and functions must go on the same line.

If a line reaches over 100 characters, consider refactoring (e.g. introduce variables).

Compliance with PSR-1 is encouraged, but not strictly required.

264 Capítulo 3. Continue Reading

http://en.wikipedia.org/wiki/Atomic_commit#Atomic_Commit_Convention
http://www.mrclay.org/2014/02/14/gitx-for-cleaner-commits/
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-1-basic-coding-standard.md

Elgg Documentation, Versión master

Documentation

Include PHPDoc comments on functions and classes (all methods; declared properties when appropriate), inclu-
ding types and descriptions of all parameters.

In lists of @param declarations, the beginnings of variable names and descriptions must line up.

Annotate classes, methods, properties, and functions with @internal unless they are intended for public use,
are already of limited visibility, or are within a class already marked as @internal.

Use // or /* */ when commenting.

Use only // comments inside function/method bodies.

Naming

Use underscores to separate words in the names of functions, variables, and properties. Method names are
camelCase.

Names of functions for public use must begin with elgg_.

All other function names must begin with _elgg_.

Name globals and constants in ALL_CAPS (ACCESS_PUBLIC, $CONFIG).

Miscellaneous

For PHP requirements, see composer.json.

Do not use PHP shortcut tags <? or <%. It is OK to use <?= since it is always enabled as of PHP 5.4.

When creating strings with variables:

use double-quoted strings

wrap variables with braces only when necessary.

Bad (hard to read, misuse of quotes and {}s):

echo 'Hello, '.$name."! How is your {$time_of_day}?";

Good:

echo "Hello, $name! How is your $time_of_day?";

Remove trailing whitespace at the end of lines.

Value validation

When working with user input prepare the input outside of the validation method.

Bad:

function validate_email($email) {
$email = trim($email);

// validate

(continué en la próxima página)

3.6. Contributor Guides 265

Elgg Documentation, Versión master

(proviene de la página anterior)

}

$email = get_input($email);

if (validate_email($email)) {
// the validated email value is now out of sync with an actual input

}

Good:

function validate_email($email) {
// validate

}

$email = get_input($email);
$email = trim($email);

if (validate_email($email)) {
// green light

}

Use exceptions

Do not be afraid to use exceptions. They are easier to deal with than mixed function output:

Bad:

/**
* @return string|bool

*/
function validate_email($email) {

if (empty($email)) {
return 'Email is empty';

}

// validate

return true;
}

Good:

/**
* @return void

* @throws \Elgg\Exceptions\InvalidArgumentException

*/
function validate_email($email) {

if (empty($email)) {
throw new \Elgg\Exceptions\InvalidArgumentException('Email is empty');

}

// validate and throw if invalid
}

266 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Documenting return values

Do not use @return void on methods that return a value or null.

Bad:

/**
* @return bool|void

*/
function validate_email($email) {

if (empty($email)) {
return;

}

// validate

return true;
}

Good:

/**
* @return bool|null

*/
function validate_email($email) {

if (empty($email)) {
return null;

}

// validate

return true;
}

CSS guidelines

Save the css in files with a .css extension.

Use shorthand where possible

Bad:

background-color: #333333;
background-image: url(...);
background-repeat: repeat-x;
background-position: left 10px;
padding: 2px 9px 2px 9px;

Good:

background: #333 url(...) repeat-x left 10px;
padding: 2px 9px;

3.6. Contributor Guides 267

Elgg Documentation, Versión master

Use hyphens, not underscores

Bad:

.example_class {}

Good:

.example-class {}

Nota: You should prefix your ids and classnames with text that identifies your plugin.

One property per line

Bad:

color: white;font-size: smaller;

Good:

color: white;
font-size: smaller;

Property declarations

These should be spaced like so: property: value;

Bad:

color:value;
color :value;
color : value;

Good:

color: value;

Vendor prefixes

Group vendor-prefixes for the same property together

Longest vendor-prefixed version first

Always include non-vendor-prefixed version

Put an extra newline between vendor-prefixed groups and other properties

Bad:

-moz-border-radius: 5px;
border: 1px solid #999999;
-webkit-border-radius: 5px;
width: auto;

268 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Good:

border: 1px solid #999999;

-webkit-border-radius: 5px;
-moz-border-radius: 5px;
border-radius: 5px;

width: auto;

Group subproperties

Bad:

background-color: white;
color: #0054A7;
background-position: 2px -257px;

Good:

background-color: white;
background-position: 2px -257px;
color: #0054A7;

Javascript guidelines

Same formatting standards as PHP apply.

All functions should be in the elgg namespace.

Function expressions should end with a semi-colon.

elgg.ui.toggles = function(event) {
event.preventDefault();
$(target).slideToggle('medium');

};

Deprecating APIs

Occasionally functions and classes must be deprecated in favor of newer replacements. Since 3rd party plugin authors
rely on a consistent API, backward compatibility must be maintained, but will not be maintained indefinitely as plugin
authors are expected to properly update their plugins. In order to maintain backward compatibility, deprecated APIs
will follow these guidelines:

Minor version (1.x) that deprecates an API must include a wrapper function/class (or otherwise appropriate
means) to maintain backward compatibility, including any bugs in the original function/class. This compatibility
layer uses elgg_deprecated_notice('...', '1.11') to log that the function is deprecated.

The next major revision (2.0) removes the compatibility layer. Any use of the deprecated API should be corrected
before this.

3.6. Contributor Guides 269

Elgg Documentation, Versión master

3.6.2 Database

Contributing database schema changes

Contents

Database Migrations

Database Migrations

Elgg uses Phinx to manage the database migrations.

Create a migration

To create a new migration run the following in your console:

vendor/bin/phinx create -c engine/conf/migrations.php MigrationClassName

This will generate a timestamped skeleton migration in engine/schema/migrations/. Follow Phinx documen-
tation to call the necessary methods to modify the database tables.

Executing a migration

Migrations are executed every time your run upgrade.php. If you would like to execute migrations manually, you
can do so via the command line:

// When Elgg is the root project
vendor/bin/phinx migrate -c engine/conf/migrations.php

// When Elgg is installed as a Composer dependency
vendor/bin/phinx migrate -c vendor/elgg/elgg/engine/conf/migrations.php

Check Phinx documentation for additional flags that allow you to run a single migration or a set of migrations within
a time range.

3.6.3 Writing Documentation

New documentation should fit well with the rest of Elgg’s docs.

Contents

Testing docs locally

Follow the existing document organization

Use «Elgg» in a grammatically correct way

Avoid first person pronouns

Eliminate fluff

270 Capítulo 3. Continue Reading

https://phinx.org/

Elgg Documentation, Versión master

Prefer absolute dates over relative ones

Do not remind the reader to contribute

Testing docs locally

Elgg has a grunt script that automatically builds the docs, opens them in a browser window, and automatically reloads
as you make changes (the reload takes just a few seconds). You need yarn and sphinx installed to be able to use these
scripts.

cd path/to/elgg/
yarn
grunt

It’s that easy! Grunt will continue running, watching the docs for changes and automatically rebuilding.

Nota: You might need to install “sphinxcontrib-phpdomain”. You can do this with the following command: pip install
-U sphinxcontrib-phpdomain

Follow the existing document organization

The current breakdown is not necessarily the One True Way to organize docs, but consistency is better than random-
ness.

intro/*

This is everything that brand new users need to know (installation, features, license, etc.)

admin/*

Guides for administrators. Task-oriented.

guides/*

API guides for plugin developers. Cookbook-style. Example heavy. Code snippet heavy. Broken down by services
(actions, i18n, routing, db, etc.). This should only discuss the public API and its behavior, not implementation details
or reasoning.

design/*

Design docs for people who want to get a better understanding of how/why core is built the way it is. This should
discuss internal implementation details of the various services, what tradeoffs were made, and the reasoning behind
the final decision. Should be useful for people who want to contribute and for communication b/w core devs.

3.6. Contributor Guides 271

http://gruntjs.com/
https://yarnpkg.com/
http://www.sphinx-doc.org/

Elgg Documentation, Versión master

contribute/*

Contributors guides for the various ways people can participate in the project.

appendix/*

More detailed/meta/background information about the project (history, roadmap, etc.)

Use «Elgg» in a grammatically correct way

Elgg is not an acronym, so writing it in all caps (ELGG or E-LGG) is incorrect. Please don’t do this.

In English, Elgg does not take an article when used as a noun. Here are some examples to emulate:

«I’m using Elgg to run my website»

«Install Elgg to get your community online»

When used as an adjective, the article applies to the main noun, so you should use one. For example:

«Go to the Elgg community website to get help.»

«I built an Elgg-based network yesterday»

This advice may not apply in languages other than English.

Avoid first person pronouns

Refer to the reader as «you». Do not include yourself in the normal narrative.

Before:

When we’re done installing Elgg, we’ll look for some plugins!

After:

When you’re done installing Elgg, look for some plugins!

To refer to yourself (avoid this if possible), use your name and write in the third person. This clarifies to future
readers/editors whose opinions are being expressed.

Before:

I think the best way to do X is to use Y.

After:

Evan thinks the best way to do X is to use Y.

Eliminate fluff

Before:

If you want to use a third-party javascript library within the Elgg framework, you should take care to call
the elgg_register_external_file function to register it.

After:

To use a third-party javascript library, call elgg_register_external_file to register it.

272 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Prefer absolute dates over relative ones

It is not easy to tell when a particular sentence or paragraph was written, so relative dates quickly become meaningless.
Absolute dates also give the reader a good indication of whether a project has been abandoned, or whether some advice
might be out of date.

Before:

Recently the foo was barred. Soon, the baz will be barred too.

After:

Recently (as of September 2013), the foo was barred. The baz is expected to be barred by October 2013.

Do not remind the reader to contribute

Focus on addressing only the topic at hand. Constant solicitation for free work is annoying and makes the project look
needy. If people want to contribute to the project, they can visit the contributor guide.

3.6.4 Internationalizing documentation

When you change documentation, remember to update the documentation translation templates before you commit:

cd docs/
make gettext

For more information, see http://www.sphinx-doc.org/en/stable/intl.html#translating-with-sphinx-intl

Special attention

When translating the documentation be aware of special syntax in the documentation files.

Translating links

Translate text in anonymous links (e.g., `pronunciation`__), but maintain the order of all anonymous
links in a single block. If there are two anonymous links within a single block for translation, they must not be
rearranged relative to each other.

Translate the text of named links (e.g., `demo site`_) but only if you maintain the name using the correct
rST syntax. In this case that would be `translation of "demo site" <demo site_>`_.

Do NOT translate

Anything between pipe characters should not be translated (e.g., master).

Code, unless it’s a comment in the code.

3.6.5 Translations

Translations multiply the impact that Elgg can have by making it accessible to a larger percentage of the world.

The community will always be indebted to those of you who work hard to provide high quality translations for Elgg’s
UI and docs.

3.6. Contributor Guides 273

http://www.sphinx-doc.org/en/stable/intl.html#translating-with-sphinx-intl

Elgg Documentation, Versión master

Transifex

All translation for the Elgg project is organized through Transifex.

https://www.transifex.com/organization/elgg

Plugin authors are encouraged to coordinate translations via Transifex as well so the whole community can be unified
and make it really easy for translators to contribute to any plugin in the Elgg ecosystem.

Pulling translations

The translations made in Transifex need to be periodically pulled into the Elgg code repository. This can be done with
the script .scripts/languages.php bundled within Elgg’s source code.

Prerequisites for running the script are:

Access to command line

Git

Transifex CLI tool

The script will do the following steps:

1. Create a new git branch named {branch}_i18n_{timestamp}

2. Pull translations for all languages that have 95 % of the strings translated

3. Remove possible invalid language codes

4. Commit the changes to the branch

After this you must push the branch to Github and make a new Pull request.

For example if you want to pull the translations for the 3.x branch, run the following commands:

php .scripts/languages.php 3.x
git push -u your_fork 3.x_i18n_1515151617

Run the command without parameters to get more detailed information of the usage.

Transifex configuration

The configuration for Transifex can be found from Elgg’s source code in the file .tx/config.

This file defines:

The Transifex project associated with Elgg’s major version

The location of all the files that have translatable content

Read the Transifex documentation for further details.

New major Elgg version

Every major version of Elgg must have its own project in Transifex. This way we can make sure that strings added and
removed between versions do not conflict with each other. For example a translation key removed in Elgg 3 should not
get removed from translations made for Elgg 2. Respectfully a new string added only to Elgg 3 should not be included
in the translations meant for Elgg 2.

274 Capítulo 3. Continue Reading

https://www.transifex.com/organization/elgg
https://git-scm.com/
https://docs.transifex.com/client/introduction
https://docs.transifex.com/

Elgg Documentation, Versión master

The process of setting up a new major version is:

1. Pull latest translations from Transifex to the previous major version

2. Merge the git branch of the previous version to the new to make sure all the latest translation keys are present

3. Create a new Transifex project to https://www.transifex.com/elgg/

4. Update .tx/config file in the development branch of the new major version

Update the configuration to point to the new Transifex project

Remove configuration of removed plugins

Add configuration for new plugins

5. Push the translation sources to the new Transifex project with the command:

tx push -s

6. Copy the new configuration file temporarily (do not commit) to the previous major version, and push the existing
translations from it to the new project:

tx push -t -f --no-interactive

Later, once the dedicated branch (e.g. 3.x has been created for the major version, configure Transifex to fetch new
translation keys from it automatically in https://www.transifex.com/elgg/elgg-core-3/content/. This way you don’t
have to repeat step 5 manually every time new translation keys are added.

It is important to always have a n.x branch besides the branches meant for specific minor versions (n.1, n.2, etc.).
This way the URLs of the auto-update sources do not have to be updated every time a new minor branch is created.

3.6.6 Reporting Issues

Report bugs and features requests to https://github.com/Elgg/Elgg/issues. See below for guidelines.

DISCLAIMERS

Atención: Security issues should be reported to security @ elgg . org! Please do not post any security issues on
github!!

Nota: Support requests belong on the community site. Tickets with support requests will be closed.

Importante: We cannot make any guarantees as to when your ticket will be resolved.

Bug reports

Before submitting a bug report:

Search for an existing ticket on the issue you’re having. Add any extra info there.

Verify the problem is reproducible

3.6. Contributor Guides 275

https://www.transifex.com/elgg/
https://www.transifex.com/elgg/elgg-core-3/content/
https://github.com/Elgg/Elgg/issues
http://community.elgg.org

Elgg Documentation, Versión master

• On the latest version of Elgg

• With all third-party plugins disabled

Good bug report checklist:

Expected behavior and actual behavior

Clear steps to reproduce the problem

The version of Elgg you’re running

Browsers affected by this problem

Feature requests

Before submitting a feature request:

Check the community site for a plugin that has the features you need.

Consider if you can develop a plugin that does what you need.

Search through the closed tickets to see if someone else suggested the same feature, but got turned down. You’ll
need to be able to explain why your suggestion should be considered this time.

Good feature request checklist:

Detailed explanation of the feature

Real-life use-cases

Proposed API

3.6.7 Becoming a Financial Supporter

All funds raised via the Elgg supporters network go directly into:

Elgg core development

Infrastructure provision (elgg.org, github, etc.)

It is a great way to help with Elgg development!

Benefits

For only $50 per year for individuals or $150 per year for organizations, you can get listed as a supporter on our
supporters page. Elgg supporters are listed there unless they request not to be.

Supporters are able to put this official logo on their site if they wish:

276 Capítulo 3. Continue Reading

http://community.elgg.org
http://elgg.org/supporter.php
http://elgg.org/supporter.php

Elgg Documentation, Versión master

Disclaimer

We operate a no refund policy on supporter subscriptions. If you would like to withdraw your support, go to PayPal
and cancel your subscription. You will not be billed the following year.

Being an Elgg Supporter does not give an individual or organization the right to impersonate, trade as or imply they
are connected to the Elgg project. They can, however, mention that they support the Elgg project.

If you have any questions about this disclaimer, email info@elgg.org.

We reserve the right to remove or refuse a listing without any prior warning at our complete discretion. There is no
refund policy.

If there is no obvious use of Elgg, your site will be linked to with «nofollow» set.

Sign up

If you would like to become an Elgg supporter:

read the disclaimer above

on the supporters page, subscribe via PayPal

send an email to info@elgg.org with:

• the date you subscribed

• your name (and organization name, if applicable)

• your website

• your Elgg community profile

Once all the details have been received, we will add you to the appropriate list. Thanks for your support!

3.6.8 Adding a Service to Elgg

The services guide has general information about using Elgg services.

To add a new service object to Elgg:

1. Annotate your class as @internal if it is an internal service.

2. Open the class Elgg\Di\InternalContainer and/or Elgg\Di\PublicContainer.

3. Add a @property-read annotation for your service at the top. This allows IDEs and static code analyzers to
understand the type of the property when using _elgg_services() or elgg().

4. Register your service in engine\internal_services.php or engine\public_services.php
using autowiring or with a factory.

Inject your dependencies

Elgg uses PHP-DI for registering and resolving services. Dependencies can be autowired (based on the typehinted
constructor argument services can be injected) or a service can be constructed in a factory.

Nota: For more information about PHP-DI visit their website.

3.6. Contributor Guides 277

mailto:info@elgg.org
http://elgg.org/supporter.php
mailto:info@elgg.org

Elgg Documentation, Versión master

Making a service part of the public API

If your service is meant for use by plugin developers:

1. Make an interface Elgg\Services\<Name> that contains only those methods needed in the public API.

2. Have your service class implement that interface.

3. For methods that are in the interface, move the documentation to the interface. You can simply use
{@inheritdoc} in the PHPDocs of the concrete class methods.

4. Document your service in docs/guides/services.rst (this file).

5. Open the PHPUnit test Elgg\ApplicationTest and add your service key to the $names array in
testServices().

6. Open the class Elgg\Application.

7. Add @property-read declaration to document your service, but use your interface as the type, not your
service class name.

Now your service will be available via property access on the Elgg\Application instance:

// using the public foo service
$three = elgg()->foo->add(1, 2);

Nota: For examples, see the config service, including the interface Elgg\Services\Config and the concrete
implementation Elgg\Config.

Service Life Cycle and Factories

By default, services registered on the service provider are «shared», meaning the service provider will store the created
instance for the rest of the request, and serve that same instance to all who request the property.

If you need developers to be able to construct objects that are pre-wired to Elgg services, you may need to add a public
factory method to Elgg\Application. Here’s an example that returns a new instance using internal Elgg services:

public function createFoo($bar) {
$logger = $this->services->logger;
$db = $this->services->db;
return new Elgg\Foo($bar, $logger, $db);

}

3.6.9 Writing tests

Contents

Vision

Running Tests

• Elgg Core Test Suite

• Plugin tests

278 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

• End-to-end tests

Motivation

Strategy

• Continuous Integration

• Dependency Injection

• Behavior-Driven Development

Vision

We want to make manual testing unnecessary for core developers, plugin authors, and site administrators by promoting
and enabling fast, automated testing at every level of the Elgg stack.

We look forward to a world where the core developers do not need to do any manual testing to verify the correctness of
code contributed to Elgg. Similarly, we envision a world where site administrators can upgrade and install new plugins
with confidence that everything works well together.

Running Tests

Elgg Core Test Suite

Currently our tests are split in two pieces:

PHPUnit tests are located in /tests/phpunit – these are split between unit tests and integration tests.

Since we have a phpunit.xml configuration at the root of Elgg, testing should be as easy as:

git clone http://github.com/Elgg/Elgg
cd Elgg
phpunit

If you write a unit test you can extend the \Elgg\UnitTestCase class or if you write a integration test you can
extend the \Elgg\IntegrationTestCase class. These classes have some helper functions when writing tests.
The following functions are often used:

up() - used to prepare every test that is executed in the test case

down() - executed after every test that is executed in the test case. Mostly used to cleanup / restore.

createUser() - creates an ElggUser entity to be used in your test

createGroup() - creates an ElggGroup entity to be used in your test

createObject() - creates an ElggObject entity to be used in your test

Plugin tests

Ideally plugins are configured in such a way that they can be unit-tested much like Elgg core. Plugin developers are
free to implement their own methods for unit testing, but we encourage everyone to make it as easy as Elgg core:

git clone http://github.com/developer/elgg-plugin plugin
cd plugin
phpunit

3.6. Contributor Guides 279

Elgg Documentation, Versión master

End-to-end tests

Since Elgg plugins have so much power to override, filter, and modify Elgg’s and other plugins” behavior, it’s important
to be able to run end-to-end tests on a staging server with your final configuration before deploying to production.

Nota: ToDo: Make it easy to run all Elgg integration and acceptance tests from the admin area given the current
plugin configuration. (without worrying about database corruption!)

Motivation

Briefly, the wins we expect from testing are:

Increased confidence in the system.

More freedom to refactor.

Built-in, up-to-date documentation.

We love community contributions, but in order to maintain stability we cannot accept outside contributions without
first verifying their correctness. By promoting automated testing, the core developers can avoid the hassle of manual
verification before accepting patches. It also means that external developers don’t have to spend time earning trust
with the core team. If a patch comes in and has tests to verify it, then we can be confident it works without worrying
about the reputation of the contributor.

Note that these benefits can also extend to the plugins repository. Site owners are encouraged to «test plugins tho-
roughly» before deploying them on a production site. As of March 2013, this translates to manually verifying all the
features that the plugin promises to offer. But Elgg provides a huge number of features, and it’s not reasonable to
test for all of them on every browser you want to support on every device you want to support. But what if plugin
developers could write tests for their plugins and site owners could just run the tests for all installed plugins to verify
the functionality is maintained? Then they wouldn’t be limited to just picking plugins from «trusted» developers or
«stable» releases. They could see that, indeed, nothing broke when they upgraded that critical plugin from 1.3 to 2.5,
and push the upgrade to production with confidence.

The reason this isn’t happening today is because Elgg itself is not easily testable at this level yet. We want to change
that.

Strategy

We have several guiding principles that we think will be helpful in bringing our vision into reality.

In short, we are advocating:

Continuous integration – if GitHub checks aren’t happy, we’re not happy

Dependency injection – For creating highly testable, modular code

BDD – Tests should verify features and provide documentation, not rehash the Class API

Continuous Integration

We run all of our tests on GitHub Actions so that we can get real time feedback on the correctness of incoming pull
requests and development as it progresses. If the GitHub checks aren’t passing, we don’t commit to the repo. This
empowers us to merge pull requests in at a rapid pace, so long as they pass the tests. It also allows us to reject pull
requests without detailed investigation if they do not pass the tests. We can get past the «does it work or not» question
and talk about the things that humans need to talk about: API design, usefulness to the project, whether it belongs in

280 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

core or a plugin, etc. We want as many features as possible provided by Elgg core to be verified automatically by tests
running on GitHub Actions.

Dependency Injection

In order to maximize testability, all dependencies need to be explicit. Global functions, Singletons, and service
locators are death for testability because it’s impossible to tell what dependencies are hiding under the covers, and
it’s even harder to mock out those dependencies. Mocking is critical because you want your unit tests to test only one
class at a time. Test failures in a TestCase should not result due to brokenness in a dependency; test failures should
only indicate brokenness in the class under test. This makes everything much easier to debug. As of March 2013, most
of Elgg still assumes and uses global state, and that has made Elgg and Elgg plugins historically very difficult to test.
Fortunately we are moving in the opposite direction now, and a lot of work in Elgg 1.9 has gone into refactoring core
components to be more dependency injectable. We are already reaping the benefits from that effort.

Behavior-Driven Development

For us this means we name tests for features rather than methods. When you test for features, you are encou-
raged to write fewer, smaller, logical tests. When a test fails, we can know exactly what feature is compromised.
Furthermore, when naming your tests for features, the list of tests provides documentation on what features the system
supports. Documentation is something that is typically very troublesome to keep up to date, but when documentation
and verification are one and the same, it becomes very easy to keep the documentation up to date.

Consider these two test methods:

testRegister()

testCanRegisterFilesAsActionHandlers()

From just looking at the names, testRegister tells you that the class under test probably has a method named
register. If this test passes, it presumably verifies that it is behaving correctly, but doesn’t tell you what correct behavior
entails, or what the original author of the test was intending to verify. If that method has multiple correct uses that you
need to test for, this terse naming convention also encourages you to write a very long test which tests for all conditions
and features of said method. Test failure could be caused by any one of those uses being compromised, and it will take
more time to figure out where the true problem lies.

On the other hand, testCanRegisterFilesAsActionHandlers tells you that there are these things called
«actions» that need to be «handled» and that files can be registered as valid handlers for actions. This introduces
newcomers to project terminology and communicates clearly the intent of the test to those already familiar with the
terminology.

For a good example of what we’re looking for, check out /tests/phpunit/Elgg/ViewServiceTest.php

3.6.10 Core tasks

Certain tasks surrounding Elgg are reserved for the core developer as they require special permissions. The guides
below show the workflow for these actions.

Moving a plugin to its own repository

Contents

Plugin extraction steps

3.6. Contributor Guides 281

Elgg Documentation, Versión master

• Move the code to its own repository

• Dependencies

• Commit the code

• Packagist

• Tag a release

• Translations

Elgg core cleanup

• Remove the plugin

• Translations

• Bundled

• Composer

• Documentation

Plugin extraction steps

Move the code to its own repository

Follow the GitHub guide Splitting a subfolder out into a new repository. This will make sure that the commit history
is preserved.

Dependencies

If the plugin has dependencies on any external libraries, make sure these dependencies are managed. For example if
a PHP library is required which comes bundled with Elgg core, make sure to add it to the composer.json of this
plugin as you can’t rely on Elgg core keeping the library.

Commit the code

During the GitHub guide a new repository is created for the plugin you’re trying to move.

Since an attemp was already made to extract some of the plugins to their own repository maybe the repository already
exists.

If the repository didn’t exist for the plugin, make sure you create it under the Elgg organisation.

If the repository already exists, the best way to update the code would be by a Pull Request. This will however probably
fail because of a difference in how the repository was first created (as discussed in this GitHub issue).

The initial repositories where created with

git subtree split

and the guide calls for

git filter-branch --prune-empty --subdirectory-filter

282 Capítulo 3. Continue Reading

https://help.github.com/articles/splitting-a-subfolder-out-into-a-new-repository/
https://github.com/Elgg
https://github.com/Elgg/Elgg/issues/9419#issuecomment-237864270

Elgg Documentation, Versión master

This will leave a difference in the commits which GitHub is unable to resolve. In that case you’ll have to force push
the changes to the existing Elgg plugin repository.

Advertencia: Since this will override all the history in the plugin repository, make sure you know this is what you
want to do.

Packagist

Make sure the composer.json of the plugin contains all the relevant information. Here is an example:

{
"name": "elgg/<name of the repository>",
"description": "<a description of the plugin>",
"type": "elgg-plugin",
"keywords": ["elgg", "plugin"],
"license": "GPL-2.0-only",
"support": {

"source": "https://github.com/elgg/<name of the repository>",
"issues": "https://github.com/elgg/<name of the repository>/issues"

},
"require": {

"composer/installers": ">=1.0.8"
},
"conflict": {

"elgg/elgg": "< <minimal Elgg required version>"
}

}

The conflict rule is there to help prevent the installation of this plugin in an unsupported Elgg version.

Add the repository to Packagist, for the existing repositories this was already done. Make sure Packagist is updated
correctly with all the commits.

Tag a release

In order for Composer to be able to cache the plugin for faster installation, a release has to be made on the repository.
Probably the first version that needs to be tagged is the same version as mentioned in the elgg-plugin.php or
composer.json. After this development can begin, following the Semver versioning scheme.

Translations

If the translations for the plugin need to be managed by Transifex, add the plugin to Transifex.

Elgg core cleanup

Now that the plugin has been moved to it’s own repository, it’s time to make a Pull Request on Elgg core to remove
the original code.

3.6. Contributor Guides 283

https://packagist.org/
https://packagist.org/
http://semver.org/
https://www.transifex.com/elgg/
https://www.transifex.com/elgg/

Elgg Documentation, Versión master

Remove the plugin

Delete the mod folder for the plugin

Search for the plugin name in core to find any references which also need to be removed (eg. old docs, special
tests, etc.)

Translations

Since the plugin no longer is part of Elgg core, make sure the configuration of Transifex no longer contains the plugin.

Bundled

If the plugin still comes bundled with the release of a new Elgg version, make sure to add the plugin to the composer.
json.

Composer

Check the core composer dependencies if requirements that were specific for the removed plugin can also be removed
in the core dependencies.

Documentation

Add a mention in the Upgrade Notes documentation that the plugin was removed from Elgg core.

Release Process Workflow

Release a new version of Elgg.

This is the process the core team follows for making a new Elgg release. We have published this information in the
spirit of openness, and to streamline onboarding of new team members.

Contents

Requirements

Merge commits up from lower branches

• For each branch

Preparation for first new stable minor/major release

• Preparation for a new major release

Prepare the release

• Make a PR with translation updates

• Make the release PR

Tag the release

• Additional actions for the first new minor / major

284 Capítulo 3. Continue Reading

https://www.transifex.com/elgg/

Elgg Documentation, Versión master

• Additional action for the first new major

Update the website

• Build zip package

• Update elgg.org download page

• Update elgg.org

Make the announcement

Requirements

SSH access to elgg.org

Commit access to http://github.com/Elgg/Elgg

Admin access to https://elgg.org/

Access to Twitter account

Node.js and Yarn installed

Sphinx installed (easy_install sphinx && easy_install sphinx-intl)

Transifex client installed (easy_install transifex-client)

Transifex account with access to Elgg project

Merge commits up from lower branches

Determine the LTS branch. We need to merge any new commits there up through the other branches.

For each branch

Check out the branch, make sure it’s up to date, and make a new work branch with the merge. E.g. here we’re merging
1.12 commits into 2.0:

git checkout 2.0
git pull
git checkout -b merge112
git merge 1.12

Nota: If already up-to-date (no commits to merge), we can stop here for this branch.

If there are conflicts, resolve them, git add ., and git merge.

Make a PR for the branch and wait for automated tests and approval by other dev(s).

git push -u my_fork merge112

Once merged, we would repeat the process to merge 2.0 commits into 2.1.

3.6. Contributor Guides 285

http://github.com/Elgg/Elgg
https://elgg.org/
https://twitter.com/elgg

Elgg Documentation, Versión master

Preparation for first new stable minor/major release

Update the Support policy to include the new minor/major release date and fill in the blanks for the previous
release.

Update the README.md file badges to point to the correct new release numbers.

Preparation for a new major release

Change the Transifex configuration to push translations to a different project

Prepare the release

Make a PR with translation updates

Install the prerequisites:

easy_install transifex-client

Nota: On Windows you need to run these command in a console with admin privileges

Run the languages.php script. For example, to pull translations:

php .scripts/languages.php 3.x

Make a pull request with the new translations and have it merged before the next step.

Next, manually browse to the /admin/site_settings page and verify it loads. If it does not, a language file
from Transifex may have a PHP syntax error. Fix the error and amend your commit with the new file:

only necessary if you fixed a language file
git add .
git commit --amend

Make the release PR

Bring your local git clone up to date.

Merge latest commits up from lowest supported branch.

Visit https://github.com/Elgg/Elgg/compare/<new>...<old> and submit the PR if there is anything
that needs to be merged up.

Install the prerequisites:

yarn install elgg-conventional-changelog
easy_install sphinx
easy_install sphinx-intl

Nota: On Windows you need to run these command in a console with admin privileges

286 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Run the release.php script. For example, to release 1.12.5:

git checkout 1.12
php .scripts/release.php 1.12.5

This creates a release-1.12.5 branch in your local repo.

Next, submit a pull request via GitHub for automated testing and approval by another developer:

git push your-remote-fork release-1.12.5

Tag the release

Once approved and merged, tag the release:

git checkout release-${version}
git tag -a ${version} -m'Elgg ${version}'
git push --tags origin release-${version}

Or create a release on GitHub

Goto releases

Click “Draft a new release”

Enter the version

Select the correct branch (eg 1.12 for a 1.12.x release, 2.3 for a 2.3.x release, etc)

Set the release title as “Elgg {version}”

Paste the CHANGELOG.md part related to this release in the description

Some final administration

Mark GitHub release milestones as completed

Move unresolved tickets in released milestones to later milestones

Additional actions for the first new minor / major

Make a new branch on GitHub (for example 3.3)

Set the new branch as the default branch (optional, but suggested for stable releases)

Configure Read The Docs to build the new branch (not the new tag)

Check the Elgg starter project for potential requirement / config changes in the composer.json

Add the new minor / major version to the Elgg/community_plugins repository so developers can upload
plugins for the new release

Additional action for the first new major

On GitHub add a branch protection rule (for example 4.*)

Configure Scrutinizer to track the new major branches (for example 4.*)

3.6. Contributor Guides 287

Elgg Documentation, Versión master

Update the website

ssh to elgg.org

Clone https://github.com/Elgg/elgg-scripts

Build zip package

Use elgg-scripts/build/elgg-starter-project.sh to generate the .zip file. Run without arguments to
see usage.

login as user deploy
sudo -su deploy

regular release
./elgg-starter-project.sh master 3.0.0 /var/www/www.elgg.org/download/

MIT release
./elgg-starter-project.sh master 3.0.0-mit /var/www/www.elgg.org/download/

Nota: For Elgg 2.x releases use the 2.x branch of the starter-project (eg. ./elgg-starter-project.sh 2.x
2.0.4 /var/www/www.elgg.org/download/)

Verify that vendor/elgg/elgg/composer.json in the zip file has the expected version.

If not, make sure GitHub has the release tag, and that the starter project has a compatible elgg/elgg item in
the composer requires list.

Update elgg.org download page

Clone https://github.com/Elgg/community

Add the new version to classes/Elgg/Releases.php

Commit and push the changes

Update the plugin on www.elgg.org

composer update elgg/community

Update elgg.org

Clone https://github.com/Elgg/www.elgg.org

Change the required Elgg version in composer.json

Update vendors

composer update

Commit and push the changes

Pull to live site

288 Capítulo 3. Continue Reading

https://github.com/Elgg/elgg-scripts
https://github.com/Elgg/community
https://github.com/Elgg/www.elgg.org

Elgg Documentation, Versión master

cd /var/www/www.elgg.org && sudo su deploy && git pull

Update dependencies

composer install --no-dev --prefer-dist --optimize-autoloader

Go to community admin panel

• Flush APC cache

• Run upgrade

Make the announcement

This should be the very last thing you do.

1. Open https://github.com/Elgg/Elgg/blob/<tag>/CHANGELOG.md and copy the contents for
that version

2. Sign in at https://elgg.org/blog and compose a new blog with a summary

3. Copy in the CHANGELOG contents, clear formatting, and manually remove the SVG anchors

4. Add tags release and elgg2.x where x is whatever branch is being released

5. Tweet from the elgg Twitter account

3.7 Appendix

Miscellaneous information about the project.

3.7.1 Upgrade Notes

If you are upgrading your plugins and website to a new major Elgg releases, the following noteworthy changes apply.

See the administrator guides for how to upgrade a live site.

From 4.0 to 4.1

Contents

Entity Capabilities

Threaded Comments

Deprecated APIs

Entity Capabilities

A new way of registering entity capabilities has been introduced. The following related functions have been deprecated:

3.7. Appendix 289

https://elgg.org/blog
https://twitter.com/elgg

Elgg Documentation, Versión master

elgg_register_entity_type() use elgg_entity_enable_capability($type,
$subtype, 'searchable')

elgg_unregister_entity_type() use elgg_entity_disable_capability($type,
$subtype, 'searchable')

get_registered_entity_types() use elgg_entity_types_with_capability('searchable')

is_registered_entity_type() use elgg_entity_has_capability($type, $subtype,
'searchable')

The config variable registered_entities is no longer available.

The current implemented capabilities are “commentable”, “likable” and “searchable”.

Threaded Comments

Support for threaded comments has been added. This feature needs to be enable in the site settings. To make this work
changes have been made to comments related JavaScript and CSS. If you use specific styling or have custom features
related to this feature you might need to give it some extra attention.

Deprecated APIs

Lib functions

elgg_get_version() use elgg_get_release()

get_user_by_code() use elgg_get_user_by_persistent_token() where you only need to
provide the token, not the hashed token

Plugin hooks

'likes:is_likable', '<type>:<subtype>' use $entity->hasCapability('likable')

From 3.x to 4.0

Contents

Composer

Javascript

Notifications

Split OkResponse, ErrorResponse and RedirectResponse

Datamodel

Plugin development

Plugins

Type hinted functions

Change in function parameters

290 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Renamed hook/event handler callbacks

Reworked exceptions

Reworked Traits

Miscellaneous API changes

Deprecated APIs

Removed functions

Removed views / resources

Removed hooks / events

Removed actions

Composer

PHP Requirements

To be compatible with PHP 8 we needed to increase the minimal PHP version to 7.4. PHP versions < 7.4 are already
end-of-life.

Composer project

The root of the composer project is no longer handled as a semi functional plugin. Languages from the languages
directory are nog longer imported, the views from the views directory are no longer registered, the PHP DI services
from the elgg-services.php are no longer registered and the start.php file is no longer included.

If you needed specific modification to your Elgg installation you need to make a plugin and ensure that the plugin is
the latest in the plugin order to allow you to overrule everything you needed to change.

Doctrine DBAL

Elgg replaced v2 with v3 of the doctrine/dbal dependency. On of the most notable changes is that if you work
with QueryBuilders and use the $qb->fetch() function you will no longer get an object, but an array. If you want
your rows to be useable as classes, you can use elgg()->db->getData($qb). Another important change is that
if you provide your own query parameters, you should no longer prefix keys with a colon in the parameters but still do
so in the query.

PHP-DI

This feature has been updated to use the latest version of PHP-DI. Most notable breaking change for Elgg is the need
to change your plugin service definition to use \DI\create() instead of \DI\object().

ZendMail replaced by LaminasMail

Because of the deprecation of the Zend\Mail library and it’s replacement by the Laminas\Mail all references
have been updated.

3.7. Appendix 291

https://www.zend.com/blog/evolution-zend-framework-laminas-project

Elgg Documentation, Versión master

Removed composer dependencies

bower-asset/jquery-treeview the related js and css are no longer available in the system

bower-asset/jquery.imgareaselect the related js and css are no longer available in the system

npm-asset/formdata-polyfill all modern browser have support, no longer a need for a polyfill

npm-asset/jquery-form use native FormData functionality

npm-asset/weakmap-polyfill all modern browser have support, no longer a need for a polyfill

simpletest/simpletest

Javascript

AJAX

The following Ajax helper functions have been removed in favor of their counterparts in asynchronous module elgg/
Ajax. * elgg.action() * elgg.get() * elgg.getJSON() * elgg.post()

The ajax function elgg.api has been moved to the executeMethod function in the asynchronous module elgg/
webservices in the webservices plugin. Other elgg.ajax functions and attributes have been removed from the
system. Also the legacy handling of ajax calls have been removed from the system.

Classes

The javascript logic for automatically booting some javascript for your plugin and registering hooks via the Elgg/
Plugin class has been removed from the system. This functionality was never used by core and hardly seen in
plugins. Use AMD loaded javascript or extend elgg.js for always loaded javascript.

The ElggPriorityList javascript class has been removed from the system.

System Hooks

The AMD modules for elgg/init and elgg/ready have been removed. The init, system hook is still
available but it only makes sense to rely on this hook from non-AMD loaded js libraries. The boot, system and
ready, system triggers have been removed from the system. Replace with init, system for the same effect.

jQuery

The jQuery library has been updated to the latest version (v3.5.x). This is a major update from the version used in Elgg
3.x. For information about what is changed between these release you should take a look at the jQuery website.

jQuery UI

The jQuery UI library has been updated to v1.12.x. The library is no longer loaded in full by default. If you need
to use features from the library you can require them in your own script. For example to be able to use the sortable
functionality do the following:

292 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

require('jquery-ui/widgets/sortable');

// or in your own AMD script
define(['jquery-ui/widgets/sortable'], function() {

// use the sortable
});

Miscellaneous JS changes

The AMD module elgg/widgets no longer returns an object and no longer requires you to call init on the
module

Notifications

Pre Elgg 1.9 notification handling has been removed. Related functions and hooks no longer exist.

Subscriptions

The relationship in the database which stores the subscription method for notifications has been changed from
notifymethod to notify:method.

Multiple Recipients

An ElggEmail now supports multiple recipients in To, Cc and Bcc. The related getter functions like getTo() will
now always return an array.

Settings

A generic storage for notification preferences has been introduced in \ElggUser::setNotificationSetting()
and \ElggUser::getNotificationSettings(), the notification settings now have a “purpose”.

For example group_join can be used to manage the default subscription you get with a group when you join the
group.

The Notifications plugin has generic handling of displaying and saving the settings. To display the setting extend the
view notifications/settings/records (plural) with a view which uses notifications/settings/
record (singular).

When requesting notification settings other than the default setting, if the user hasn’t saved a setting yet it’ll fall back
to the default notification settings.

Management of the notification preferences for adding a new users to a friend collection has been removed.

Notification Salutation & Sign-off

To be able to have a more generic salutation and sign-off for outgoing mail notifications we have removed these texts
from various translation strings and moved them to generic translations. This will mean you have to update your
translations to reflect the new text and also check your code for uses of notifications where you provide your own
salutation or sign-off text. You can find out more about this new behaviour in Notifications.

3.7. Appendix 293

Elgg Documentation, Versión master

Notifications plugin

The Notifications plugin has been removed. All the features of the plugin are now part of Elgg core. Some pages (like
the group notification settings) have been moved to the correct plugin.

This means that event handlers, hook handlers, actions, views and languages keys have been (re)moved or renamed.

Notification Event Handling

The notification hooks no longer receive the origin parameter.

Site notification

The site notifications plugin now shows the notification subject by default. If a site notification was created with the
factory function SiteNotification::factory() more of the original notification information is stored with
the site notification:

Notification subject is stored in title

Notification summary is stored in summary

Notification body is stored in description

Split OkResponse, ErrorResponse and RedirectResponse

The classes Elgg\Http\ErrorResponse and Elgg\Http\RedirectResponse were extensions of
Elgg\Http\OkReponse this complicated validating responses (for example in hooks). The classes have been
split apart to allow for easier and clearer checks.

All classes now extend Elgg\Http\Response and implement Elgg\Http\ReponseBuilder. The default
HTTP error code when using elgg_error_response() has been changed to return a 400 status.

Datamodel

Schema changes

The access_id, owner_guid and enabled columns in the metadata table have been removed

The enabled column in the river table has been removed

The relationship column in the entity_relationships table now has a max length of 255 (up from
50)

ElggEntity attributes

Setting the type, subtype and enabled attributes of an ElggEntity is no longer possible using the magic setter.
Changing the type is no longer possible, use the correct base class for your entity (eg. ElggObject, ElggGroup
or ElggUser).

To change the subtype use the function setSubtype($subtype)

294 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

// this no longer works and throws an \Elgg\Exceptions\InvalidArgumentException
$object = new ElggObject();
$object->subtype = 'my_subtype';

// The correct use is
$object->setSubtype('my_subtype');

To change the enabled state of an entity use the correct functions

// this no longer works and throws an \Elgg\Exceptions\InvalidArgumentException
$object = new ElggObject();
$object->enabled = 'no';

// The correct use is
$object->enable(); // to enable
$object->disable(); // to disable

ElggUser attributes

Setting the admin and banned metadata of an ElggUser is no longer possible using the magic setter.

To change the admin state use the functions makeAdmin() and removeAdmin()

// this no longer works and throws an \Elgg\Exceptions\InvalidArgumentException
$user = new ElggUser()
$user->admin = 'yes';

// The correct use is
$user->makeAdmin(); // to give the admin role
$user->removeAdmin(); // to remove the admin role

To change the banned state use the functions ban() and unban()

// this no longer works and throws an \Elgg\Exceptions\InvalidArgumentException
$user = new ElggUser()
$user->banned = 'yes';

// The correct use is
$user->ban(); // to ban the user
$user->unban(); // to unban the user

Plugin development

Plugin bootstrapping

The following files are no longer included during bootstrapping of a plugin:

activate.php use PluginBootstrap->activate()

deactivate.php use PluginBootstrap->deactivate()

views.php use elgg-plugin.php

start.php use elgg-plugin.php and/or PluginBootstrap

3.7. Appendix 295

Elgg Documentation, Versión master

Plugin Manifest

The plugin manifest file is no longer used. Features of the manifest have been removed or moved to different locations.

It is no longer possible to require a specific php ini setting.

php version requirement -> composer require

php extension requirement -> composer require

plugin conflicts -> composer conflicts

plugin requirement -> elgg-plugin

plugin position requirement -> elgg-plugin

plugin version -> elgg-plugin

plugin activate on install -> elgg-plugin

plugin name -> elgg-plugin

plugin description -> composer.json

plugin categories -> composer.json

plugin license -> composer.json

plugin repo link -> composer.json

plugin issues link -> composer.json

plugin homepage link -> composer.json

plugin authors/contributors -> composer.json

Hookable field configurations

Some plugins had the option to configure entity fields in config. These features have been replaced by a central service
that provides a mechanisme to request a hookable field config for a certain type/subtype.

You can request these configuration using the following code:

$fields = elgg()->fields->get('<entity_type>', '<entity_subtype');

The results will be an array with field configurations usable in elgg_view_field($field)

The following related functionality has been replaced by this new way:

The config for pages is no longer available in elgg_get_config('pages') use
elgg()->fields->get('object', 'page')

The config for group is no longer available in elgg_get_config('group') use
elgg()->fields->get('group', 'group')

The config for profile_fields is no longer available in elgg_get_config('profile_fields')
use elgg()->fields->get('user', 'user')

Setting the config for pages, group and user:profile via elgg_set_config is no longer possible.
Use a hook callback for fields, <entity_type>:<entity_subtype>.

The hook profile:fields, group has been replaced by the new hook fields, group:group

The hook profile:fields, user has been replaced by the new hook fields, user:user

296 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Menus

Instead of registering the _elgg_setup_vertical_menu and _elgg_menu_transform_to_dropdown
for menus, this is replaced by using the menu vars prepare_vertical and prepare_dropdown. Setting them
to true will give you the same effect. This allows for individual control in views when this is required.

The automatic marking as “selected” of parent menu items of the selected menu item will now always happen for
every menu.

Filter tabs

The preparation of tabs for the filter menu by using the elgg_get_filter_tabs() function and
the 'filter_tabs', '<context>' hook has been removed. You can now use the 'register',
'menu:filter:filter' hook to add/remove items from the same place.

The all, mine and friends tabs will automaticly generate if routes are available for pages similar to the current
route. For example if the current route is collection:object:blog:all the tabs will be generated for the
route collection:object:blog:owner and collection:object:blog:friends.

Title menu

The title menu will now be populated with the entity menu if the entity is provided to the layout. This is
mostly useful on the detail page of an entity (eg. blog/view). Most of the entries for the entity menu will be
added to a dropdown menu, except the edit menu item (when available) this item will be presented next to the
dropdown menu.

echo elgg_view_page('title', [
'content' => elgg_view_entity($entity),
'entity' => $entity, // <= will make sure the entity menu is available in the

→˓title menu
]);

Registering tag metadatanames

Because of various limitations of this implementation it has been removed from the system. The following related API
functions have been removed:

elgg_get_registered_tag_metadata_names()

elgg_register_tag_metadata_name()

elgg_unregister_tag_metadata_name()

If you need specific fields to be searchable you need to register them with the related search:fields hooks. The
related tagnames:xxx tag language keys are no longer registered in the system.

The function ElggEntity::getTags() will now return only tag metadata with the name tags by default. If you
want to check extra fields containing tags, you need to request this specifically.

Default widgets

The magic handling the creation of default widgets has been reduced. You now need to register the
Elgg\Widgets\CreateDefaultWidgetsHandler callback to the event when you want default widgets to

3.7. Appendix 297

Elgg Documentation, Versión master

be created. The configuration default_widget_info is no longer present in the system. Use the get_list,
default_widgets hook to get the value.

You also need to update the data in your get_list, default_widgets hook handler to return event_name
(previously event) and event_type.

Container permissions

The function parameters for ElggEntity::canWriteToContainer() now require a $type and $subtype
to be passed. This is to give more information to the resulting hook in order to be able to determine if a user is allowed
write access to the container.

Plugins

Activity plugin

This plugin received a much needed rewrite. The different pages (all/owner/friends) now have their own resource and
listing views.

Diagnostics Plugin

This plugin has been removed, but the action to generate a report is still available. You can find it on the
Information/Server admin page.

Discussions Plugin

This plugin no longer adds a tab to the filter menu on the groups pages

The discussions site menu item is now always present

Search Plugin

The output of search results no longer uses the helper class Elgg\Search\Formatter for the preparation of the
result contents. This logic has been moved entirely into views.

The related functions prepareEntity and getSearchView in the Elgg\Search\Service class have been
removed.

The hook search:format, entity has been removed.

Web services Plugin

The Web Services plugin received a complete rewrite, this is mostly related to the internals of the plugin.

Removed classes

ElggHMACCache has been replaced by _elgg_services()->hmacCacheTable (for internal use only)

Elgg\Notifications\Event has been replaced by Elgg\Notifications\SubscriptionNotificationEvent

298 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Removed functions

create_api_user() has been replaced by _elgg_services()->apiUsersTable->createApiUser()

create_user_token() has been replaced by _elgg_services()->usersApiSessions->createToken()

get_api_user() has been replaced by _elgg_services()->apiUsersTable->getApiUser()

get_standard_api_key_array() use \Elgg\WebServices\ElggApiClient::setApiKeys()

get_user_tokens() has been replaced by _elgg_services()->usersApiSessions->getUserTokens()

pam_auth_session()

remove_api_user() has been replaced by _elgg_services()->apiUsersTable->removeApiUser()

remove_expired_user_tokens() has been replaced by _elgg_services()->usersApiSessions->removeExpiresTokens()

remove_user_token() has been replaced by _elgg_services()->usersApiSessions->removeToken()

send_api_call() use \Elgg\WebServices\ElggApiClient

send_api_get_call() use \Elgg\WebServices\ElggApiClient

send_api_post_call() use \Elgg\WebServices\ElggApiClient

service_handler()

validate_user_token() has been replaced by _elgg_services()->usersApiSessions->validateToken()

ws_page_handler()

ws_rest_handler() has been replaced by \Elgg\WebServices\RestServiceController

Miscellaneous changes

The config value for servicehandler has been removed

In certain edge cases the default value of an API parameter will not be applied

Type hinted functions

The following functions now have their arguments type-hinted, this can cause TypeError errors. Also some class
functions have their return value type hinted and you should update your function definition.

Class function parameters

ElggEntity::setLatLong() now requires a float for $lat and $long

ElggUser::setNotificationSetting() now requires a string for $method and a bool for
$enabled

Elgg\Database\Seeds\Seed::__construct() now requires an int for $limit

Elgg\Http\ErrorResponse::__construct() now requires an int for $status_code

Elgg\Http\OkResponse::__construct() now requires an int for $status_code

Elgg\Http\RedirectResponse::__construct() now requires an int for $status_code

Elgg\I18n\Translator::getInstalledTranslations() now requires a bool for
$calculate_completeness

3.7. Appendix 299

Elgg Documentation, Versión master

SiteNotification::setActor() now requires an ElggEntity for $entity

SiteNotification::setURL() now requires a string for $url

SiteNotification::setRead() now requires a bool for $read

Class function return type

Elgg\Upgrade\Batch::getVersion() now requires an int return value

Elgg\Upgrade\Batch::shouldBeSkipped() now requires an bool return value

Elgg\Upgrade\Batch::needsIncrementOffset() now requires an bool return value

Elgg\Upgrade\Batch::countItems() now requires an int return value

Elgg\Upgrade\Batch::run() now requires an Elgg\Upgrade\Result return value

Lib function parameters

add_user_to_access_collection() now requires an int for $user_guid and
$collection_id

can_edit_access_collection() now requires an int for $collection_id and $user_guid

create_access_collection() now requires an string for $name and int for $owner_guid

delete_access_collection() now requires an int for $collection_id

elgg_action_exists() now requires a string for $action

elgg_add_admin_notice() now requires a string for $id and $message

elgg_admin_notice_exists() now requires a string for $id

elgg_annotation_exists() now requires a int for $entity_guid, a string for $name and int
for $owner_guid

elgg_delete_admin_notice() now requires a string for $id

elgg_delete_annotation_by_id() now requires a int for $id

elgg_deprecated_notice() now requires a string for $msg and $dep_version

elgg_error_response() now requires an int for $status_code

elgg_get_access_collections() now requires an array for $options

elgg_get_annotation_from_id() now requires an int for $id

elgg_get_subscriptions_for_container() now requires an int for $container_guid

elgg_get_plugin_from_id() now requires a string for $plugin_id

elgg_get_plugin_setting() now requires a string for $name and $plugin_id

elgg_get_plugin_user_setting() now requires a string for $name and $plugin_id and int
for $user_guid

elgg_get_plugins() now requires a string for $status

elgg_get_river_item_from_id() now requires a int for $id

elgg_list_annotations() now requires an array for $options

300 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

elgg_ok_response() now requires an int for $status_code

elgg_plugin_exists() now requires a string for $plugin_id

elgg_redirect_response() now requires an int for $status_code

elgg_register_action() now requires a string for $action and $access

elgg_send_email() now requires an \Elgg\Email for $email

elgg_set_plugin_user_setting() now requires a string for $name and $plugin_id and int
for $user_guid

elgg_unregister_action() now requires a string for $action

get_access_array() now requires an int for $user_guid

get_access_collection() now requires an int for $collection_id

get_entity_statistics() now requires an int for $owner_guid

get_members_of_access_collection() now requires an int for $collection_id and bool for
$guids_only

get_readable_access_level() now requires an int for $entity_access_id

get_write_access_array() now requires an int for $user_guid and bool for $flush

has_access_to_entity() now requires an ElggEntity for $entity and ElggUser for $user

remove_user_from_access_collection() now requires an int for $user_guid and
$collection_id

system_log_get_log() now requires an array for $options

messageboard_add() now requires an ElggUser, ElggUser, string and an int

elgg_register_external_file() now requires all arguments to be of the type string

elgg_unregister_external_file() now requires all arguments to be of the type string

elgg_load_external_file() now requires all arguments to be of the type string

elgg_get_loaded_external_files() now requires all arguments to be of the type string

Change in function parameters

Class functions

Elgg\Http\ResponseBuilder::setStatusCode() no longer has a default value

ElggEntity::canWriteToContainer() no longer has a default value for $type and $subtype but
these are required

Lib functions

elgg_get_page_owner_guid() no longer accepts $guid as a parameter

get_access_array() no longer accepts $flush as a parameter

elgg_register_external_file() no longer accepts $priority as a parameter

3.7. Appendix 301

Elgg Documentation, Versión master

Renamed hook/event handler callbacks

Special attention is required if you unregister the callbacks in your plugins as you might need to update your code.

Core

access_friends_acl_get_name() changed to Elgg\Friends\AclNameHandler::class

access_friends_acl_add_friend() changed to Elgg\Friends\AddToAclHandler::class

access_friends_acl_create() changed to Elgg\Friends\CreateAclHandler::class

access_friends_acl_remove_friend() changed to Elgg\Friends\RemoveFromAclHandler::class

_elgg_add_admin_widgets() changed to Elgg\Widgets\CreateAdminWidgetsHandler::class

_elgg_admin_check_admin_validation() changed to Elgg\Users\Validation::checkAdminValidation()

_elgg_admin_header_menu() changed to Elgg\Menus\AdminHeader::register() and
Elgg\Menus\AdminHeader::registerMaintenance()

_elgg_admin_footer_menu() changed to Elgg\Menus\AdminFooter::registerHelpResources()

_elgg_admin_notify_admins_pending_user_validation() changed to
Elgg\Users\Validation::notifyAdminsAboutPendingUsers()

_elgg_admin_page_menu() changed to Elgg\Menus\Page::registerAdminAdminister()
and Elgg\Menus\Page::registerAdminConfigure() and Elgg\Menus\Page::registerAdminInformation()

_elgg_admin_page_menu_plugin_settings() changed to Elgg\Menus\Page::registerAdminPluginSettings()

_elgg_admin_prepare_admin_notification_make_admin() changed to
Elgg\Notifications\MakeAdminUserEventHandler

_elgg_admin_prepare_admin_notification_remove_admin() changed to
Elgg\Notifications\RemoveAdminUserEventHandler

_elgg_admin_prepare_user_notification_make_admin() changed to
Elgg\Notifications\MakeAdminUserEventHandler

_elgg_admin_prepare_user_notification_remove_admin() changed to
Elgg\Notifications\RemoveAdminUserEventHandler

_elgg_admin_save_notification_setting() changed to Elgg\Users\Settings::setAdminValidationNotification()

_elgg_admin_set_registration_forward_url() changed to Elgg\Users\Validation::setRegistrationForwardUrl()

_elgg_admin_user_unvalidated_bulk_menu() changed to Elgg\Menus\UserUnvalidatedBulk::registerActions()

_elgg_admin_user_validation_login_attempt() changed to
Elgg\Users\Validation::preventUserLogin()

_elgg_admin_user_validation_notification() changed to Elgg\Users\Validation::notifyUserAfterValidation()

_elgg_admin_upgrades_menu() changed to Elgg\Menus\Filter::registerAdminUpgrades()

_elgg_cache_init() actions combined in Elgg\Application\SystemEventHandlers::ready()

_elgg_clear_caches() changed to Elgg\Cache\EventHandlers::clear()

_elgg_comments_access_sync() changed to Elgg\Comments\SyncContainerAccessHandler::class

_elgg_comments_container_permissions_override() changed to
Elgg\Comments\ContainerPermissionsHandler::class

302 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

_elgg_comments_permissions_override() changed to Elgg\Comments\EditPermissionsHandler::class

_elgg_comments_prepare_content_owner_notification() changed to
Elgg\Notifications\CreateCommentEventHandler

_elgg_comments_prepare_notification() changed to Elgg\Notifications\CreateCommentEventHandler

_elgg_comments_social_menu_setup() changed to Elgg\Menus\Social::registerComments()

_elgg_create_default_widgets() changed to Elgg\Widgets\CreateDefaultWidgetsHandler::class

_elgg_create_notice_of_pending_upgrade() changed to Elgg\Upgrade\CreateAdminNoticeHandler::class

_elgg_db_register_seeds() changed to Elgg\Database\RegisterSeedsHandler::class

_elgg_disable_caches() changed to Elgg\Cache\EventHandlers::disable()

_elgg_default_widgets_permissions_override() changed to
Elgg\Widgets\DefaultWidgetsContainerPermissionsHandler::class

_elgg_disable_password_autocomplete() changed to Elgg\Input\DisablePasswordAutocompleteHandler::class

_elgg_enable_caches() changed to Elgg\Cache\EventHandlers::enable()

_elgg_filestore_move_icons() changed to Elgg\Icons\MoveIconsOnOwnerChangeHandler::class

_elgg_filestore_touch_icons() changed to Elgg\Icons\TouchIconsOnAccessChangeHandler::class

_elgg_head_manifest() changed to Elgg\Views\AddManifestLinkHandler::class

_elgg_annotations_default_menu_items() changed to Elgg\Menus\Annotation::registerDelete()

_elgg_walled_garden_menu() changed to Elgg\Menus\WalledGarden::registerHome()

_elgg_site_menu_init() changed to Elgg\Menus\Site::registerAdminConfiguredItems()

_elgg_site_menu_setup() changed to Elgg\Menus\Site::reorderItems()

_elgg_entity_menu_setup() changed to Elgg\Menus\Entity::registerEdit() and
Elgg\Menus\Entity::registerDelete()

_elgg_entity_navigation_menu_setup() changed to Elgg\Menus\EntityNavigation::registerPreviousNext()

_elgg_enqueue_notification_event() changed to Elgg\Notifications\EnqueueEventHandler::class

_elgg_groups_container_override() changed to Elgg\Groups\MemberPermissionsHandler::class

_elgg_groups_comment_permissions_override() changed to
Elgg\Comments\GroupMemberPermissionsHandler::class

_elgg_htmlawed_filter_tags() changed to Elgg\Input\ValidateInputHandler::class

_elgg_invalidate_caches() changed to Elgg\Cache\EventHandlers::invalidate()

_elgg_widget_menu_setup() changed to Elgg\Menus\Widget::registerEdit() and
Elgg\Menus\Widget::registerDelete()

_elgg_login_menu_setup() changed to Elgg\Menus\Login::registerRegistration()
and Elgg\Menus\Widget::registerResetPassword()

_elgg_nav_public_pages() changed to Elgg\WalledGarden\ExtendPublicPagesHandler::class

_elgg_notifications_cron() changed to Elgg\Notifications\ProcessQueueCronHandler::class

_elgg_notifications_smtp_default_message_id_header() changed to
Elgg\Email\DefaultMessageIdHeaderHandler::class

_elgg_notifications_smtp_thread_headers() changed to Elgg\Email\ThreadHeadersHandler::class

3.7. Appendix 303

Elgg Documentation, Versión master

_elgg_rebuild_public_container() changed to Elgg\Cache\EventHandlers::rebuildPublicContainer()

_elgg_river_update_object_last_action() changed to Elgg\River\UpdateLastActionHandler::class

_elgg_rss_menu_setup() changed to Elgg\Menus\Footer::registerRSS()

_elgg_plugin_entity_menu_setup() changed to Elgg\Menus\Entity::registerPlugin()

_elgg_purge_caches() changed to Elgg\Cache\EventHandlers::purge()

_elgg_river_menu_setup() changed to Elgg\Menus\River::registerDelete()

_elgg_save_notification_user_settings() changed to Elgg\Notifications\SaveUserSettingsHandler::class

_elgg_session_cleanup_persistent_login() changed to Elgg\Users\CleanupPersistentLoginHandler::class

_elgg_set_lightbox_config() changed to Elgg\Javascript\SetLightboxConfigHandler::class

_elgg_set_user_default_access() changed to Elgg\Users\Settings::setDefaultAccess()

_elgg_set_user_email() changed to Elgg\Users\Settings::setEmail()

_elgg_set_user_password() changed to Elgg\Users\Settings::setPassword()

_elgg_set_user_language() changed to Elgg\Users\Settings::setLanguage()

_elgg_set_user_name() changed to Elgg\Users\Settings::setName()

_elgg_set_user_username() changed to Elgg\Users\Settings::setUsername()

_elgg_send_email_notification() changed to Elgg\Notifications\SendEmailHandler::class

_elgg_upgrade_completed() changed to Elgg\Upgrade\UpgradeCompletedAdminNoticeHandler::class

_elgg_upgrade_entity_menu() changed to Elgg\Menus\Entity::registerUpgrade()

_elgg_user_ban_notification() changed to Elgg\Users\BanUserNotificationHandler::class

_elgg_user_get_subscriber_unban_action() changed to Elgg\Notifications\UnbanUserEventHandler

_elgg_user_prepare_unban_notification() changed to Elgg\Notifications\UnbanUserEventHandler

_elgg_user_settings_menu_register() changed to Elgg\Menus\Page::registerUserSettings()
and Elgg\Menus\Page::registerUserSettingsPlugins()

_elgg_user_settings_menu_prepare() changed to Elgg\Menus\Page::cleanupUserSettingsPlugins()

elgg_user_hover_menu() changed to Elgg\Menus\UserHover::registerAvatarEdit()
and Elgg\Menus\UserHover::registerAdminActions()

_elgg_user_set_icon_file() changed to Elgg\Icons\SetUserIconFileHandler::class

_elgg_user_title_menu() changed to Elgg\Menus\Title::registerAvatarEdit()

_elgg_user_page_menu() changed to Elgg\Menus\Page::registerAvatarEdit()

_elgg_user_topbar_menu() changed to Elgg\Menus\Topbar::registerUserLinks()

_elgg_user_unvalidated_menu() changed to Elgg\Menus\UserUnvalidated::register()

_elgg_views_amd() changed to Elgg\Views\AddAmdModuleNameHandler::class

_elgg_views_file_help_upload_limit() changed to Elgg\Input\AddFileHelpTextHandler::class

_elgg_views_init() combined into Elgg\Application\SystemEventHandlers::init()

_elgg_views_minify() changed to Elgg\Views\MinifyHandler::class

_elgg_views_prepare_favicon_links() changed to Elgg\Page\AddFaviconLinksHandler::class

_elgg_views_preprocess_css() changed to Elgg\Views\PreProcessCssHandler::class

304 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

_elgg_views_send_header_x_frame_options() changed to Elgg\Page\SetXFrameOptionsHeaderHandler::class

_elgg_walled_garden_init()merged into Elgg\Application\SystemEventHandlers::initLate()

_elgg_walled_garden_remove_public_access() changed to Elgg\WalledGarden\RemovePublicAccessHandler::class

_elgg_widgets_widget_urls() changed to Elgg\Widgets\EntityUrlHandler::class

elgg_prepare_breadcrumbs() changed to Elgg\Page\PrepareBreadcrumbsHandler::class

Elgg\Profiler::handleOutput changed to Elgg\Debug\Profiler::class

users_init combined into Elgg\Application\SystemEventHandlers::initLate()

Plugins

_developers_entity_menu changed to Elgg\Developers\Menus\Entity::registerEntityExplorer

_developers_page_menu changed to Elgg\Developers\Menus\Page::register

_elgg_activity_owner_block_menu changed to Elgg\Activity\Menus\OwnerBlock::registerUserItem
and Elgg\Activity\Menus\OwnerBlock::registerGroupItem

blog_archive_menu_setup changed to Elgg\Blog\Menus\BlogArchive::register

blog_owner_block_menu changed to Elgg\Blog\Menus\OwnerBlock::registerUserItem
and Elgg\Blog\Menus\OwnerBlock::registerGroupItem

blog_prepare_notification changed to Elgg\Blog\Notifications\PublishBlogEventHandler

blog_register_db_seeds changed to Elgg\Blog\Database::registerSeeds

bookmarks_footer_menu changed to Elgg\Bookmarks\Menus\Footer::register

bookmarks_owner_block_menu changed to Elgg\Bookmarks\Menus\OwnerBlock::registerUserItem
and Elgg\Bookmarks\Menus\OwnerBlock::registerGroupItem

bookmarks_page_menu changed to Elgg\Bookmarks\Menus\Page::register

bookmarks_prepare_notification changed to Elgg\Bookmarks\Notifications\CreateBookmarksEventHandler

bookmarks_register_db_seeds changed to Elgg\Bookmarks\Database::registerSeeds

ckeditor_longtext_id changed to Elgg\CKEditor\Views::setInputLongTextIDViewVar

ckeditor_longtext_menu changed to Elgg\CKEditor\Menus\LongText::registerToggler

dashboard_default_widgets changed to Elgg\Dashboard\Widgets::extendDefaultWidgetsList

developers_log_events changed to Elgg\Developers\HandlerLogger::trackEvent and
Elgg\Developers\HandlerLogger::trackHook

diagnostics_basic_hook changed to Elgg\Diagnostics\Reports::getBasic

diagnostics_globals_hook changed to Elgg\Diagnostics\Reports::getGlobals

diagnostics_phpinfo_hook changed to Elgg\Diagnostics\Reports::getPHPInfo

diagnostics_sigs_hook changed to Elgg\Diagnostics\Reports::getSigs

discussion_comment_permissions changed to Elgg\Discussions\Permissions::preventCommentOnClosedDiscussion

discussion_get_subscriptions changed to Elgg\Discussions\Notifications::addGroupSubscribersToCommentOnDiscussionSubscriptions

discussion_owner_block_menu changed to Elgg\Discussions\Menus\OwnerBlock::registerGroupItem

discussion_prepare_comment_notification changed to Elgg\Discussions\Notifications::prepareCommentOnDiscussionNotification

3.7. Appendix 305

Elgg Documentation, Versión master

discussion_prepare_notification changed to Elgg\Discussions\Notifications\CreateDiscussionEventHandler

discussion_register_db_seeds changed to Elgg\Discussions\Database::registerSeeds

Elgg\DevelopersPlugins* changed to Elgg\Developers*

Elgg\Discussions\Menus::registerSiteMenuItem changed to
Elgg\Discussions\Menus\Site::register

Elgg\Discussions\Menus::filterTabs changed to Elgg\Discussions\Menus\Filter::filterTabsForDiscussions

embed_longtext_menu changed to Elgg\Embed\Menus\LongText::register

embed_select_tab changed to Elgg\Embed\Menus\Embed::selectCorrectTab

embed_set_thumbnail_url changed to Elgg\Embed\Icons::setThumbnailUrl

expages_menu_register_hook changed to Elgg\ExternalPages\Menus\ExPages::register

file_handle_object_delete changed to Elgg\File\Icons::deleteIconOnElggFileDelete

file_prepare_notification changed to Elgg\File\Notifications\CreateFileEventHandler

file_register_db_seeds changed to Elgg\File\Database::registerSeeds

file_set_custom_icon_sizes changed to Elgg\File\Icons::setIconSizes

file_set_icon_file changed to Elgg\File\Icons::setIconFile

file_set_icon_url changed to Elgg\File\Icons::setIconUrl

file_owner_block_menu changed to Elgg\File\Menus\OwnerBlock::registerUserItem
and Elgg\File\Menus\OwnerBlock::registerGroupItem

_elgg_friends_filter_tabs changed to Elgg\Friends\Menus\Filter::registerFilterTabs

_elgg_friends_page_menu changed to Elgg\Friends\Menus\Page::register

_elgg_friends_register_access_type changed to Elgg\Friends\Access::registerAccessCollectionType

_elgg_friends_setup_title_menu changed to Elgg\Friends\Menus\Title::register

_elgg_friends_setup_user_hover_menu changed to Elgg\Friends\Menus\UserHover::register

_elgg_friends_topbar_menu changed to Elgg\Friends\Menus\Topbar::register

_elgg_friends_widget_urls changed to Elgg\Friends\Widgets::setWidgetUrl

_elgg_send_friend_notification changed to Elgg\Friends\Notifications::sendFriendNotification

Elgg\Friends\FilterMenu::addFriendRequestTabs changed to
Elgg\Friends\Menus\Filter::addFriendRequestTabs

Elgg\Friends\RelationshipMenu::addPendingFriendRequestItems changed to
Elgg\Friends\Menus\Relationship::addPendingFriendRequestItems

Elgg\Friends\RelationshipMenu::addPendingFriendRequestItems changed to
Elgg\Friends\Menus\Relationship::addPendingFriendRequestItems

Elgg\Friends\Relationships::createFriendRelationship changed to
Elgg\Friends\Relationships::removePendingFriendRequest

_groups_gatekeeper_allow_profile_page changed to Elgg\Groups\Access::allowProfilePage

_groups_page_menu changed to Elgg\Groups\Menus\Page::register

_groups_page_menu_group_profile changed to Elgg\Groups\Menus\Page::registerGroupProfile

_groups_relationship_invited_menu changed to Elgg\Groups\Menus\Relationship::registerInvitedItems

306 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

_groups_relationship_member_menu changed to Elgg\Groups\Menus\Relationship::registerRemoveUser

_groups_relationship_membership_request_menu changed to
Elgg\Groups\Menus\Relationship::registerMembershipRequestItems

_groups_title_menu changed to Elgg\Groups\Menus\Title::register

_groups_topbar_menu_setup changed to Elgg\Groups\Menus\Topbar::register

groups_access_default_override changed to Elgg\Groups\Access::overrideDefaultAccess

groups_create_event_listener changed to Elgg\Groups\Group::createAccessCollection

groups_default_page_owner_handler changed to Elgg\Groups\PageOwner::detectPageOwner

groups_entity_menu_setup changed to Elgg\Groups\Menus\Entity::register and
Elgg\Groups\Menus\Entity::registerFeature

groups_fields_setup changed to Elgg\Groups\FieldsHandler

groups_members_menu_setup changed to Elgg\Groups\Menus\GroupsMembers::register

groups_set_access_collection_name changed to Elgg\Groups\Access::getAccessCollectionName

groups_set_url changed to Elgg\Groups\Group::getEntityUrl

groups_setup_filter_tabs changed to Elgg\Groups\Menus\Filter::registerGroupsAll

groups_update_event_listener changed to Elgg\Groups\Group::updateGroup

groups_user_join_event_listener changed to Elgg\Groups\Group::joinGroup

groups_user_leave_event_listener changed to Elgg\Groups\Group::leaveGroup

groups_write_acl_plugin_hook changed to Elgg\Groups\Access::getWriteAccess

invitefriends_add_friends changed to Elgg\InviteFriends\Users::addFriendsOnRegister

invitefriends_register_page_menu changed to Elgg\InviteFriends\Menus\Page::register

likes_permissions_check changed to Elgg\Likes\Permissions::allowLikedEntityOwner

likes_permissions_check_annotate changed to Elgg\Likes\Permissions::allowLikeOnEntity

likes_social_menu_setup changed to Elgg\Likes\Menus\Social::register

members_register_filter_menu changed to Elgg\Members\Menus\Filter::register

messages_can_edit changed to Elgg\Messages\Permissions::canEdit

messages_can_edit_container changed to Elgg\Messages\Permissions::canEditContainer

messages_purge changed to Elgg\Messages\User::purgeMessages

messages_register_topbar changed to Elgg\Messages\Menus\Topbar::register

messages_user_hover_menu changed to Elgg\Messages\Menus\UserHover::register and
Elgg\Messages\Menus\Title::register

notifications_update_collection_notify changed to Elgg\Notifications\Relationships::updateUserNotificationsPreferencesOnACLChange

notifications_update_friend_notify changed to Elgg\Friends\Relationships::applyFriendNotificationsSettings

notifications_relationship_remove changed to Elgg\Friends\Relationships::deleteFriendNotificationSubscription
and Elgg\Groups\Relationships::removeGroupNotificationSubscriptions

_notifications_page_menu changed to Elgg\Notifications\Menus\Page::register

_notification_groups_title_menu changed to Elgg\Notifications\Menus\Title::register

3.7. Appendix 307

Elgg Documentation, Versión master

pages_container_permission_check changed to Elgg\Pages\Permissions::allowContainerWriteAccess

pages_entity_menu_setup changed to Elgg\Pages\Menus\Entity::register

pages_icon_url_override changed to Elgg\Pages\Icons::getIconUrl

pages_owner_block_menu changed to Elgg\Pages\Menus\OwnerBlock::registerUserItem
and Elgg\Pages\Menus\OwnerBlock::registerGroupItem

pages_prepare_notification changed to Elgg\Pages\Notifications\CreatePageEventHandler

pages_register_db_seeds changed to Elgg\Pages\Database::registerSeeds

pages_set_revision_url changed to Elgg\Pages\Extender::setRevisionUrl

pages_write_access_options_hook changed to Elgg\Pages\Views::removeAccessPublic

pages_write_access_vars changed to Elgg\Pages\Views::preventAccessPublic

pages_write_permission_check changed to Elgg\Pages\Permissions::allowWriteAccess

Elgg\Pages\Menus::registerPageMenuItems changed to Elgg\Pages\Menus\PagesNav::register

_profile_admin_page_menu changed to Elgg\Profile\Menus\Page::registerAdminProfileFields

_profile_fields_setup changed to Elgg\Profile\FieldsHandler

_profile_title_menu changed to Elgg\Profile\Menus\Title::register

_profile_topbar_menu changed to Elgg\Profile\Menus\Topbar::register

_profile_user_hover_menu changed to Elgg\Profile\Menus\UserHover::register

_profile_user_page_menu changed to Elgg\Profile\Menus\Page::registerProfileEdit

profile_default_widgets_hook changed to Elgg\Profile\Widgets::getDefaultWidgetsList

reportedcontent_user_hover_menu changed to Elgg\ReportedContent\Menus\UserHover::register

search_exclude_robots changed to Elgg\Search\Site::preventSearchIndexing

search_output_tag changed to Elgg\Search\Views::setSearchHref

site_notifications_register_entity_menu changed to Elgg\SiteNotifications\Menus\Entity::register

site_notifications_send changed to Elgg\SiteNotifications\Notifications::createSiteNotifications

_uservalidationbyemail_user_unvalidated_bulk_menu changed to
Elgg\UserValidationByEmail\Menus\UserUnvalidatedBulk::register

_uservalidationbyemail_user_unvalidated_menu changed to
Elgg\UserValidationByEmail\Menus\UserUnvalidated::register

uservalidationbyemail_after_registration_url changed to
Elgg\UserValidationByEmail\Response::redirectToEmailSent

uservalidationbyemail_check_manual_login changed to Elgg\UserValidationByEmail\User::preventLogin

uservalidationbyemail_disable_new_user changed to Elgg\UserValidationByEmail\User::disableUserOnRegistration

system_log_archive_cron changed to Elgg\SystemLog\Cron::rotateLogs

system_log_default_logger changed to Elgg\SystemLog\Logger::log

system_log_delete_cron changed to Elgg\SystemLog\Cron::deleteLogs

system_log_listener changed to Elgg\SystemLog\Logger::listen

system_log_user_hover_menu changed to Elgg\SystemLog\Menus\UserHover::register

308 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

thewire_add_original_poster changed to Elgg\TheWire\Notifications\CreateTheWireEventHandler

thewire_owner_block_menu changed to Elgg\TheWire\Menus\OwnerBlock::register

thewire_prepare_notification changed to Elgg\TheWire\Notifications\CreateTheWireEventHandler

thewire_setup_entity_menu_items changed to Elgg\TheWire\Menus\Entity::register

Reworked exceptions

All exceptions in the Elgg system now extend the Elgg\Exceptions\Exception and are in the namespace
Elgg\Exceptions

Moved exceptions

ClassException use Elgg\Exceptions\ClassException

ConfigurationException use Elgg\Exceptions\ConfigurationException

CronException use Elgg\Exceptions\CronException

DatabaseException use Elgg\Exceptions\DatabaseException

DataFormatException use Elgg\Exceptions\DataFormatException

InstallationException use Elgg\Exceptions\Configuration\InstallationException

InvalidParameterException use Elgg\Exceptions\InvalidParameterException

IOException use Elgg\Exceptions\FileSystem\IOException

LoginException use Elgg\Exceptions\LoginException

PluginException use Elgg\Exceptions\PluginException

RegistrationException use Elgg\Exceptions\Configuration\RegistrationException

SecurityException use Elgg\Exceptions\SecurityException

Elgg\Database\EntityTable\UserFetchFailureException use
Elgg\Exceptions\Database\UserFetchFailureException

Elgg\Di\FactoryUncallableException use Elgg\Exceptions\Di\FactoryUncallableException

Elgg\Di\MissingValueException use Elgg\Exceptions\Di\MissingValueException

Elgg\Http\Exception\AdminGatekeeperException use Elgg\Exceptions\Http\Gatekeeper\AdminGatekeeperException

Elgg\Http\Exception\AjaxGatekeeperException use Elgg\Exceptions\Http\Gatekeeper\AjaxGatekeeperException

Elgg\Http\Exception\GroupToolGatekeeperException use Elgg\Exceptions\Http\Gatekeeper\GroupToolGatekeeperException

Elgg\Http\Exception\LoggedInGatekeeperException use Elgg\Exceptions\Http\Gatekeeper\LoggedInGatekeeperException

Elgg\Http\Exception\LoggedOutGatekeeperException use Elgg\Exceptions\Http\Gatekeeper\LoggedOutGatekeeperException

Elgg\Http\Exception\UpgradeGatekeeperException use Elgg\Exceptions\Http\Gatekeeper\UpgradeGatekeeperException

Elgg\I18n\InvalidLocaleException use Elgg\Exceptions\I18n\InvalidLocaleException

Elgg\BadRequestException use Elgg\Exceptions\Http\BadRequestException

Elgg\CsrfException use Elgg\Exceptions\Http\CsrfException

Elgg\EntityNotFoundException use Elgg\Exceptions\Http\EntityNotFoundException

3.7. Appendix 309

Elgg Documentation, Versión master

Elgg\EntityPermissionsException use Elgg\Exceptions\Http\EntityPermissionsException

Elgg\GatekeeperException use Elgg\Exceptions\Http\GatekeeperException

Elgg\GroupGatekeeperException use Elgg\Exceptions\Http\Gatekeeper\GroupGatekeeperException

Elgg\HttpException use Elgg\Exceptions\HttpException

Elgg\PageNotFoundException use Elgg\Exceptions\Http\PageNotFoundException

Elgg\ValidationException use Elgg\Exceptions\Http\ValidationException

Elgg\WalledGardenException use Elgg\Exceptions\Http\Gatekeeper\WalledGardenException

Removed exceptions

CallException

ClassNotFoundException

IncompleteEntityException

InvalidClassException

NotificationException

NotImplementedException from the Web Services plugin

Reworked Traits

In order to better organize the Elgg namespace all Traits have been moved to the Elgg\Traits namespace

Elgg\Cacheable moved to Elgg\Traits\Cacheable

Elgg\Cli\PluginsHelper moved to Elgg\Traits\Cli\PluginsHelper

Elgg\Cli\Progressing moved to Elgg\Traits\Cli\Progressing

Elgg\Database\Seeds\Seeding\GroupHelpersmoved to Elgg\Traits\Seeding\GroupHelpers

Elgg\Database\Seeds\Seeding\TimeHelpersmoved to Elgg\Traits\Seeding\TimeHelpers

Elgg\Database\Seeds\Seeding moved to Elgg\Traits\Seeding

Elgg\Database\LegacyQueryOptionsAdaptermoved to Elgg\Traits\Database\LegacyQueryOptionsAdapter

Elgg\Debug\Profilable moved to Elgg\Traits\Debug\Profilable

Elgg\Di\ServiceFacade moved to Elgg\Traits\Di\ServiceFacade

Elgg\Entity\ProfileData moved to Elgg\Traits\Entity\ProfileData

Elgg\Loggable moved to Elgg\Traits\Loggable

Elgg\Notifications\EventSerializationmoved to Elgg\Traits\Notifications\EventSerialization

Elgg\TimeUsing moved to Elgg\Traits\TimeUsing

310 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Miscellaneous API changes

The defaults for ignore_empty_body and prevent_double_submitwhen using elgg_view_form
have been changed to true.

The plugin settings forms (plugins/{$plugin_id}/settings) no longer receive
$vars['plugin'] use $vars['entity']

Elgg\Router\Middleware\WalledGarden::isPublicPage() can no longer be called statically

Elgg\Cli\PluginsHelper::getDependents() is no longer publically available

ElggPlugin::getLanguagesPath() is no longer publically available

An \ElggBatch no longer implements the interface Elgg\BatchResult but still has the same features

An \ElggEntity no longer implements the interface Locatable but still has the same features

An \Elgg\Event no longer implements the interfaces \Elgg\ObjectEvent and \Elgg\UserEvent
but still has the same features

The view output/icon no longer uses the convert view var

ElggData::save() now always returns a bool as documented. All extending classes have been updated
(eg. ElggEntity, ElggMetadata, ElggRelationship, etc.)

Elgg\Email::getTo() now always returns an array

ElggPlugin::activate() and ElggPlugin::deactivate() now can throw an
Elgg\Exceptions\PluginException with more details about the failure

\ElggRelationship::RELATIONSHIP_LIMIT has been removed use ElggDatabaseRelationshipsTa-
ble::RELATIONSHIP_COLUMN_LENGTH‘‘

The constants ORIGIN_SUBSCRIPTIONS and ORIGIN_INSTANT in
\Elgg\Notifications\Notification have been removed

You can no longer use the delete, <entity_type> event to prevent deletion of an entity. Use the
delete:before, <entity_type> event

External Files are no longer ordered by priority but will be returned in the same order as they are registered

The interface Friendable has been removed. Implemented functions in ElggUser have been moved to
Elgg\Traits\Entity\Friends

The config flag profile_using_custom is no longer available

The return value of elgg_create_river_item() will be false in the case the creation was prevented
by the 'create:before', 'river' event

The constant ELGG_PLUGIN_USER_SETTING_PREFIX has been removed use the helper function
\ElggUser::getNamespacedPluginSettingName()

The constant ELGG_PLUGIN_INTERNAL_PREFIX has been removed to get the plugin priority private setting
name use \ElggPlugin::PRIORITY_SETTING_NAME

The class SiteNotificationFactory was removed use SiteNotification::factory()

The class Elgg\Email\Address no longer throws Laminas\Mail\Exception\InvalidArgumentException
but now throws Elgg\Exceptions\InvalidArgumentException

3.7. Appendix 311

Elgg Documentation, Versión master

Deprecated APIs

Class functions

ElggPlugin::getUserSetting() use ElggUser::getPluginSetting()

ElggPlugin::setUserSetting() use ElggUser::setPluginSetting()

Lib functions

forward() use Elgg\Exceptions\HttpException instances or elgg_redirect_response()

Plugin hooks

'usersettings', 'plugin' use the hook 'plugin_setting', '<entity type>'

Removed functions

Class functions

Elgg\Config::getEntityTypes() use Elgg\Config::ENTITY_TYPES constant

ElggFile::setDescription() use $file->description = $new_description

ElggGroup::addObjectToGroup()

ElggGroup::removeObjectFromGroup()

ElggPlugin::getAllUserSettings()

ElggPlugin::getDependencyReport()

ElggPlugin::getError()

ElggPlugin::unsetAllUserSettings()

ElggPlugin::unsetAllUserAndPluginSettings() use ElggPlugin::unsetAllEntityAndPluginSettings()

ElggWidget::getContext() use $entity->context

ElggWidget::setContext() use $entity->context = $context

Elgg\Notifications\NotificationsService::getDeprecatedHandler()

Elgg\Notifications\NotificationsService::getMethodsAsDeprecatedGlobal() use
elgg_get_notification_methods()

Elgg\Notifications\NotificationsService::registerDeprecatedHandler()

Elgg\Notifications\NotificationsService::setDeprecatedNotificationSubject()

Elgg\Email::getRecipient() use Elgg\Email::getTo()

Elgg\Email::setRecipient()

Elgg\Entity::getLocation() use $entity->location

Elgg\Entity::setLocation() use $entity->location = $location

312 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Lib functions

access_get_show_hidden_status() use elgg()->session->getDisabledEntityVisibility()

diagnostics_md5_dir()

elgg_add_subscription() use \ElggEntity::addSubscription()

elgg_get_available_languages() use elgg()->translator->getAvailableLanguages()

elgg_get_all_plugin_user_settings()

elgg_get_entities_from_plugin_user_settings() use elgg_get_entities() with pri-
vate settings parameters and prefix your setting name with plugin:user_setting:

elgg_get_filter_tabs() use menu hooks on 'register', 'menu:filter:<filter_id>'

elgg_get_loaded_css() use elgg_get_loaded_external_files('css', 'head')

elgg_get_loaded_js() use elgg_get_loaded_external_files('js', $location)

elgg_get_system_messages() use elgg()->system_messages->loadRegisters()

elgg_prepend_css_urls()

elgg_remove_subscription() use \ElggEntity::removeSubscription()

elgg_set_plugin_setting() use $plugin->setSetting($name, $value)

elgg_set_plugin_user_setting() use ElggUser::setPluginSetting()

elgg_set_system_messages() use elgg()->system_messages->saveRegisters()

elgg_unset_plugin_setting() use $plugin->unsetSetting($name)

elgg_unset_plugin_user_setting() use ElggUser::removePluginSetting()

get_language_completeness() use elgg()->translator->getLanguageCompleteness()

get_installed_translations() use elgg()->translator->getInstalledTranslations()

group_access_options()

pages_is_page()

system_log_get_log()

system_log_get_log_entry()

system_log_get_object_from_log_entry()

system_log_get_seconds_in_period()

system_log_archive_log()

system_log_browser_delete_log()

thewire_get_parent() use \ElggWire::getParent()

validate_email_address() use elgg()->accounts->assertValidEmail()

validate_password() use elgg()->accounts->assertValidPassword()

validate_username() use elgg()->accounts->assertValidUsername()

3.7. Appendix 313

Elgg Documentation, Versión master

Removed views / resources

admin/develop_tools/inspect/webservices

elgg/thewire.js

input/urlshortener

messages/js moved to forms/messages/process.js

navigation/menu/elements/item_deps the functionality has been merged into navigation/
menu/elements/item

object/plugin/elements/contributors

notifications/groups

notifications/personal use notifications/settings or notifications/users

notifications/settings/personal moved to notifications/settings/records

notifications/settings/collections

notifications/settings/other extend notifications/settings/records

notifications/subscriptions/groups use forms/notifications/subscriptions/
groups

notifications/subscriptions/users use forms/notifications/subscriptions/
users

resources/comments/view use \Elgg\Controllers\CommentEntityRedirector

resources/river use resources/activity/all or resources/activity/owner or
resources/activity/friends

reportedcontent/admin_css

thewire/previous

Removed hooks / events

Event created, river has been removed. Use the create:after, river event.

Hook creating, river has been removed. Use the create:before, river event if you want to
block the creation of a river item.

Hook filter_tabs, <context> has been removed. Use the register,
menu:filter:<filter_id> hook

Hook output, ajax has been removed. Use the ajax_response hook if you want to influence the results.

Hook reportedcontent:add has been removed. Use the create, object event to prevent creation.

Hook reportedcontent:archive has been removed. Use the permissions_check, object
hook.

Hook reportedcontent:delete has been removed. Use the delete, object event to prevent dele-
tion.

Removed actions

The action reportedcontent/delete has been replaced with a generic entity delete action

314 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

From 3.2 to 3.3

Contents

PHP Version

Simpler use of “default” layout

Deprecated layout names

Plugin Manifest changes

Deprecated APIs

Deprecated Config values

Deprecated CLI commands

Deprecated Hooks

PHP Version

PHP 7.1 has reached end of life in December 2019. To ensure that Elgg sites are secure, we now require PHP 7.2 for
new installations.

If upgrading from a previous Elgg installation make sure you have the correct PHP version installed.

In order to be able to test Elgg on PHP 7.4 we had to update the PHPUnit testsuite to version 8.5. This may require
some rewrites of your own unit/integration tests.

Simpler use of “default” layout

Currently a common pattern is to do the following:

$title = 'All blogs';

$content = elgg_list_entities([
'type' => 'object',
'subtype' => 'blog',

]);

$layout = elgg_view_layout('default', [
'title' => $title,
'content' => $content,

]);

echo elgg_view_page($title, $layout);

We made this kind of pattern simpler. You can now pass an array of layout options to the second parameter of
elgg_view_page. The elgg_view_page function will use this array to wrap it in the “default” layout. It also adds the
page title to the layout.

The new way to do it is:

echo elgg_view_page('All blogs', [
'content' => elgg_list_entities([

(continué en la próxima página)

3.7. Appendix 315

https://www.php.net/eol.php

Elgg Documentation, Versión master

(proviene de la página anterior)

'type' => 'object',
'subtype' => 'blog',

]),
]);

Deprecated layout names

For an easy transition from Elgg 2.x to 3.x we kept some old layout names (“one_sidebar”, “one_column”,
“two_sidebar” and “content”) intact when used in the elgg_view_layout function. As of Elgg 3.3 these layout names
are deprecated and you should update your code to use the new “default” layout.

When changing the use of the “content” layout name you should take into consideration that the “content” generates
a filter menu. This menu is slightly different from the regular “filter” menu generated in the “default” layout. It uses
different hook names. If you already disabled the filter in your layout you can change the layout without any issues.

Plugin Manifest changes

We are working towards the removal of the plugin manifest file. Some features of the manifest will be repla-
ced and some will be dropped. To make this transition a bit easier we have already deprecated the following
ElggPluginManifest api functions:

getCopyright()

getDonationsPageURL()

getSuggests() use suggestions in composer

Deprecated APIs

elgg_disable_query_cache()

elgg_enable_query_cache()

elgg_format_attributes() use elgg_format_element()

elgg_flush_caches() use elgg_clear_caches()

elgg_get_menu_item()

elgg_get_ordered_event_handlers() use elgg()->events->getOrderedHandlers()

elgg_get_ordered_hook_handlers() use elgg()->hooks->getOrderedHandlers()

elgg_invalidate_simplecache() use elgg_clear_caches()

elgg_is_menu_item_registered()

elgg_view_entity_annotations()

execute_delayed_write_query() use elgg()->db->registerDelayedQuery()

execute_delayed_read_query() use elgg()->db->registerDelayedQuery()

run_sql_script()

elgg_unset_all_plugin_settings() use \ElggPlugin::unsetAllSettings()

elgg_get_file_simple_type() use elgg()->mimetype->getSimpleType()

316 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

ElggFile::detectMimeType() use elgg()->mimetype->getMimeType()

generate_action_token() use elgg()->csrf->generateActionToken()

elgg_split()

Deprecated Config values

simplecache_lastupdate use lastcache

Deprecated CLI commands

elgg-cli flush use elgg-cli cache:clear

Deprecated Hooks

entity:annotate, <entity_type>

From 3.1 to 3.2

Contents

User write access

River items enabled state

User write access

To fix an issue where user owned access collections like Friends or Friend Collections would still show in the access
drop down when creating content, even if related plugins are disabled, we needed to change some internal logic. If
you want to have an access collection subtype available in the write access you now need to register the subtype with
a plugin hook. See the plugin hook reference for “access:collections:write:subtypes” for more details.

River items enabled state

The enabled state of river items has been deprecated. You should no longer use this property when working with river
items.

From 3.0 to 3.1

Contents

PHP Version

Plugin screenshots

3.7. Appendix 317

Elgg Documentation, Versión master

Loading external files

Setting page owner

Simpletests

Hook and event callbacks

Deprecated Routes

Deprecated CSS libraries

Deprecated JS libraries

Deprecated APIs

Deprecated actions

PHP Version

PHP 7.0 has reached end of life in January 2019. To ensure that Elgg sites are secure, we now require PHP 7.1 for new
installations.

If upgrading from a previous Elgg installation make sure you have the correct PHP version installed.

Plugin screenshots

Screenshots added to plugins are no longer supported and will no longer be shown in the plugin details.

Loading external files

The usage of elgg_register_js, elgg_unregister_js and elgg_load_js is discouraged. Make sure
your javascript is an AMD module and use elgg_require_js to include it.

The usage of elgg_register_css, elgg_unregister_css and elgg_load_css is discouraged. You can
register and include css with the new elgg_require_css function.

Setting page owner

Setting the page owner via the elgg_get_page_owner_guid function parameter is deprecated. Use
elgg_set_page_owner_guid.

Simpletests

The core simpletests have been removed from the system. They are all replaced by PHP unit tests or integration tests.
The simpletest cli command has been deprecated.

Hook and event callbacks

The legacy style hook and event callback arguments are deprecated. You should switch to the new style as soon as
possible.

318 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

// old style hook callback
function hook_callback($name, $type, $return_value, $params) {

}

// new style hook callback
function hook_callback(\Elgg\Hook $hook) {

// now you can use a few new functions
$params = $hook->getParams();
$return = $hook->getValue();

$specific_param = $hook->getParam('specific_param', 'default')
$entity = $hook->getEntityParam();
$user = $hook->getUserParam();

}

// old style event callback
function event_callback($name, $type, $object) {

}

// new style event callback
function event_callback(\Elgg\Event $event) {

// now you can use a few new functions
$object = $event->getObject();

}

Deprecated Routes

previous:object:thewire This route was not in use. It now has been marked as deprecated.

Deprecated CSS libraries

jquery.imgareaselect Do not use this external css file.

jquery.treeview Do not use this external css file.

Deprecated JS libraries

elgg.avatar_cropper Do not depend on this external javascript library.

jquery.imgareaselect Do not depend on this external javascript library.

jquery.treeview Do not depend on this external javascript library.

Deprecated APIs

access_show_hidden_entities() Use elgg_call() with ELGG_SHOW_DISABLED_ENTITIES
flag.

autoregister_views()

count_messages() Use elgg()->system_messages->count().

3.7. Appendix 319

Elgg Documentation, Versión master

disable_user_entities()

elgg_enable_entity() Use ElggEntity::enable().

elgg_get_file_list() Use a PHP directory iterator.

elgg_instanceof() Use PHP instanceof type operator.

elgg_is_admin_user() Use ElggUser::isAdmin().

elgg_set_ignore_access() Use elgg_call() with ELGG_IGNORE_ACCESS flag.

elgg_sort_3d_array_by_value()

get_access_list() Use get_access_array().

get_language() Use get_current_language().

get_number_users() Use elgg_count_entities().

pages_register_navigation_tree()

ini_get_bool()

is_not_null()

update_access_collection()

Deprecated actions

admin/delete_admin_notice Replaced by generic entity/delete action.

avatar/crop Handled in avatar/upload action.

avatar/remove Handled in avatar/upload action.

blog/delete Replaced by generic entity/delete action.

messages/delete Replaced by generic entity/delete action.

site_notifications/delete Replaced by generic entity/delete action.

From 2.x to 3.0

Contents

PHP 7.0 is now required

$CONFIG is removed!

Removed views

Removed functions/methods

Deprecated APIs

Removed global vars

Removed classes/interfaces

Schema changes

320 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Changes in elgg_get_entities, elgg_get_metadata and elgg_get_annotations getter
functions

Boolean entity properties

Metadata Changes

Permissions and Access

Multi Site Changes

Entity Subtable Changes

Friends and Group Access Collection

Subtypes no longer have an ID

Custom class loading

Dependency Injection Container

Search changes

Form and field related changes

Entity and River Menu Changes

Removed libraries

Removed pagehandling

Removed actions

Inheritance changes

Removed JavaScript APIs

Removed hooks/events

Removed forms/actions

APIs that now accept only an $options array

Plugin functions that now require an explicit $plugin_id

Class constructors that now accept only a stdClass object or null

Miscellaneous API changes

View extension behaviour changed

JavaScript hook calling order may change

Widget layout related changes

Routing

Labelling

Request value filtering

Action responses

HtmLawed is no longer a plugin

New approach to page layouts

Likes plugin

Notifications plugin

3.7. Appendix 321

Elgg Documentation, Versión master

Pages plugin

Profile plugin

Data Views plugin

Twitter API plugin

Legacy URLs plugin

User validation by email plugin

Email delivery

Theme and styling changes

Comments

Object listing views

Menu changes

Entity icons

Icon glyphs

Autocomplete (user and friends pickers)

Friends collections

Layout of .elgg-body elements

Delete river items

Discussion replies moved to comments

Translations cleanup

System Log

Error logging

Composer asset plugin no longer required

Cron logs

Removed / changed language keys

New MySQL schema features are not applied

Miscellaneous changes

Twitter API plugin

Unit and Integration Testing

PHP 7.0 is now required

5.6 is reaching it’s end of life. PHP 7.0 is now required to install and run Elgg.

$CONFIG is removed!

Not exactly, however you must audit its usage and should replace it with elgg_get_config() and
elgg_set_config(), as recommended since Elgg 1.9.

322 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

The global $CONFIG is now a proxy for Elgg’s configuration container, and modifications will fail if you try to alter
array properties directly. E.g. $CONFIG->cool_fruit[] = 'Pear';. The silver lining is that failures will emit
NOTICEs.

Removed views

forms/account/settings: usersettings extension can now extend the view forms/usersettings/
save

forms/admin/site/advanced/system

resources/file/download

output/checkboxes: use output/tags if you want the same behaviour

input/write_access: mod/pages now uses the access:collections:write plugin hook.

invitefriends/form

page/layouts/content: use page/layouts/default

page/layouts/one_column: use page/layouts/default

page/layouts/one_sidebar: use page/layouts/default

page/layouts/two_sidebar: use page/layouts/default

page/layouts/walled_garden: use page/layouts/default

page/layouts/walled_garden/cancel_button

page/layouts/two_column_left_sidebar

page/layouts/widgets/add_panel

page/elements/topbar_wrapper: update your use of page/elements/topbar to include a check
for a logged in user

pages/icon

groups/group_sort_menu: use register, filter:menu:groups/all plugin hook

groups/my_status

groups/profile/stats

subscriptions/form/additions: extend notifications/settings/other instead

likes/count: modifications can now be done to the likes_count menu item

likes/css: likes now uses elgg/likes.css

resources/members/index

messageboard/css

notifications/subscriptions/personal

notifications/subscriptions/collections

notifications/subscriptions/form

notifications/subscriptions/jsfuncs

notifications/subscriptions/forminternals

notifications/css

3.7. Appendix 323

Elgg Documentation, Versión master

pages/input/parent

river/item: use elgg_view_river_item() to render river items

river/user/default/profileupdate

admin.js

aalborg_theme/homepage.png

aalborg_theme/css

resources/avatar/view: Use entity icon API

ajax_loader.gif

button_background.gif

button_graduation.png

elgg_toolbar_logo.gif

header_shadow.png

powered_by_elgg_badge_drk_bckgnd.gif

powered_by_elgg_badge_light_bckgnd.gif

sidebar_background.gif

spacer.gif

toptoolbar_background.gif

two_sidebar_background.gif

ajax_loader_bw.gif: use graphics/ajax_loader_bw.gif

elgg_logo.png: use graphics/elgg_logo.png

favicon-128.png: use graphics/favicon-128.png

favicon-16.png: use graphics/favicon-16.png

favicon-32.png: use graphics/favicon-32.png

favicon-64.png: use graphics/favicon-64.png

favicon.ico: use graphics/favicon.ico

favicon.svg: use graphics/favicon.svg

friendspicker.png: use graphics/friendspicker.png

walled_garden.jpg: use graphics/walled_garden.jpg

core/friends/collection

core/friends/collections

core/friends/collectiontabs

core/friends/tablelist

core/friends/talbelistcountupdate

lightbox/elgg-colorbox-theme/colorbox-images/*`

navigation/menu/page: now uses navigation/menu/default and a prepare hook

navigation/menu/site: now uses default view

324 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

page/elements/by_line: Use object/elements/imprint

forms/admin/site/advanced/security: the site secret information has been moved to forms/
admin/security/settings

river/object/file/create: check River

river/object/page/create: check River

river/object/page_top/create: check River

river/relationship/member: check River

object/page_top: use object/page

ajax/discussion/reply/edit: See Discussion replies moved to comments

discussion/replies: See Discussion replies moved to comments

object/discussion_reply: See Discussion replies moved to comments

resources/discussion/reply/edit: See Discussion replies moved to comments

resources/elements/discussion_replies: See Discussion replies moved to comments

river/elements/discussion_replies: See Discussion replies moved to comments

river/object/discussion/create

river/object/discussion_reply/create: See Discussion replies moved to comments

search/object/discussion_reply/entity: See Discussion replies moved to comments

rss/discussion/replies: See Discussion replies moved to comments

search/header

search/layout in both default and rss viewtypes

search/no_results

search/object/comment/entity

search/css: Moved to search/search.css

search/startblurb

bookmarks/bookmarklet.gif

blog_get_page_content_list

blog_get_page_content_archive

blog_get_page_content_edit

forms/invitefriends/invite: use forms/friends/invite

resources/invitefriends/invite: use resources/friends/invite

resources/reportedcontent/add

resources/reportedcontent/add_form

resources/site_notifications/view: Use resources/site_notifications/owner

resources/site_notifications/everyone: Use resources/site_notifications/all

3.7. Appendix 325

Elgg Documentation, Versión master

Removed functions/methods

All the functions in engine/lib/deprecated-1.9.php were removed. See https://github.com/Elgg/Elgg/
blob/2.0/engine/lib/deprecated-1.9.php for these functions. Each @deprecated declaration includes instructions
on what to use instead. All the functions in engine/lib/deprecated-1.10.php were removed. See https:
//github.com/Elgg/Elgg/blob/2.0/engine/lib/deprecated-1.10.php for these functions. Each @deprecated declara-
tion includes instructions on what to use instead.

elgg_register_library: require your library files so they are available globally to other plugins

elgg_load_library

activity_profile_menu

can_write_to_container: Use ElggEntity->canWriteToContainer()

create_metadata_from_array

metadata_array_to_values

datalist_get

datalist_set

detect_extender_valuetype

developers_setup_menu

elgg_disable_metadata

elgg_enable_metadata

elgg_get_class_loader

elgg_get_metastring_id

elgg_get_metastring_map

elgg_register_class

elgg_register_classes

elgg_register_viewtype

elgg_is_registered_viewtype

file_delete: Use ElggFile->deleteIcon()

file_get_type_cloud

file_type_cloud_get_url

get_default_filestore

get_site_entity_as_row

get_group_entity_as_row

get_missing_language_keys

get_object_entity_as_row

get_user_entity_as_row

update_river_access_by_object

garbagecollector_orphaned_metastrings

groups_access_collection_override

326 Capítulo 3. Continue Reading

https://github.com/Elgg/Elgg/blob/2.0/engine/lib/deprecated-1.9.php
https://github.com/Elgg/Elgg/blob/2.0/engine/lib/deprecated-1.9.php
https://github.com/Elgg/Elgg/blob/2.0/engine/lib/deprecated-1.10.php
https://github.com/Elgg/Elgg/blob/2.0/engine/lib/deprecated-1.10.php

Elgg Documentation, Versión master

groups_get_group_tool_options: Use elgg()->group_tools->all()

groups_join_group: Use ElggGroup::join

groups_prepare_profile_buttons: Use register, menu:title hook

groups_register_profile_buttons: Use register, menu:title hook

groups_setup_sidebar_menus

groups_set_icon_url

groups_setup_sidebar_menus

messages_notification_msg

set_default_filestore

generate_user_password: Use ElggUser::setPassword

row_to_elggrelationship

run_function_once: Use Elgg\Upgrade\Batch interface

system_messages

notifications_plugin_pagesetup

elgg_format_url: Use elgg_format_element() or the «output/text» view for HTML escaping.

get_site_by_url

elgg_override_permissions: No longer used as handler for permissions_check and
container_permissions_check hooks

elgg_check_access_overrides

AttributeLoader became obsolete and was removed

Application::loadSettings

ElggEntity::addToSite

ElggEntity::disableMetadata

ElggEntity::enableMetadata

ElggEntity::getSites

ElggEntity::removeFromSite

ElggEntity::isFullyLoaded

ElggEntity::clearAllFiles

ElggPlugin::getFriendlyName: Use ElggPlugin::getDisplayName()

ElggPlugin::setID

ElggPlugin::unsetAllUsersSettings

ElggFile::setFilestore: ElggFile objects can no longer use custom filestores.

ElggFile::size: Use getSize

ElggDiskFilestore::makeFileMatrix: Use Elgg\EntityDirLocator

ElggData::get: Usually can be replaced by property read

ElggData::getClassName: Use get_class()

3.7. Appendix 327

Elgg Documentation, Versión master

ElggData::set: Usually can be replaced by property write

ElggEntity::setURL: See getURL for details on the plugin hook

ElggMenuBuilder::compareByWeight: Use compareByPriority

ElggMenuItem::getWeight: Use getPriority

ElggMenuItem::getContent: Use elgg_view_menu_item()

ElggMenuItem::setWeight: Use setPriority

ElggRiverItem::getPostedTime: Use getTimePosted

ElggSession has removed all deprecated methods

ElggSite::addEntity

ElggSite::addObject

ElggSite::addUser

ElggSite::getEntities: Use elgg_get_entities()

ElggSite::getExportableValues: Use toObject

ElggSite::getMembers: Use elgg_get_entities()

ElggSite::getObjects: Use elgg_get_entities()

ElggSite::listMembers: Use elgg_list_entities()

ElggSite::removeEntity

ElggSite::removeObject

ElggSite::removeUser

ElggSite::isPublicPage: Logic moved to the router and should not be accessed directly

ElggSite::checkWalledGarden: Logic moved to the router and should not be accessed directly

ElggUser::countObjects: Use elgg_get_entities()

Logger::getClassName: Use get_class()

Elgg\Application\Database::getTablePrefix: Read the prefix property

elgg_view_access_collections()

ElggSession::get_ignore_access: Use getIgnoreAccess

ElggSession::set_ignore_access: Use setIgnoreAccess

profile_pagesetup

pages_can_delete_page: Use $entity->canDelete()

pages_search_pages

pages_is_page: use $entity instanceof ElggPage

discussion_comment_override: See Discussion replies moved to comments

discussion_can_edit_reply: See Discussion replies moved to comments

discussion_reply_menu_setup: See Discussion replies moved to comments

discussion_reply_container_logic_override: See Discussion replies moved to comments

328 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

discussion_reply_container_permissions_override: See Discussion replies moved to com-
ments

discussion_update_reply_access_ids: See Discussion replies moved to comments

discussion_search_discussion: See Discussion replies moved to comments

discussion_add_to_river_menu: See Discussion replies moved to comments

discussion_prepare_reply_notification: See Discussion replies moved to comments

discussion_redirect_to_reply: See Discussion replies moved to comments

discussion_ecml_views_hook: See Discussion replies moved to comments

search_get_where_sql

search_get_ft_min_max

search_get_order_by_sql

search_consolidate_substrings

search_remove_ignored_words

search_get_highlighted_relevant_substrings

search_highlight_words

search_get_search_view

search_custom_types_tags_hook

search_tags_hook

search_users_hook

search_groups_hook

search_objects_hook

members_list_popular

members_list_newest

members_list_online

members_list_alpha

members_nav_popular

members_nav_newest

members_nav_online

members_nav_alpha

uservalidationbyemail_generate_code

All functions around entity subtypes table:

add_subtype: Use elgg_set_entity_class at runtime

update_subtype: Use elgg_set_entity_class at runtime

remove_subtype

get_subtype_id

get_subtype_from_id

3.7. Appendix 329

Elgg Documentation, Versión master

get_subtype_class: Use elgg_get_entity_class

get_subtype_class_from_id

All caches have been consolidated into a single API layer. The following functions and methods have been removed:

is_memcache_available

_elgg_get_memcache

_elgg_invalidate_memcache_for_entity

ElggMemcache

ElggFileCache

ElggStaticVariableCache

ElggSharedMemoryCache

Elgg\Cache\Pool interface and all extending classes

As a result of system log changes:

system_log_default_logger: moved to system_log plugin

system_log_listener: moved to system_log plugin

system_log: moved to system_log plugin

get_system_log: renamed to system_log_get_log and moved to system_log plugin

get_log_entry: renamed to system_log_get_log_entry and moved to system_log plugin

get_object_from_log_entry: renamed to system_log_get_object_from_log_entry
and moved to system_log plugin

archive_log: renamed to system_log_archive_log and moved to system_log plugin

logbrowser_user_hover_menu: renamed to system_log_user_hover_menu and moved to
system_log plugin

logrotate_archive_cron: renamed to system_log_archive_cron and moved to
system_log plugin

logrotate_delete_cron: renamed to system_log_delete_cron and moved to
system_log plugin

logrotate_get_seconds_in_period: renamed to system_log_get_seconds_in_period
and moved to system_log plugin

log_browser_delete_log: renamed to system_log_browser_delete_log and moved to
system_log plugin

Deprecated APIs

ban_user: Use ElggUser->ban()

create_metadata: Use ElggEntity setter or ElggEntity->setMetadata()

update_metadata: Use ElggMetadata->save()

get_metadata_url

create_annotation: Use ElggEntity->annotate()

330 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

update_metadata: Use ElggAnnotation->save()

elgg_get_user_validation_status: Use ElggUser->isValidated()

make_user_admin: Use ElggUser->makeAdmin()

remove_user_admin: Use ElggUser->removeAdmin()

unban_user: Use ElggUser->unban()

elgg_get_entities_from_attributes: Use elgg_get_entities()

elgg_get_entities_from_metadata: Use elgg_get_entities()

elgg_get_entities_from_relationship: Use elgg_get_entities()

elgg_get_entities_from_private_settings: Use elgg_get_entities()

elgg_get_entities_from_access_id: Use elgg_get_entities()

elgg_list_entities_from_metadata: Use elgg_list_entities()

elgg_list_entities_from_relationship: Use elgg_list_entities()

elgg_list_entities_from_private_settings: Use elgg_list_entities()

elgg_list_entities_from_access_id: Use elgg_list_entities()

elgg_list_registered_entities: Use elgg_list_entities()

elgg_batch_delete_callback

\Elgg\Project\Paths::sanitize: Use \Elgg\Project\Paths::sanitize()

elgg_group_gatekeeper: Use elgg_entity_gatekeeper()

get_entity_dates: Use elgg_get_entity_dates()

messages_set_url: Use ElggEntity::getURL()

Removed global vars

$CURRENT_SYSTEM_VIEWTYPE

$DEFAULT_FILE_STORE

$ENTITY_CACHE

$SESSION: Use the API provided by elgg_get_session()

$CONFIG->site_id: Use 1

$CONFIG->search_info

$CONFIG->input: Use set_input and get_input

Removed classes/interfaces

FilePluginFile: replace with ElggFile (or load with get_entity())

Elgg_Notifications_Notification

Elgg\Database\EntityTable\UserFetchResultException.php

Elgg\Database\MetastringsTable

3.7. Appendix 331

Elgg Documentation, Versión master

Elgg\Database\SubtypeTable

Exportable and its methods export and getExportableValues: Use toObject

ExportException

Importable and its method import.

ImportException

ODD and all classes beginning with ODD*.

XmlElement

Elgg_Notifications_Event: Use \Elgg\Notifications\Event

Elgg\Mail\Address: use Elgg\Email\Address

ElggDiscussionReply: user ElggComment see Discussion replies moved to comments

Schema changes

The storage engine for the database tables has been changed from MyISAM to InnoDB. You maybe need to optimize
your database settings for this change. The datalists table has been removed. All settings from datalists table have
been merged into the config table.

Metastrings in the database have been denormalized for performance purposes. We removed the metastrings table and
put all the string values directly in the metadata and annotation tables. You need to update your custom queries to
reflect these changes. Also the msv and msn table aliases are no longer available. It is best practice not to rely on the
table aliases used in core queries. If you need to use custom clauses you should do your own joins.

From the «users_entity» table, the password and hash columns have been removed.

The geocode_cache table has been removed as it was no longer used.

subtype column in entities table no longer holds a subtype ID, but a subtype string entity_subtypes table
has been dropped.

type, subtype and access_id columns in river table have been dropped. For queries without
elgg_get_river() join the entities table on object_guid to check the type and the subtype of the entity.
Access column hasn’t been in use for some time: queries are built to ensure access to all three entities (subject, object
and target).

Changes in elgg_get_entities, elgg_get_metadata and elgg_get_annotations getter fun-
ctions

elgg_get_entities now accepts all options that were previously distributed between
elgg_get_entities_from_metadata, elgg_get_entities_from_annotations,
elgg_get_entities_from_relationship, elgg_get_entities_from_private_settings
and elgg_get_entities_from_access_id. The latter have been been deprecated.

Passing raw MySQL statements to options is deprecated. Plugins are advised to use closures that receive an instance
of \Elgg\Database\QueryBuilder and prepare the statement using database abstraction layer. On one hand
this will ensure that all statements are properly sanitized using the database driver, on the other hand it will allow us
to transition to testable object-oriented query building.

wheres statements should not use raw SQL strings, instead pass an instance of
\Elgg\Database\Clauses\WhereClause or a closure that returns an instance of
\Doctrine\DBAL\Query\Expression\CompositeExpression:

332 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

elgg_get_entities([
'wheres' => [

function(\Elgg\Database\QueryBuilder $qb, $alias) {
$joined_alias = $qb->joinMetadataTable($alias, 'guid', 'status');
return $qb->compare("$joined_alias.name", 'in', ['draft', 'unsaved_draft'],

→˓ ELGG_VALUE_STRING);
}

]
]);

joins, order_by, group_by, selects clauses should not use raw SQL strings. Use closures that receive an
instance of \Elgg\Database\QueryBuilder and return a prepared statement.

The reverse_order_by option has been removed.

Plugins should not rely on joined and selected table aliases. Closures passed to the options array will receive a second
argument that corresponds to the selected table alias. Plugins must perform their own joins and use joined aliases
accordingly.

Note that all of the private API around building raw SQL strings has also been removed. If you were relying on them in
your plugins, be advised that anything marked as @access private or @internal in core can be modified and
removed at any time, and we do not guarantee any backward compatibility for those functions. DO NOT USE THEM.
If you find yourself needing to use them, open an issue on Github and we will consider adding a public equivalent.

Boolean entity properties

Storage of metadata, annotation and private setting values has been aligned.

Boolean values are cast to integers when saved: false is stored as 0 and true is stored as 1. This has
breaking implications for private settings, which were previously stored as empty strings for false values. Plu-
gins should write their own migration scripts to alter DB values from empty strings to 0 (for private settings
that are expected to store boolean values) to ensure that elgg_get_entities() can retrieve these values with
private_setting_name_value_pairs containing false values. This applies to plugin settings, as well as
any private settings added to entities.

Metadata Changes

Metadata is no longer access controlled. If your plugin created metadata with restricted access, those restrictions will
not be honored. You should use annotations or entities instead, which do provide access control.

Do not read or write to the access_id property on ElggMetadata objects.

Metadata is no longer enabled or disabled. You can no longer perform the enable and disable API calls on
metadata.

Metadata no longer has an owner_guid. It is no longer possible to query metadata based on owner_guids.
Subsequently, ElggMetadata::canEdit() will always return true regardless of the logged in user, unless
explicitly overriden by a plugin hook.

Permissions and Access

User capabilities service will no longer trigger permission check hooks when:

permissions are checked for an admin user

permissions are checked when access is ignored with elgg_set_ignore_access()

3.7. Appendix 333

Elgg Documentation, Versión master

This means that plugins can no longer alter permissions in aforementioned cases.

elgg_check_access_overrides() has been removed, as plugins will no longer need to validate access ove-
rrides.

The translations for the default Elgg access levels have new translation language keys.

Multi Site Changes

Pre 3.0 Elgg has some (partial) support for having multiple sites in the same database. This Multi Site concept has been
completely removed in 3.0. Entities no longer have the site_guid attribute. This means there is no longer the ability to
have entities on different sites. If you currently have multiple sites in your database, upgrading Elgg to 3.0 will fail.
You need to separate the different sites into separate databases/tables.

Related to the removal of the Multi Site concept in Elgg, there is no longer a need for entities having a “mem-
ber_of_site” relationship with the Site Entity. All functions related to adding/removing this relationship has been
removed. All existing relationships will be removed as part of this upgrade.

Setting ElggSite::$url has no effect. Reading the site URL always pulls from the $CONFIG->wwwroot set in
settings.php, or computed by Symphony Request.

ElggSite::save() will fail if it isn’t the main site.

Entity Subtable Changes

The subtable sites_entity for ElggSite no longer exists. All attributes have been moved to metadata. The
subtable groups_entity for ElggGroup no longer exists. All attributes have been moved to metadata. The
subtable objects_entity for ElggObject no longer exists. All attributes have been moved to metadata. The
subtable users_entity for ElggUser no longer exists. All attributes have been moved to metadata.

If you have custom queries referencing this table you need to update them. If you have function that rely
on Entity->getOriginalAttributes() be advised that this will only return the base attributes of an
ElggEntity and no longer contain the secondary attributes.

Friends and Group Access Collection

The access collections table now has a subtype column. This extra data helps identifying the purpose of the ACL. The
user owned access collections are assumed to be used as Friends Collections and now have the “friends_collection”
subtype. The groups access collection information was previously stored in the group_acl metadata. With the intro-
duction of the ACL subtype this information has been moved to the ACL subtype attribute.

The ACCESS_FRIENDS access_id has been migrated to an actual access collection (with the subtype friends). All
entities and annotations have been updated to use the new access collection id. The access collection is created when a
user is created. When a relationship of the type friends is created, the related guid will also be added to the access
collection. You can no longer save or update entities with the access id ACCESS_FRIENDS.

Subtypes no longer have an ID

Entity subtypes have been denormalized. entity_subtypes table has been removed and subtype column in
entities table simply holds the string representation of the subtype.

Consequently, all API around adding/updating entity subtypes and classes have been removed.

Plugins can now use elgg_set_entity_class() and elgg_get_entity_class() to register a custom
entity class at runtime (e.g. in system init handler).

334 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

All entities now MUST have a subtype. By default, the following subtypes are added and reserved:

user for users

group for groups

site for sites

Custom class loading

Elgg no longer provides API functions to register custom classes. If you need custom classes you can use PSR-0
classes in the /classes folder of your plugin or use composer for autoloading of additional classes.

The following class registration related functions have been removed:

elgg_get_class_loader

elgg_register_class

elgg_register_classes

Dependency Injection Container

Plugins can now define their services and attach them to Elgg’s public DI container by providing definitions in
elgg-services.php in the root of the plugin directory.

elgg() no longer returns an instance of Elgg application, but a DI container instance.

Search changes

We have added a search service into core, consequently the search plugin now only provides a user interface for
displaying forms and listing search results. Many of the views in the search plugin have been affected by this change.

The FULLTEXT indices have been removed on various tables. The search plugin will now always use a like query
when performing a search.

See Search Service and Search hooks documentation for detailed information about new search capabilities.

Form and field related changes

input/password: by default this field will no longer show a value passed to it, this can be overridden by
passing the view var always_empty and set it to false

input/submit, input/reset and input/button are now rendered with a <button> instead of the
<input> tag. These input view also accept text and icon parameters.

output/url now sets .elgg-anchor class on anchor elements and accepts icon parameter. If no text
is set, the href parameter used as a label will be restricted to 100 characters.

output/url now supports a badge parameter, which can be used where a counter, a badge, or similar is
required as a postfix (mainly in menu items that have counters).

output/tags no longer uses tags with floats and instead it relies on inherently inline elements such as
 and <a>

3.7. Appendix 335

Elgg Documentation, Versión master

Entity and River Menu Changes

The Entity and River menu now shows all the items in a dropdown. Social actions like liking or commenting are moved
to an alternate menu called the social menu, which is meant for social actions.

Removed libraries

elgg_register_library and elgg_load_library have been removed. These functions had little impact
on performance (especially with OPCache enabled), and made it difficult for other plugins to work with APIs contained
in libraries. Additionally it was difficult for developers to know that APIs were contained in a library while there being
autocompleted by IDE.

If you are concerned with performance, move the logic to classes and let PHP autoload them as necessary, otherwise
use require_once and require your libraries.

Removed pagehandling

file/download

file/search

groupicon

twitterservice

collections/pickercallback

discussion/reply: See Discussion replies moved to comments

expages

invitefriends: Use friends/{username}/invite

messages/compose: Use messages/add

reportedcontent

Removed actions

file/download: Use elgg_get_inline_url or elgg_get_download_url

file/delete: Use entity/delete action

import/opendd

discussion/reply/save: See Discussion replies moved to comments

discussion/reply/delete: See Discussion replies moved to comments

comment/delete: Use entity/delete action

uservalidationbyemail/bulk_action: use admin/user/bulk/validate or admin/user/
bulk/delete

uservalidationbyemail/delete: use admin/user/bulk/delete

uservalidationbyemail/validate: use admin/user/bulk/validate

invitefriends/invite: use friends/invite

336 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Inheritance changes

ElggData (and hence most Elgg domain objects) no longer implements Exportable

ElggEntity no longer implements Importable

ElggGroup no longer implements Friendable

ElggRelationship no longer implements Importable

ElggSession no longer implements ArrayAccess

Elgg\Application\Database no longer extends Elgg\Database

Removed JavaScript APIs

admin.js

elgg.widgets: Use the elgg/widgets module. The «widgets» layouts do this module automatically

lightbox.js: Use the elgg/lightbox module as needed

lightbox/settings.js: Use the getOptions, ui.lightbox JS hook or the
data-colorbox-opts attribute

elgg.ui.popupClose: Use the elgg/popup module

elgg.ui.popupOpen: Use the elgg/popup module

elgg.ui.initAccessInputs

elgg.ui.river

elgg.ui.initDatePicker: Use the input/date module

elgg.ui.likesPopupHandler

elgg.embed: Use the elgg/embed module

elgg.discussion: Use the elgg/discussion module

embed/custom_insert_js: Use the embed, editor JS hook

elgg/ckeditor.js: replaced by elgg-ckeditor.js

elgg/ckeditor/set-basepath.js

elgg/ckeditor/insert.js

jQuery.cookie: Use elgg.session.cookie

jquery.jeditable

likes.js: The elgg/likes module is loaded automatically

messageboard.js

elgg.autocomplete is no longer defined.

elgg.messageboard is no longer defined.

jQuery.fn.friendsPicker

elgg.ui.toggleMenu is no longer defined

elgg.ui.toggleMenuItems: Use data-toggle attribute when registering toggleable menu items

uservalidationbyemail/js.php: Use the elgg/uservalidationbyemail module

3.7. Appendix 337

Elgg Documentation, Versión master

discussion.js: See Discussion replies moved to comments

Removed hooks/events

Event login, user: Use login:before or login:after. Note the user is not logged in during the login:before event

Event delete, annotations: Use delete, annotation

Event pagesetup, system: Use the menu or page shell hooks instead

Event upgrade, upgrade: Use upgrade, system instead

Hook index, system: Override the resources/index view

Hook object:notifications, <type>: Use the hook send:before, notifications

Hook output:before, layout: Use view_vars, page/layout/<layout_name>

Hook output:after, layout: Use view, page/layout/<layout_name>

Hook email, system: Use more granular <hook>, system:email hooks

Hook email:message, system: Use zend:message, system:email hook

Hook members:list, <page>: Use your own pagehandler or route hook

Hook members:config, <page>: Use register, menu:filter:members

Hook profile_buttons, group: Use register, menu:title

Removed forms/actions

notificationsettings/save form and action

notificationsettings/groupsave form and action

discussion/reply/save form and action

APIs that now accept only an $options array

ElggEntity::getAnnotations

ElggEntity::getEntitiesFromRelationship

ElggGroup::getMembers

ElggUser::getGroups

ElggUser::getFriends (as part of Friendable)

ElggUser::getFriendsOf (as part of Friendable)

ElggUser::getFriendsObjects (as part of Friendable)

ElggUser::getObjects (as part of Friendable)

find_active_users

elgg_get_admin_notices

338 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Plugin functions that now require an explicit $plugin_id

elgg_get_all_plugin_user_settings

elgg_set_plugin_user_setting

elgg_unset_plugin_user_setting

elgg_get_plugin_user_setting

elgg_set_plugin_setting

elgg_get_plugin_setting

elgg_unset_plugin_setting

elgg_unset_all_plugin_settings

Class constructors that now accept only a stdClass object or null

ElggAnnotation: No longer accepts an annotation ID

ElggGroup: No longer accepts a GUID

ElggMetadata: No longer accepts a metadata ID

ElggObject: No longer accepts a GUID

ElggRelationship: No longer accepts a relationship ID or null

ElggSite: No longer accepts a GUID or URL

ElggUser: No longer accepts a GUID or username

ElggPlugin: No longer accepts a GUID or path. Use ElggPlugin::fromId to construct a plugin from
its path

Miscellaneous API changes

ElggBatch: You may only access public properties

ElggEntity: The tables_split and tables_loaded properties were removed

ElggEntity: Empty URLs will no longer be normalized. This means entities without URLs will no longer
result in the site URL

ElggGroup::removeObjectFromGroup requires passing in an ElggObject (no longer accepts a
GUID)

ElggUser::$salt no longer exists as an attribute, nor is it used for authentication

ElggUser::$password no longer exists as an attribute, nor is it used for authentication

elgg_get_widget_types no longer supports $exact as the 2nd argument

elgg_instanceof no longer supports the fourth class argument

elgg_view: The 3rd and 4th (unused) arguments have been removed. If you use the $viewtype argument,
you must update your usage.

elgg_view_icon no longer supports true as the 2nd argument

elgg_list_entities no longer supports the option view_type_toggle

3.7. Appendix 339

Elgg Documentation, Versión master

elgg_list_registered_entities no longer supports the option view_type_toggle

elgg_log no longer accepts the level "DEBUG"

elgg_dump no longer accepts a $to_screen argument.

elgg_gatekeeper and elgg_admin_gatekeeper no longer report login or admin as forward
reason, but 403

Application::getDb() no longer returns an instance of Elgg\Database, but rather a
Elgg\Application\Database

$CONFIG is no longer available as a local variable inside plugin start.php files.

elgg_get_config('siteemail') is no longer available. Use elgg_get_site_entity()->email.

ElggEntity::saveIconFromUploadedFile only saves master size, the other sizes are created when
requested by ElggEntity::getIcon() based on the master size

ElggEntity::saveIconFromLocalFile only saves master size, the other sizes are created when re-
quested by ElggEntity::getIcon() based on the master size

ElggEntity::saveIconFromElggFile only saves master size, the other sizes are created when reques-
ted by ElggEntity::getIcon() based on the master size

Group entities do no longer have the magic username attribute.

Pagehandling will no longer detect group:<guid> in the URL

The CRON interval reboot is removed.

The URL endpoints js/ and css/ are no longer supported. Use elgg_get_simplecache_url().

The generic comment save action no longer sends the notification directly, this has been offloaded to the notifi-
cation system.

The script engine/start.php is removed.

The functions set_config, unset_config and get_config have been deprecated and replaced by
elgg_set_config, elgg_remove_config and elgg_get_config.

Config values path, wwwroot, and dataroot are not read from the database. The settings.php file values
are always used.

Config functions like elgg_get_config no longer trim keys.

If you override the view navigation/menu/user_hover/placeholder, you must change the config
key lazy_hover:menus to elgg_lazy_hover_menus.

The config value entity_types is no longer present or used.

Uploaded images are autorotated based on their orientation metadata.

The view object/widget/edit/num_display now uses an input/number field instead of input/
select; you might need to update your widget edit views accordingly.

Annotation names are no longer trimmed during save

View extension behaviour changed

An extended view now will receive all the regular hooks (like the view_vars hook). It now is also possible to extend
view extensions. With this change in behaviour all view rendering will behave the same. It no longer matters if it was
used as an extension or not.

340 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

JavaScript hook calling order may change

When registering for hooks, the all keyword for wildcard matching no longer has any effect on the order that handlers
are called. To ensure your handler is called last, you must give it the highest priority of all matching handlers, or to
ensure your handler is called first, you must give it the lowest priority of all matching handlers.

If handlers were registered with the same priority, these are called in the order they were registered.

To emulate prior behavior, Elgg core handlers registered with the all keyword have been raised in priority. Some of
these handlers will most likely be called in a different order.

Widget layout related changes

The widget layout usage has been changed. Content is no longer drawn as part of the layout. You need to wrap you
content in another layout and use the widgets layout as part of your content. If you want some special content to show
if there are no widgets in the layout, you can now pass a special no_widgets parameter (as String or as a Closure).

When registering widgets you can no longer omit passing a context as the all context is no longer supported. You
need to explicitely pass the contexts for which the widget is intended.

Routing

Page handling using elgg_register_page_handler() has been deprecated.

We have added new routing API using elgg_register_route(), which allows plugins to define named routes,
subsequently using route names to generate URLs using elgg_generate_url().

See routing docs for details.

As a result of this change all core page handlers have been removed, and any logic contained within these page handlers
has been moved to respective resource views.

elgg_generate_entity_url() has been added as shortcut way to generate URLs from named routes that
depend on entity type and subtype.

Use of handler parameter in entity menus has been deprecated in favour of named entity routes.

Gatekeeper function have been refactored to serve as middleware in the routing process, and as such they no longer
return values. These functions throw HTTP exceptions that are then routed to error pages and can be redirected to
other pages via hooks.

Labelling

Entity and collection labelling conventions have changed to comply with the new routing patterns:

return [
'item:object:blog' => 'Blog',
'collection:object:blog' => 'Blogs',
'collection:object:blog:all' => 'All site blogs',
'collection:object:blog:owner' => '%s\'s blogs',
'collection:object:blog:group' => 'Group blogs',
'collection:object:blog:friends' => 'Friends\' blogs',
'add:object:blog' => 'Add blog post',
'edit:object:blog' => 'Edit blog post',

];

3.7. Appendix 341

Elgg Documentation, Versión master

These conventions are used across the routing and navigation systems, so plugins are advised to follow them.

Request value filtering

set_input() and get_input() no longer trim values.

Action responses

All core and core plugin actions now all use the new Http Response functions like elgg_ok_response and
elgg_error_response instead of forward(). The effect of this change is that is most cases the “forward”, “sys-
tem” hook is no longer triggered. If you like to influence the responses you now can use the “response”, “ac-
tion:<name/of/action>” hook. This gives you more control over the response and allows to target a specific action
very easily.

HtmLawed is no longer a plugin

Do not call elgg_load_library('htmlawed').

In the hook params for 'config', 'htmlawed', the hook_tag function name changed.

New approach to page layouts

one_column, one_sidebar, two_sidebar and content layouts have been removed - instead layout rende-
ring has been centralized in the default. Updated default layout provides full control over the layout elements
via $vars. For maximum backwards compatibility, calls to elgg_view_layout() with these layout names will
still yield expected output, but the plugins should start using the default layout with an updated set of parameters.

Page layouts have been decomposed into smaller elements, which should make it easier for themes to target specific
layout elements without having to override layouts at large.

As a result of these changes:

all layouts are consistent in how they handle title and filter menus, breadcrumbs and layout subviews

all layouts can now be easily extended to have multiple tabs. Plugins can pass filter_id parameter that will
allow other plugins to hook into register, menu:filter:<filter_id> hook and add new tabs. If no
filter_id is provided, default register, menu:filter hook can be used.

layout views and subviews now receive identifier and segments of the page being rendered

layout parameters are available to title and filter menu hooks, which allows resources to provide additional
context information, for example, an $entity in case of a profile resource

Plugins and themes should:

Update calls to elgg_view_layout() to use default layout

Update replace nav parameter in layout views with breadcrumbs parameter

Update their use of filter parameter in layout views by either providing a default set of filter tabs, or setting
a filter_id parameter and using hooks

Remove page/layouts/one_column view

Remove page/layouts/one_sidebar view

Remove page/layouts/two_sidebar view

342 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Remove page/layouts/content view

Update their use of page/layouts/default

Update their use of page/layouts/error

Update their use of page/layouts/elements/filter

Update their use of page/layouts/elements/header

Update their use of page/layouts/elements/footer

Update their use of page/elements/title

Update their use of navigation/breadcrumbs to pass $vars['breadcrumbs'] to
elgg_get_breadcrumbs()

Update hook registrations for output:before, layout to view_vars, page/layout/
<layout_name>

Update hook registrations for output:after, layout to view, page/layout/<layout_name>

Likes plugin

Likes no longer uses Elgg’s toggle API, so only a single likes menu item is used. The add/remove actions no longer
return Ajax values directly, as likes status data is now returned with every Ajax request that sends a «guid». When the
number of likes is zero, the likes_count menu item is now hidden by adding .hidden to the LI element, instead
of the anchor. Also the likes_count menu item is a regular link, and is no longer created by the likes/count
view.

Notifications plugin

Notifications plugin has been rewritten dropping many views and actions. The purpose of this rewrite was to implement
a more efficient, extendable and scalable interface for managing notifications preferences. We have implemented a
much simpler markup and removed excessive styling and javascript that was required to make the old interface work.

If your plugin is extending any of the views or relies on any actions in the notifications plugin, it has to be updated.

Pages plugin

The suptype page_top has been migrated into the subtype page. The subtype page has it’s own class namely
ElggPage. In order to check if an ElggPage is a top page the class function ElggPage->isTopPage() was
added.

All pages have a metadata value for parent_guid, for top pages this contains 0.

Profile plugin

All profile related functionality has been moved out of core into this plugin. Most noteable are the profile field admin
utility and the hook to set up the profile fields config data.

Data Views plugin

The Data Views plugin no longer comes bundled.

3.7. Appendix 343

Elgg Documentation, Versión master

Twitter API plugin

The twitter_api plugin has been removed from the Elgg core. The plugin is still available as the Composer
package elgg/twitter_api, in order to install it add the following to you composer.json require section:

{
"require": {

"elgg/twitter_api": "~1.9"
}

}

Legacy URLs plugin

The legacy_urls plugin has been removed from the Elgg core. The plugin is still available as the Composer
package elgg/legacy_urls, in order to install it add the following to you composer.json require section:

{
"require": {

"elgg/legacy_urls": "~2.3"
}

}

User validation by email plugin

The listing view of unvalidated users has been moved from the plugin to Elgg core. Some generic action (eg. validate
and delete) have also been moved to Elgg core.

Email delivery

To provide for more granularity in email handling and delivery, email, system hook has been removed. New email
service provides for several other replacement hooks that allow plugins to control email content, format, and transport
used for delivery.

elgg_set_email_transport() can now be used to replace the default Sendmail transport with another instance
of \Zend\Mail\Transport\TransportInterface, e.g. SMTP, in-memory, or file transport. Note that this
function must be called early in the boot process. Note that if you call this function on each request, using plugin
settings to determine transport config may not be very efficient - store these settings in as datalist or site config values,
so they are loaded from boot cache.

Theme and styling changes

Aalborg theme is no longer bundled with Elgg. Default core theme is now based on Aalboard, but it has undergone
major changes.

Notable changes in plugins:

Topbar, navbar and header have been combined into a single responsive topbar component

Default inner width is now 1280px (80rem * 16px/1rem)

Preferred unit of measurement is now rem and not px

The theme uses 8-point grid system <https://builttoadapt.io/intro-to-the-8-point-grid-system-d2573cde8632>

344 Capítulo 3. Continue Reading

https://packagist.org/packages/elgg/twitter_api
https://packagist.org/packages/elgg/legacy_urls

Elgg Documentation, Versión master

Menus, layout elements and other components now use flexbox

Reset is done using 8-point grid system <https://necolas.github.io/normalize.css/>

Media queries have been rewritten for mobile-first experience

Form elements (text inputs, buttons and selects) now have an equal height of 2.5rem

Layout header is now positioned outside of the layout columns, which have been wrapped into
elgg-layout-columns

z-index properties have been reviewed and stacked with simple iteration instead of 9999999
<https://hackernoon.com/my-approach-to-using-z-index-eca67feb079c>.

Color scheme has been changed to highlight actionable elements and reduce abundance of gray shades

search plugin no longer extends page/elements/header and instead page/elements/topbar ren-
ders search/search_box view

.elgg-icon no longer has a global font-size, line-height or color: these values will be inherited
from parent items

Support for .elgg-icon-hover has been dropped

User «hover» icons are no longer covered with a «caret» icon

Read more about Theming Principles

Also note, CSS views served via /cache URLs are pre-processed using CSS Crush <http://the-
echoplex.net/csscrush/>. If you make references to CSS variables or other elements, the definition must be located
within the same view output. E.g. A variable defined in elgg.css cannot be referenced in a separate CSS file like
colorbox.css.

Comments

Submitting comments is now AJAXed. After a succesful submission the comment list will be updated automatically.

The following changes have been made to the comment notifications.

The language keys related to comment notifications have changed. Check the
generic_comment:notification:owner: language keys

The action for creating a comment (action/comment/save) was changed. If your plugin overruled this
action you should have a look at it in order to prevent double notifications

Object listing views

object/elements/full/body now wraps the full listing body in a .elgg-listing-full-body
wrapper

object/elements/full now supports attachments and responses which are rendered after listing
body

In core plugins, resource views no longer render comments/replies - instead they pass a show_responses
flag to the entity view, which renders the responses and passes them to the full listing view. Third party plugins
will need to update their uses of object/<subtype> and resources/<handler>/view views.

Full discussion view is now rendered using object/elements/full view

object/file now passes image (specialcontent) view as an attachment to the full listing view

3.7. Appendix 345

Elgg Documentation, Versión master

Menu changes

Default sorting of menu items has been changed from text to priority.

Note that register and prepare hooks now use collections API. For the most part, all hooks should continue
working, as long as they are not performing complex operations with arrays.

Support for icon and badge parameters was added. Plugins should start using these parameters and prefer them to
a single text parameter. CSS should be used to control visibility of the label, icon and badge, instead of conditionals
in preparing menu items.

All menus are now wrapped with nav.elgg-menu-container to ensure that multiple menu sections have a
single parent element, and can be styled using flexbox or floats.

All menu items are now identified with with data-menu-item attribute, sections - with data-menu-section,
containers with - data-menu-name attributes.

topbar menu:

account menu item with priority 800 added to alt section

site_notifications menu item is now a child of account with priority 100

usersettings menu item is now a child of account with priority 300

administration menu item is now a child of account with priority 800

logout menu item is now a child of account with priority 900

dashboard menu item now is now a child of acount has priority of 100

In default section (profile, friends, messages), core menu items now use icon parameter and use
CSS to hide the label. Plugins that register items to this section and expect a visible label need to update their
CSS.

profile menu item is now a child of account

friends menu item is now a child of account

entity menu:

access menu item has been removed. Access information is now rendered in the entity byline.

user_hover menu:

All items use the icon parameter.

The layout of the dropdown has been changed. If you have modified the look and feel of this dropdown, you
might need to update your HTML/CSS.

widget menu:

collapse menu item has been removed and CSS updated accordingly

title menu:

The profile plugin no longer uses the actions section of the user_hover menu, but registers regulare title
menu items.

extras menu:

This menu has been removed from the page layout. Menu items that registered for this menu have been moved to other
menus.

groups:my_status menu:

This menu has been removed from the group profile page.

346 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

site_notifications menu:

This menu has been removed. Site Notification objects now use the entity menu for actions.

site menu:

Registration of custom menu item defined in admin interface has been moved to register, menu:site hook.
navigation/menu/site view has been removed. Site menu now adds a more` menu item directly to
the ``default section.

Entity icons

Default icon image files have been moved and re-mapped as follows:

Default icons: views/default/icon/default/$size.png

User icons: views/default/icon/user/default/$size.gif

Group icons: views/default/icon/group/default/$size.gif in the groups plugin

Groups icon files have been moved from groups/<guid><size>.jpg relative to group owner’s directory on
filestore to a location prescribed by the entity icon service. Plugins should stop accessing files on the filestore directly
and use the entity icon API. Upgrade script is available via admin interface.

The generation of entity icons has ben changed. No longer will all the configured sizes be gene-
rated when calling one of the entity icon functions (ElggEntity::saveIconFromUploadedFile,
ElggEntity::saveIconFromLocalFile or ElggEntity::saveIconFromElggFile), but only the
master size. The other configured sizes will be generated when requesting that size based of the master icon.

Icon glyphs

FontAwesome has been upgraded to version 5.0+. There were certain changes to how FontAwesome glyphs are ren-
dered. The core will take care of most changes (e.g. mapping old icon names to new ones, and using the correct prefix
for brand and solid icons).

Autocomplete (user and friends pickers)

Friends Picker input is now rendered using input/userpicker.

Plugins should:

Update overriden input/userpicker to support new only_friends parameter

Remove friends picker CSS from their stylesheets

Friends collections

Friends collections UI has been moved to its own plugins - friends_collections.

Layout of .elgg-body elements

In 3.0, these elements by default no longer stretch to fill available space in a block context. They still clear floats and
allow breaking words to wrap text.

3.7. Appendix 347

Elgg Documentation, Versión master

Core modules and layouts that relied on space-filling have been reworked for Flexbox and we encourage devs to do
the same, rather than use the problematic overflow: hidden.

Delete river items

The function elgg_delete_river() which was deprecated in 2.3, has been reinstated. Notable changes between
the internals of this function are;

It accepts all $options from elgg_get_river() but requires at least one of the following params to be
set id(s), annotation_id(s), subject_guid(s), object_guid(s), target_guid(s) or view(s)

Since elgg_get_river by default has a limit on the number of river items it fetches, if you wish to remove
all river items you need to set limit to false

Access is ignored when deleting river items

Events are fired just before and after a river item has been deleted

Discussion replies moved to comments

Since discussion replies where mostly a carbon copy of comments, all discussion replies have been migrated to com-
ments. All related action, hooks, event, language keys etc. have been removed.

Nota: Discussion comments will now show up in the Comments section of Search, no longer under the Discussion
section.

Translations cleanup

All plugins have been scanned for unused translation keys. The unused keys have been removed. If there was a generic
translation available for the custom translation key, these have also been updated.

System Log

System log API has been moved out of core into a system_log plugin. logbrowser and logrotate plugins
have been merged into the system_log plugin.

Error logging

Sending elgg_log() and PHP error messages to page output is now only possible via the developers plugin «Log to
the screen» setting. See the settings.example.php file for more information on using $CONFIG->debug in
your settings.php file. Debugging should generally be done via the xdebug extension or tail -f /path/
to/error.log on your server.

Composer asset plugin no longer required

Assets are now loaded from https://asset-packagist.org. FXP composer asset plugin is no longer required when insta-
lling Elgg or updating composer dependencies.

348 Capítulo 3. Continue Reading

https://asset-packagist.org

Elgg Documentation, Versión master

Cron logs

The cron logs are no longer stored in the database, but on the filesystem (in dataroot). This will allow longer output to
be stored. A migration script was added to migrate the old database settings to the new location and remove the old
values from the database.

Removed / changed language keys

The language keys related to comment notifications have changed. Check the
generic_comment:notification:owner: language keys

New MySQL schema features are not applied

New 3.0 installations require MySQL 5.5.3 (or higher) and use the utf8mb4 character set and LONGTEXT content
columns (notably allowing storing longer content and extended characters like emoji).

Miscellaneous changes

The settings «Allow visitors to register» and «Restrict pages to logged-in users» now appear on the Basic Settings
admin page.

Twitter API plugin

The twitter_api plugin no longer comes bundled with Elgg.

Unit and Integration Testing

Elgg’s PHPUnit bootstrap can now handle both unit and integration tests. Please note that you shouldn’t run tests
on a production site, as it may damage data integrity. To prevent data loss, you need to specify database settings via
environment variables. You can do so via the phpunit.xml bootstrap.

Plugins can now implement their own PHPUnit tests by extending \Elgg\UnitTestCase and
\Elgg\IntegrationTestCase classes. plugins test suite will automatically autoload PHPUnit
tests from mod/<plugin_id>/tests/phpunit/unit and mod/<plugin_id>/tests/phpunit/
integration.

Prior to running integration tests, you need to enable the plugins that you wish to test alongside core API.

\Elgg\IntegrationTestCase uses \Elgg\Seeding trait, which can be used to conveniently build new en-
tities and write them to the database.

\Elgg\UnitTestCase does not use the database, but provides a database mocking interface, which allows tests
to define query specs with predefined returns.

By default, both unit and integration tests will be run whenever phpunit is called. You can use --testsuite flag
to only run a specific suite: phpunit --testsuite unit or phpunit --testsuite integration or
phpunit --testsuite plugins.

For integration testing to run properly, plugins are advised to not put any logic into the root of start.php, and ins-
tead return a Closure. This allows the testsuite to build a new Application instance without loosing plugin initialization
logic.

3.7. Appendix 349

Elgg Documentation, Versión master

Plugins with simpletests will continue working as perviously. However, method signatures in the
ElggCoreUnitTest abstract class have changed and you will need to update your tests accordingly. Na-
mely, it’s discouraged to use __construct and __desctruct methods. setUp and tearDown have been
marked as private and are used for consistent test boostrapping and asserting pre and post conditions, your test case
should use up and down methods instead.

Simpletests can no longer be executed from the admin interface of the developers plugin. Use Elgg cli command:
elgg-cli simpletest

From 2.2 to 2.3

Contents

PHP Version

Deprecated APIs

Deprecated Views

New API for page and action handling

New API for working with file uploads

New API for manipulating images

New API for events

New API for signing URLs

Extendable form views

Metadata access_id

New API for extracting class names from arrays

Notifications

Entity list functions can output tables

Inline tabs components

API to alter registration and login URL

Support for fieldsets in forms

Lightbox

PHP Version

PHP 5.5 has reached end of life in July 2016. To ensure that Elgg sites are secure, we now require PHP 5.6 for new
installations.

Existing installations can continue using PHP 5.5 until Elgg 3.0.

In order to upgrade Elgg to 2.3 using composer while using PHP 5.5, you may need to use
--ignore-platform-reqs flag.

350 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Deprecated APIs

Registering for to:object hook by the extender name: Use to:object, annotation and
to:object, metadata hooks instead.

ajax_forward_hook(): No longer used as handler for “forward”,”all” hook. Ajax response is now wrap-
ped by the ResponseFactory

ajax_action_hook(): No longer used as handler for “action”,”all” hook. Output buffering now starts
before the hook is triggered in ActionsService

elgg_error_page_handler(): No longer used as a handler for “forward”,<error_code> hooks

get_uploaded_file(): Use new file uploads API instead

get_user_notification_settings(): Use ElggUser::getNotificationSettings()

set_user_notification_setting(): Use ElggUser::setNotificationSetting()

pagesetup, system event: Use the menu or page shell hooks instead.

elgg.walled_garden JavaScript is deprecated: Use elgg/walled_garden AMD module instead.

elgg()->getDb()->getTableprefix(): Use elgg_get_config('dbprefix').

Private update_entity_last_action(): Refrain from manually updating last action timestamp.

Setting non-public access_id on metadata is deprecated. See below.

get_resized_image_from_existing_file(): Use elgg_save_resized_image().

get_resized_image_from_uploaded_file(): Use elgg_save_resized_image() in combi-
nation with upload API.

get_image_resize_parameters() will be removed.

elgg_view_input(): Use elgg_view_field(). Apologies for the API churn.

Deprecated Views

resources/file/world: Use the resources/file/all view instead.

resources/pages/world: Use the resources/pages/all view instead.

walled_garden.js: Use the elgg/walled_garden module instead.

New API for page and action handling

Page handlers and action script files should now return an instance of \Elgg\Http\ResponseBuilder. Plugins
should use the following convenience functions to build responses:

elgg_ok_response() sends a 2xx response with HTML (page handler) or JSON data (actions)

elgg_error_response() sends a 4xx or 5xx response without content/data

elgg_redirect_response() silently redirects the request

3.7. Appendix 351

Elgg Documentation, Versión master

New API for working with file uploads

elgg_get_uploaded_files() - returns an array of Symfony uploaded file objects

ElggFile::acceptUploadedFile() - moves an uploaded file to Elgg’s filestore

New API for manipulating images

New image manipulation service implements a more efficient approach to cropping and resizing images.

elgg_save_resized_image() - crops and resizes an image to preferred dimensions

New API for events

elgg_clear_event_handlers() - similar to elgg_clear_plugin_hook_handlers this fun-
ctions removes all registered event handlers

New API for signing URLs

URLs can now be signed with a SHA-256 HMAC key and validated at any time before URL expiry. This feature can
be used to tokenize action URLs in email notifications, as well as other uses outside of the Elgg installation.

elgg_http_get_signed_url() - signs the URL with HMAC key

elgg_http_validate_signed_url() - validates the signed URL

elgg_signed_request_gatekeeper() - gatekeeper that validates the signature of the current request

Extendable form views

Form footer rendering can now be deferred until the form view and its extensions have finished rendering. This allows
plugins to collaborate on form views without breaking the markup logic.

elgg_set_form_footer() - sets form footer for deferred rendering

elgg_get_form_footer() - returns currently set form footer

Metadata access_id

It’s now deprecated to create metadata with an explicit access_id value other than ACCESS_PUBLIC.

In Elgg 3.0, metadata will not be access controlled, and will be available in all contexts. If your plugin relies on access
control of metadata, it would be wise to migrate storage to annotations or entities instead.

New API for extracting class names from arrays

Similar to elgg_extract(), elgg_extract_class() extracts the «class» key (if present), merges into exis-
ting class names, and always returns an array.

352 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Notifications

A high level 'prepare','notification' hook is now triggered for instant and subscription notifications
and can be used to alter notification objects irrespective of their type.

'format','notification:<method>' hook is now triggered for instant and subscription notifications
and can be used to format the notification (e.g. strip HTML tags, wrap the notification body in a template etc).

Instant notifications are now handled by the notifications service, hence almost all hooks applicable to subscrip-
tion notifications also apply to instant notifications.

elgg_get_notification_methods() can be used to obtain registered notification methods

Added ElggUser::getNotificationSettings() and ElggUser::setNotificationSetting()

Entity list functions can output tables

In functions like elgg_list_entities($options), table output is possible by set-
ting $options['list_type'] = 'table' and providing an array of table columns as
$options['columns']. Each column is an Elgg\Views\TableColumn object, usually created via
methods on the service elgg()->table_columns.

Plugins can provide or alter these factory methods (see Elgg\Views\TableColumn\ColumnFactory). See
the view admin/users/newest for a usage example.

Inline tabs components

Inline tabs component can now be rendered with page/components/tabs view. The components allows to switch
between pre-populated and ajax-loaded. See page/components/tabs in core views and theme_sandbox/
components/tabs in developers plugin for usage instructions and examples.

API to alter registration and login URL

elgg_get_registration_url() should be used to obtain site’s registration URL

elgg_get_login_url() should be used to obtain site’s login URL

registration_url, site hook can be used to alter the default registration URL

login_url, site hook can be used to alter the default login URL

Support for fieldsets in forms

elgg_view_field() replaces elgg_view_input(). It has a similar API, but accepts a single array.

elgg_view_field() supports #type, #label, #help and #class, allowing unprefixed versions to be
sent to the input view $vars.

The new view input/fieldset can be used to render a set of fields, each rendered with
elgg_view_field().

3.7. Appendix 353

Elgg Documentation, Versión master

Lightbox

Lightbox css is no longer loaded as an external CSS file. Lightbox theme now extends elgg.css and admin.
css

Default lightbox config is now defined via 'elgg.data','site' server-side hook

From 2.1 to 2.2

Contents

Deprecated APIs

Deprecated Views

Added elgg/popup module

Added elgg/lightbox module

Added elgg/embed module

New API for handling entity icons

Removed APIs

Improved elgg/ckeditor module

Deprecated APIs

elgg.ui.river JavaScript library: Remove calls to elgg_load_js('elgg.ui.river') from plugin
code. Update core/river/filter and forms/comment/save, if overwritten, to require component
AMD modules

elgg.ui.popupOpen() and elgg.ui.popupClose() methods in elgg.ui JS library: Use elgg/
popup module instead.

lightbox.js library: Do not use elgg_load_js('lightbox.js'); unless your code references de-
precated elgg.ui.lightbox namespace. Use elgg/lightbox AMD module instead.

elgg.embed library and elgg.embed object: Do not use elgg_load_js('elgg.embed'). Use
elgg/embed AMD module instead

Accessing icons_sizes config value directly: Use elgg_get_icon_sizes()

can_write_to_container(): Use ElggEntity::canWriteToContainer()

Deprecated Views

elgg/ui.river.js is deprecated: Do not rely on simplecache URLs to work.

groups/js is deprecated: Use groups/navigation AMD module as a menu item dependency for «fea-
ture» and «unfeature» menu items instead.

lightbox/settings.js is deprecated: Use getOptions, ui.lightbox JS plugin hook or
data-colorbox-opts attribute.

354 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

elgg/ckeditor/insert.js is deprecated: You no longer need to include it, hook registration takes place
in elgg/ckeditor module

embed/embed.js is deprecated: Use elgg/embed AMD module.

Added elgg/popup module

New elgg/popup module can be used to build out more complex trigger-popup interactions, including binding custom
anchor types and opening/closing popups programmatically.

Added elgg/lightbox module

New elgg/lightbox module can be used to open and close the lightbox programmatically.

Added elgg/embed module

Even though rarely necessary, elgg/embed AMD module can be used to access the embed methods programmati-
cally. The module bootstraps itself when necessary and is unlikely to require further decoration.

New API for handling entity icons

ElggEntity now implements \Elgg\EntityIcon interface

elgg_get_icon_sizes() - return entity type/subtype specific icon sizes

ElggEntity::saveIconFromUploadedFile() - creates icons from an uploaded file

ElggEntity::saveIconFromLocalFile() - creates icons from a local file

ElggEntity::saveIconFromElggFile() - creates icons from an instance of ElggFile

ElggEntity::getIcon() - returns an instanceof ElggIcon that points to entity icon location on filestore
(this may be just a placeholder, use ElggEntity::hasIcon() to validate if file has been written)

ElggEntity::deleteIcon() - deletes entity icons

ElggEntity::getIconLastChange() - return modified time of the icon file

ElggEntity::hasIcon() - checks if an icon with given size has been created

elgg_get_embed_url() - can be used to return an embed URL for an entity’s icon (served via /serve-icon
handler)

User avatars are now served via serve-file handler. Plugins should start using elgg_get_inline_url() and
note that:

/avatar/view page handler and resource view have been deprecated

/mod/profile/icondirect.php file has been deprecated

profile_set_icon_url() is no longer registered as a callback for "entity:icon:url","user"
plugin hook

Group avatars are now served via serve-file handler. Plugins should start using elgg_get_inline_url()
and note that:

groupicon page handler (groups_icon_handler()) has been deprecated

3.7. Appendix 355

Elgg Documentation, Versión master

/mod/groups/icon.php file has been deprecated

File entity thumbs and downloads are now served via serve-file handler. Plugins should start using
elgg_get_inline_url() and elgg_get_download_url() and note that:

file/download page handler and resource view have been deprecated

mod/file/thumbnail.php file has been deprecated

Several views have been updated to use new download URLs, including:

• mod/file/views/default/file/specialcontent/audio/default.php

• mod/file/views/default/file/specialcontent/image/default.php

• mod/file/views/default/resources/file/view.php

• mod/file/views/rss/file/enclosure.php

Removed APIs

Just a warning that the private entity cache functions (e.g. _elgg_retrieve_cached_entity) have been remo-
ved. Some plugins may have been using them. Plugins should not use private APIs as they will more often be removed
without notice.

Improved elgg/ckeditor module

elgg/ckeditor module can now be used to add WYSIWYG to a textarea programmatically with elgg/
ckeditor#bind.

From 2.0 to 2.1

Contents

Deprecated APIs

Application::getDb() changes

Added elgg/widgets module

Deprecated APIs

ElggFile::setFilestore

get_default_filestore

set_default_filestore

elgg_get_config('siteemail'): Use elgg_get_site_entity()->email

URLs starting with /css/ and /js/: Use elgg_get_simplecache_url()

elgg.ui.widgets JavaScript object is deprecated by elgg/widgets AMD module

356 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Application::getDb() changes

If you’re using this low-level API, do not expect it to return an Elgg\Database instance in 3.0. It now returns an
Elgg\Application\Database with many deprecated. These methods were never meant to be made public API,
but we will do our best to support them in 2.x.

Added elgg/widgets module

If your plugin code calls elgg.ui.widgets.init(), instead use the elgg/widgets module.

From 1.x to 2.0

Contents

Elgg can be now installed as a composer dependency instead of at document root

Cacheable views must have a file extension in their names

Dropped jquery-migrate and upgraded jquery to ^2.1.4

JS and CSS views have been moved out of the js/ and css/ directories

fxp/composer-asset-plugin is now required to install Elgg from source

List of deprecated views and view arguments that have been removed

All scripts moved to bottom of page

Attribute formatter removes keys with underscores

Breadcrumbs

Callbacks in Queries

Comments plugin hook

Container permissions hook

Creating or deleting a relationship triggers only one event

Discussion feature has been pulled from groups into its own plugin

Dropped login-over-https feature

Elgg has migrated from ext/mysql to PDO MySQL

Event/Hook calling order may change

export/ URLs are no longer available

Icons migrated to Font Awesome

Increase of z-index value in elgg-menu-site class

input/autocomplete view

Introduced third-party library for sending email

Label elements

Plugin Aalborg Theme

3.7. Appendix 357

Elgg Documentation, Versión master

Plugin Likes

Plugin Messages

Plugin Blog

Plugin Bookmarks

Plugin File

Removed Classes

Removed keys available via elgg_get_config()

Removed Functions

Removed methods

Removed Plugin Hooks

Removed Actions

Removed Views

Removed View Variables

Removed libraries

Specifying View via Properties

Viewtype is static after the initial elgg_get_viewtype() call

Deprecations

Elgg can be now installed as a composer dependency instead of at document root

That means an Elgg site can look something like this:

settings.php
vendor/

elgg/
elgg/

engine/
start.php

_graphics/
elgg_sprites.png

mod/
blog
bookmarks
...

elgg_get_root_path and $CONFIG->path will return the path to the application root directory, which is not
necessarily the same as Elgg core’s root directory (which in this case is vendor/elgg/elgg/).

Do not attempt to access the core Elgg from your plugin directly, since you cannot rely on its location on the filesystem.

In particular, don’t try load engine/start.php.

// Don't do this!
dirname(__DIR__) . "/engine/start.php";

To boot Elgg manually, you can use the class Elgg\Application.

358 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

// boot Elgg in mod/myplugin/foo.php
require_once dirname(dirname(__DIR__)) . '/vendor/autoload.php';
\Elgg\Application::start();

However, use this approach sparingly. Prefer Routing instead whenever possible as that keeps your public URLs and
your filesystem layout decoupled.

Also, don’t try to access the _graphics files directly.

readfile(elgg_get_root_path() . "_graphics/elgg_sprites.png");

Use Views instead:

echo elgg_view('elgg_sprites.png');

Cacheable views must have a file extension in their names

This requirement makes it possibile for us to serve assets directly from disk for performance, instead of serving them
through PHP.

It also makes it much easier to explore the available cached resources by navigating to dataroot/views_simplecache
and browsing around.

Bad: my/cool/template

Good: my/cool/template.html

We now cache assets by "$viewtype/$view", not md5("$viewtype|$view"), which can result in conflicts
between cacheable views that don’t have file extensions to disambiguate files from directories.

Dropped jquery-migrate and upgraded jquery to ^2.1.4

jQuery 2.x is API-compatible with 1.x, but drops support for IE8-, which Elgg hasn’t supported for some time anyways.

See http://jquery.com/upgrade-guide/1.9/ for how to move off jquery-migrate.

If you’d prefer to just add it back, you can use this code in your plugin’s init:

elgg_register_js('jquery-migrate', elgg_get_simplecache_url('jquery-migrate.js'),
→˓'head');
elgg_load_js('jquery-migrate');

Also, define a jquery-migrate.js view containing the contents of the script.

JS and CSS views have been moved out of the js/ and css/ directories

They also have been given .js and .css extensions respectively if they didn’t already have them:

Old view New view
js/view view.js
js/other.js other.js
css/view view.css
css/other.css other.css
js/img.png img.png

3.7. Appendix 359

http://jquery.com/upgrade-guide/1.9/

Elgg Documentation, Versión master

The main benefit this brings is being able to co-locate related assets. So a template (view.php) can have its CSS/JS
dependencies right next to it (view.css, view.js).

Care has been taken to make this change as backwards-compatible as possible, so you should not need to update any
view references right away. However, you are certainly encouraged to move your JS and CSS views to their new,
canonical locations.

Practically speaking, this carries a few gotchas:

The view_vars, $view_name and view, $view_name hooks will operate on the canonical view name:

elgg_register_plugin_hook_handler('view', 'css/elgg', function($hook, $view_name) {
assert($view_name == 'elgg.css') // not "css/elgg"

});

Using the view, all hook and checking for individual views may not work as intended:

elgg_register_plugin_hook_handler('view', 'all', function($hook, $view_name) {
// Won't work because "css/elgg" was aliased to "elgg.css"
if ($view_name == 'css/elgg') {
// Never executed...

}

// Won't work because no canonical views start with css/* anymore
if (strpos($view_name, 'css/') === 0) {
// Never executed...

}
});

Please let us know about any other BC issues this change causes. We’d like to fix as many as possible to make the
transition smooth.

fxp/composer-asset-plugin is now required to install Elgg from source

We use fxp/composer-asset-plugin to manage our browser assets (js, css, html) with Composer, but it must
be installed globally before installing Elgg in order for the bower-asset/* packages to be recognized. To install
it, run:

composer global require fxp/composer-asset-plugin

If you don’t do this before running composer install or composer create-project, you will get an error
message:

[InvalidArgumentException]
Package fxp/composer-asset-plugin not found

List of deprecated views and view arguments that have been removed

We dropped support for and/or removed the following views:

canvas/layouts/*

categories

categories/view

core/settings/tools

360 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

embed/addcontentjs

footer/analytics (Use page/elements/foot instead)

groups/left_column

groups/right_column

groups/search/finishblurb

groups/search/startblurb

input/calendar (Use input/date instead)

input/datepicker (Use input/date instead)

input/pulldown (Use input/select instead)

invitefriends/formitems

js/admin (Use AMD and elgg_require_js instead of extending JS views)

js/initialise_elgg (Use AMD and elgg_require_js instead of extending JS views)

members/nav

metatags (Use the “head”, “page” plugin hook instead)

navigation/topbar_tools

navigation/viewtype

notifications/subscriptions/groupsform

object/groupforumtopic

output/calendar (Use output/date instead)

output/confirmlink (Use output/url instead)

page_elements/contentwrapper

page/elements/shortcut_icon (Use the “head”, “page” plugin hook instead)

page/elements/wrapper

profile/icon (Use elgg_get_entity_icon)

river/object/groupforumtopic/create

settings/{plugin}/edit (Use plugins/{plugin}/settings instead)

user/search/finishblurb

user/search/startblurb

usersettings/{plugin}/edit (Use plugins/{plugin}/usersettings instead)

widgets/{handler}/view (Use widgets/{handler}/content instead)

We also dropped the following arguments to views:

«value» in output/iframe (Use «src» instead)

«area2» and «area3» in page/elements/sidebar (Use «sidebar» or view extension instead)

«js» in icon views (e.g. icon/user/default)

«options» to input/radio and input/checkboxes which aren’t key-value pairs will no longer be acceptable.

3.7. Appendix 361

Elgg Documentation, Versión master

All scripts moved to bottom of page

You should test your plugin with the JavaScript error console visible. For performance reasons, Elgg no longer
supports script elements in the head element or in HTML views. elgg_register_js will now load all scripts
at the end of the body element.

You must convert inline scripts to AMD or to external scripts loaded with elgg_load_js.

Early in the page, Elgg provides a shim of the RequireJS require() function that simply queues code until the
AMD elgg and jQuery modules are defined. This provides a straightforward way to convert many inline scripts to
use require().

Inline code which will fail because the stack is not yet loaded:

<script>
$(function () {

// code using $ and elgg
});
</script>

This should work in Elgg 2.0:

<script>
require(['elgg', 'jquery'], function (elgg, $) {

$(function () {
// code using $ and elgg

});
});
</script>

Attribute formatter removes keys with underscores

elgg_format_attributes() (and all APIs that use it) now filter out attributes whose name contains an unders-
core. If the attribute begins with data-, however, it will not be removed.

Breadcrumbs

Breadcrumb display now removes the last item if it does not contain a link. To restore the previous behavior, replace
the plugin hook handler elgg_prepare_breadcrumbs with your own:

elgg_unregister_plugin_hook_handler('prepare', 'breadcrumbs', 'elgg_prepare_
→˓breadcrumbs');
elgg_register_plugin_hook_handler('prepare', 'breadcrumbs', 'myplugin_prepare_
→˓breadcrumbs');

function myplugin_prepare_breadcrumbs($hook, $type, $breadcrumbs, $params) {
// just apply excerpt to titles
foreach (array_keys($breadcrumbs) as $i) {

$breadcrumbs[$i]['title'] = elgg_get_excerpt($breadcrumbs[$i]['title'], 100);
}
return $breadcrumbs;

}

362 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Callbacks in Queries

Make sure to use only valid callable values for «callback» argument/options in the API.

Querying functions will now will throw a RuntimeException if is_callable() returns false for the given
callback value. This includes functions such as elgg_get_entities(), get_data(), and many more.

Comments plugin hook

Plugins can now return an empty string from 'comments',$entity_type hook in order to override the default
comments component view. To force the default comments component, your plugin must return false. If you were
using empty strings to force the default comments view, you need to update your hook handlers to return false.

Container permissions hook

The behavior of the container_permissions_check hook has changed when an entity is being created: Before
2.0, the hook would be called twice if the entity’s container was not the owner. On the first call, the entity’s owner
would be passed in as $params['container'], which could confuse handlers.

In 2.0, when an entity is created in a container like a group, if the owner is the same as the logged in user (almost
always the case), this first check is bypassed. So the container_permissions_check hook will almost always
be called once with $params['container'] being the correct container of the entity.

Creating or deleting a relationship triggers only one event

The «create» and «delete» relationship events are now only fired once, with "relationship" as the object type.

E.g. Listening for the "create", "member" or "delete", "member" event(s) will no longer capture group
membership additions/removals. Use the "create", "relationship" or "delete", "relationship"
events.

Discussion feature has been pulled from groups into its own plugin

The object, groupforumtopic subtype has been replaced with the object, discussion subtype. If your
plugin is using or altering the old discussion feature, you should upgrade it to use the new subtype.

Nothing changes from the group owners” point of view. The discussion feature is still available as a group tool and all
old discussions are intact.

Dropped login-over-https feature

For the best security and performance, serve all pages over HTTPS by switching the scheme in your site’s wwwroot
to https at http://yoursite.tld/admin/settings/advanced

Elgg has migrated from ext/mysql to PDO MySQL

Elgg now uses a PDO_MYSQL connection and no longer uses any ext/mysql functions. If you use mysql_* functions,
implicitly relying on an open connection, these will fail.

If your code uses one of the following functions, read below.

3.7. Appendix 363

http://yoursite.tld/admin/settings/advanced

Elgg Documentation, Versión master

execute_delayed_write_query()

execute_delayed_read_query()

If you provide a callable $handler to be called with the results, your handler will now receive a
\Doctrine\DBAL\Driver\Statement object. Formerly this was an ext/mysql result resource.

Event/Hook calling order may change

When registering for events/hooks, the all keyword for wildcard matching no longer has any effect on the order that
handlers are called. To ensure your handler is called last, you must give it the highest priority of all matching handlers,
or to ensure your handler is called first, you must give it the lowest priority of all matching handlers.

If handlers were registered with the same priority, these are called in the order they were registered.

To emulate prior behavior, Elgg core handlers registered with the all keyword have been raised in priority. Some of
these handlers will most likely be called in a different order.

export/ URLs are no longer available

Elgg no longer provides this endpoint for exposing resource data.

Icons migrated to Font Awesome

Elgg’s sprites and most of the CSS classes beginning with elgg-icon- have been removed.

Usage of elgg_view_icon() is backward compatible, but static HTML using the elgg-icon classes will have
to be updated to the new markup.

Increase of z-index value in elgg-menu-site class

The value of z-index in the elgg-menu-site class has been increased from 1 to 50 to allow for page elements in the
content area to use the z-index property without the «More» site menu’s dropdown being displayed behind these ele-
ments. If your plugin/theme overrides the elgg-menu-site class or views/default/elements/navigation.css please adjust
the z-index value in your modified CSS file accordingly.

input/autocomplete view

Plugins that override the input/autocomplete view will need to include the source URL in the data-source
attribute of the input element, require the new elgg/autocomplete AMD module, and call its init method. The
1.x javascript library elgg.autocomplete is no longer used.

Introduced third-party library for sending email

We are using the excellent Zend\Mail library to send emails in Elgg 2.0. There are likely edge cases that the library
handles differently than Elgg 1.x. Take care to test your email notifications carefully when upgrading to 2.0.

364 Capítulo 3. Continue Reading

https://github.com/Elgg/Elgg/pull/8578/files#diff-b3912b37ca7bd6c53a2968ccb6c22a94L22

Elgg Documentation, Versión master

Label elements

The following views received label elements around some of the input fields. If your plugin/theme overrides these
views please check for the new content.

views/default/core/river/filter.php

views/default/forms/admin/plugins/filter.php

views/default/forms/admin/plugins/sort.php

views/default/forms/login.php

Plugin Aalborg Theme

The view page/elements/navbar now uses a Font Awesome icon for the mobile menu selector instead of an
image. The bars.png image and supporting CSS for the 1.12 rendering has been removed, so update your theme
accordingly.

Plugin Likes

Objects are no longer likable by default. To support liking, you can register a handler to permit the annotation, or more
simply register for the hook ["likes:is_likable", "<type>:<subtype>"] and return true. E.g.

elgg_register_plugin_hook_handler('likes:is_likable', 'object:mysubtype',
→˓'Elgg\Values::getTrue');

Just as before, the permissions_check:annotate hook is still called and may be used to override default
behavior.

Plugin Messages

If you’ve removed or replaced the handler function messages_notifier to hide/alter the inbox icon, you’ll instead
need to do the same for the topbar menu handler messages_register_topbar. messages_notifier is no
longer used to add the menu link.

Messages will no longer get the metadata “msg” for newly created messages. This means you can not rely on that
metadata to exist.

Plugin Blog

The blog pages showing “Mine” or “Friends” listings of blogs have been changed to list all the blogs owned by the
users (including those created in groups).

Plugin Bookmarks

The bookmark pages showing “Mine” or “Friends” listings of bookmarks have been changed to list all the bookmarks
owned by the users (including those created in groups).

3.7. Appendix 365

Elgg Documentation, Versión master

Plugin File

The file pages showing “Mine” or “Friends” listings of files have been changed to list all the files owned by the users
(including those created in groups).

Removed Classes

ElggInspector

Notable

FilePluginFile: replace with ElggFile (or load with get_entity())

Removed keys available via elgg_get_config()

allowed_ajax_views

dataroot_in_settings

externals

externals_map

i18n_loaded_from_cache

language_paths

pagesetupdone

registered_tag_metadata_names

simplecache_enabled_in_settings

translations

viewpath

views

view_path

viewtype

wordblacklist

Also note that plugins should not be accessing the global $CONFIG variable except for in settings.php.

Removed Functions

blog_get_page_content_friends

blog_get_page_content_read

count_unread_messages()

delete_entities()

delete_object_entity()

delete_user_entity()

elgg_get_view_location()

366 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

elgg_validate_action_url()

execute_delayed_query()

extend_view()

get_db_error()

get_db_link()

get_entities()

get_entities_from_access_id()

get_entities_from_access_collection()

get_entities_from_annotations()

get_entities_from_metadata()

get_entities_from_metadata_multi()

get_entities_from_relationship()

get_filetype_cloud()

get_library_files()

get_views()

is_ip_in_array()

list_entities()

list_entities_from_annotations()

list_group_search()

list_registered_entities()

list_user_search()

load_plugins()

menu_item()

make_register_object()

mysql_*(): Elgg no longer uses ext/mysql

remove_blacklist()

search_for_group()

search_for_object()

search_for_site()

search_for_user()

search_list_objects_by_name()

search_list_groups_by_name()

search_list_users_by_name()

set_template_handler()

test_ip()

3.7. Appendix 367

Elgg Documentation, Versión master

Removed methods

ElggCache::set_variable()

ElggCache::get_variable()

ElggData::initialise_attributes()

ElggData::getObjectOwnerGUID()

ElggDiskFilestore::make_directory_root()

ElggDiskFilestore::make_file_matrix()

ElggDiskFilestore::user_file_matrix()

ElggDiskFilestore::mb_str_split()

ElggEntity::clearMetadata()

ElggEntity::clearRelationships()

ElggEntity::clearAnnotations()

ElggEntity::getOwner()

ElggEntity::setContainer()

ElggEntity::getContainer()

ElggEntity::getIcon()

ElggEntity::setIcon()

ElggExtender::getOwner()

ElggFileCache::create_file()

ElggObject::addToSite(): parent function in ElggEntity still available

ElggObject::getSites(): parent function in ElggEntity still available

ElggSite::getCollections()

ElggUser::addToSite(): parent function in ElggEntity still available

ElggUser::getCollections()

ElggUser::getOwner()

ElggUser::getSites(): parent function in ElggEntity still available

ElggUser::listFriends()

ElggUser::listGroups()

ElggUser::removeFromSite(): parent function in ElggEntity still available

The following arguments have also been dropped:

ElggSite::getMembers() - 2: $offset

elgg_view_entity_list() - 3: $offset - 4: $limit - 5: $full_view - 6:
$list_type_toggle - 7: $pagination

368 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Removed Plugin Hooks

[display, view]: See the new plugin hook.

Removed Actions

widgets/upgrade

Removed Views

forms/admin/plugins/change_state

Removed View Variables

During rendering, the view system no longer injects these into the scope:

$vars['url']: replace with elgg_get_site_url()

$vars['user']: replace with elgg_get_logged_in_user_entity()

$vars['config']: use elgg_get_config() and elgg_set_config()

$CONFIG: use elgg_get_config() and elgg_set_config()

Also several workarounds for very old views are no longer performed. Make these changes:

Set $vars['full_view'] instead of $vars['full'].

Set $vars['name'] instead of $vars['internalname'].

Set $vars['id'] instead of $vars['internalid'].

Removed libraries

elgg:markdown: Elgg no longer provides a markdown implementation. You must provide your own.

Specifying View via Properties

The metadata $entity->view no longer specifies the view used to render in elgg_view_entity().

Similarly the property $annotation->view no longer has an effect within elgg_view_annotation().

Viewtype is static after the initial elgg_get_viewtype() call

elgg_set_viewtype() must be used to set the viewtype at runtime. Although Elgg still checks the view input
and $CONFIG->view initially, this is only done once per request.

3.7. Appendix 369

Elgg Documentation, Versión master

Deprecations

It’s deprecated to read or write to metadata keys starting with filestore:: on ElggFile objects. In Elgg 3.0 this
metadata will be deleted if it points to the current data root path, so few file objects will have it. Plugins should only
use ElggFile::setFilestore if files need to be stored in a custom location.

Nota: This is not the only deprecation in Elgg 2.0. Plugin developers should watch their site error logs.

From 1.10 to 1.11

Contents

Comment highlighting

Comment highlighting

If your theme is using the file views/default/css/elements/components.php, you must add the follo-
wing style definitions in it to enable highlighting for comments and discussion replies:

.elgg-comments .elgg-state-highlight {
-webkit-animation: comment-highlight 5s;
animation: comment-highlight 5s;

}
@-webkit-keyframes comment-highlight {

from {background: #dff2ff;}
to {background: white;}

}
@keyframes comment-highlight {

from {background: #dff2ff;}
to {background: white;}

}

From 1.9 to 1.10

Contents

File uploads

File uploads

If your plugin is using a snippet copied from the file/upload action to fix detected mime types for Microsoft
zipped formats, it can now be safely removed.

If your upload action performs other manipulations on detected mime and simple types, it is recommended to make
use of available plugin hooks:

'mime_type','file' for filtering detected mime types

370 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

'simple_type','file' for filtering parsed simple types

From 1.8 to 1.9

Contents

The manifest file

$CONFIG and $vars[“config”]

Language files

Notifications

Adding items to the Activity listing

Entity URL handlers

Web services

In the examples we are upgrading an imaginary «Photos» plugin.

Only the key changes are included. For example some of the deprecated functions are not mentioned here separately.

Each section will include information whether the change is backwards compatible with Elgg 1.8.

The manifest file

No changes are needed if your plugin is compatible with 1.8.

It’s however recommended to add the <id> tag. It’s value should be the name of the directory where the plugin is
located inside the mod/ directory.

If you make changes that break BC, you must update the plugin version and the required Elgg release.

Example of (shortened) old version:

<?xml version="1.0" encoding="UTF-8"?>
<plugin_manifest xmlns="http://www.elgg.org/plugin_manifest/1.8">

<name>Photos</name>
<author>John Doe</author>
<version>1.0</version>
<description>Adds possibility to upload photos and arrange them into albums.</

→˓description>
<requires>

<type>elgg_release</type>
<version>1.8</version>

</requires>
</plugin_manifest>

Example of (shortened) new version:

<?xml version="1.0" encoding="UTF-8"?>
<plugin_manifest xmlns="http://www.elgg.org/plugin_manifest/1.8">

<name>Photos</name>
<id>photos</id>
<author>John Doe</author>

(continué en la próxima página)

3.7. Appendix 371

Elgg Documentation, Versión master

(proviene de la página anterior)

<version>2.0</version>
<description>Adds possibility to upload photos and arrange them into albums.</

→˓description>
<requires>

<type>elgg_release</type>
<version>1.9</version>

</requires>
</plugin_manifest>

$CONFIG and $vars[“config”]

Both the global $CONFIG variable and the $vars['config'] parameter have been deprecated. They should be
replaced with the elgg_get_config() function.

Example of old code:

// Using the global $CONFIG variable:
global $CONFIG;
$plugins_path = $CONFIG->plugins_path

// Using the $vars view parameter:
$plugins_path = $vars['plugins_path'];

Example of new code:

$plugins_path = elgg_get_config('plugins_path');

Nota: Compatible with 1.8

Nota: See how the community_plugins plugin was updated: https://github.com/Elgg/community_plugins/commit/
f233999bbd1478a200ee783679c2e2897c9a0483

Language files

In Elgg 1.8 the language files needed to use the add_translation() function. In 1.9 it is enough to just return
the array that was previously passed to the function as a parameter. Elgg core will use the file name (e.g. en.php) to
tell which language the file contains.

Example of the old way in languages/en.php:

$english = array(
'photos:all' => 'All photos',

);
add_translation('en', $english);

Example of new way:

return array(
'photos:all' => 'All photos',

);

372 Capítulo 3. Continue Reading

https://github.com/Elgg/community_plugins/commit/f233999bbd1478a200ee783679c2e2897c9a0483
https://github.com/Elgg/community_plugins/commit/f233999bbd1478a200ee783679c2e2897c9a0483

Elgg Documentation, Versión master

Advertencia: Not compatible with 1.8

Notifications

One of the biggest changes in Elgg 1.9 is the notifications system. The new system allows more flexible and scalable
way of sending notifications.

Example of the old way:

function photos_init() {
// Tell core that we want to send notifications about new photos
register_notification_object('object', 'photo', elgg_echo('photo:new'));

// Register a handler that creates the notification message
elgg_register_plugin_hook_handler('notify:entity:message', 'object', 'photos_

→˓notify_message');
}

/**
* Set the notification message body

*
* @param string $hook Hook name

* @param string $type Hook type

* @param string $message The current message body

* @param array $params Parameters about the photo

* @return string

*/
function photos_notify_message($hook, $type, $message, $params) {

$entity = $params['entity'];
$to_entity = $params['to_entity'];
$method = $params['method'];
if (elgg_instanceof($entity, 'object', 'photo')) {

$descr = $entity->excerpt;
$title = $entity->title;
$owner = $entity->getOwnerEntity();
return elgg_echo('photos:notification', array(

$owner->name,
$title,
$descr,
$entity->getURL()

));
}
return null;

}

Example of the new way:

function photos_init() {
elgg_register_notification_event('object', 'photo', array('create'));
elgg_register_plugin_hook_handler('prepare', 'notification:publish:object:photo',

→˓'photos_prepare_notification');
}

/**
* Prepare a notification message about a new photo

(continué en la próxima página)

3.7. Appendix 373

Elgg Documentation, Versión master

(proviene de la página anterior)

*
* @param string $hook Hook name

* @param string $type Hook type

* @param Elgg_Notifications_Notification $notification The notification to prepare

* @param array $params Hook parameters

* @return Elgg_Notifications_Notification

*/
function photos_prepare_notification($hook, $type, $notification, $params) {

$entity = $params['event']->getObject();
$owner = $params['event']->getActor();
$recipient = $params['recipient'];
$language = $params['language'];
$method = $params['method'];

// Title for the notification
$notification->subject = elgg_echo('photos:notify:subject', array($entity->title),

→˓ $language);

// Message body for the notification
$notification->body = elgg_echo('photos:notify:body', array(

$owner->name,
$entity->title,
$entity->getExcerpt(),
$entity->getURL()

), $language);

// The summary text is used e.g. by the site_notifications plugin
$notification->summary = elgg_echo('photos:notify:summary', array($entity->title),

→˓ $language);

return $notification;
}

Advertencia: Not compatible with 1.8

Nota: See how the community_plugins plugin was updated to use the new system: https://github.com/Elgg/
community_plugins/commit/bfa356cfe8fb99ebbca4109a1b8a1383b70ff123

Notifications can also be sent with the notify_user() function.

It has however been updated to support three new optional parameters passed inside an array as the fifth parameter.

The parameters give notification plugins more control over the notifications, so they should be included whenever
possible. For example the bundled site_notifications plugin won’t work properly if the parameters are missing.

Parameters:

object The object that we are notifying about (e.g. ElggEntity or ElggAnnotation). This is needed so that noti-
fication plugins can provide a link to the object.

action String that describes the action that triggered the notification (e.g. «create», «update», etc).

summary String that contains a summary of the notification. (It should be more informative than the notification
subject but less informative than the notification body.)

374 Capítulo 3. Continue Reading

https://github.com/Elgg/community_plugins/commit/bfa356cfe8fb99ebbca4109a1b8a1383b70ff123
https://github.com/Elgg/community_plugins/commit/bfa356cfe8fb99ebbca4109a1b8a1383b70ff123

Elgg Documentation, Versión master

Example of the old way:

// Notify $owner that $user has added a $rating to an $entity created by him

$subject = elgg_echo('rating:notify:subject');
$body = elgg_echo('rating:notify:body', array(

$owner->name,
$user->name,
$entity->title,
$entity->getURL(),

));

notify_user($owner->guid,
$user->guid,
$subject,
$body

);

Example of the new way:

// Notify $owner that $user has added a $rating to an $entity created by him

$subject = elgg_echo('rating:notify:subject');
$summary = elgg_echo('rating:notify:summary', array($entity->title));
$body = elgg_echo('rating:notify:body', array(

$owner->name,
$user->name,
$entity->title,
$entity->getURL(),

));

$params = array(
'object' => $rating,
'action' => 'create',
'summary' => $summary,

);

notify_user($owner->guid,
$user->guid,
$subject,
$body,
$params

);

Nota: Compatible with 1.8

Adding items to the Activity listing

add_to_river('river/object/photo/create', 'create', $user_guid, $photo_guid);

elgg_create_river_item(array(
'view' => 'river/object/photo/create',
'action_type' => 'create',
'subject_guid' => $user_guid,

(continué en la próxima página)

3.7. Appendix 375

Elgg Documentation, Versión master

(proviene de la página anterior)

'object_guid' => $photo_guid,
));

You can also add the optional target_guid parameter which tells the target of the create action.

If the photo would had been added for example into a photo album, we could add it by passing in also:

'target_guid' => $album_guid,

Advertencia: Not compatible with 1.8

Entity URL handlers

The elgg_register_entity_url_handler() function has been deprecated. In 1.9 you should use the
'entity:url', 'object' plugin hook instead.

Example of the old way:

/**
* Initialize the photo plugin

*/
my_plugin_init() {

elgg_register_entity_url_handler('object', 'photo', 'photo_url_handler');
}

/**
* Returns the URL from a photo entity

*
* @param ElggEntity $entity

* @return string

*/
function photo_url_handler($entity) {

return "photo/view/{$entity->guid}";
}

Example of the new way:

/**
* Initialize the photo plugin

*/
my_plugin_init() {

elgg_register_plugin_hook_handler('entity:url', 'object', 'photo_url_handler');
}

/**
* Returns the URL from a photo entity

*
* @param string $hook 'entity:url'

* @param string $type 'object'

* @param string $url The current URL

* @param array $params Hook parameters

* @return string

*/
function photo_url_handler($hook, $type, $url, $params) {

(continué en la próxima página)

376 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

(proviene de la página anterior)

$entity = $params['entity'];

// Check that the entity is a photo object
if ($entity->getSubtype() !== 'photo') {

// This is not a photo object, so there's no need to go further
return;

}

return "photo/view/{$entity->guid}";
}

Advertencia: Not compatible with 1.8

Web services

In Elgg 1.8 the web services API was included in core and methods were exposed using expose_function().
To enable the same functionality for Elgg 1.9, enable the «Web services 1.9» plugin and replace all calls to
expose_function() with elgg_ws_expose_function().

From 1.7 to 1.8

Contents

Updating core

Updating plugins

Elgg 1.8 is the biggest leap forward in the development of Elgg since version 1.0. As such, there is more work to
update core and plugins than with previous upgrades. There were a small number of API changes and following our
standard practice, the methods we deprecated have been updated to work with the new API. The biggest changes are
in the standardization of plugins and in the views system.

Updating core

Delete the following core directories (same level as _graphics and engine):

_css

account

admin

dashboard

entities

friends

search

settings

3.7. Appendix 377

Elgg Documentation, Versión master

simplecache

views

Advertencia: If you do not delete these directories before an upgrade, you will have problems!

Updating plugins

Use standardized routing with page handlers

All: /page_handler/all

User’s content: /page_handler/owner/:username

User’s friends” content: /page_handler/friends/:username

Single entity: /page_handler/view/:guid/:title

Added: /page_handler/add/:container_guid

Editing: /page_handler/edit/:guid

Group list: /page_handler/group/:guid/all

Include page handler scripts from the page handler

Almost every page handler should have a page handler script. (Example: bookmarks/all => mod/
bookmarks/pages/bookmarks/all.php)

Call set_input() for entity guids in the page handler and use get_input() in the page handler scripts.

Call gatekeeper() and admin_gatekeeper() in the page handler function if required.

The group URL should use the pages/:handler/owner.php script.

Page handlers should not contain HTML.

Update the URLs throughout the plugin. (Don’t forget to remove /pg/!)

Use standardized page handlers and scripts

Store page handler scripts in mod/:plugin/pages/:page_handler/:page_name.php

Use the content page layout in page handler scripts:

$content = elgg_view_layout('content', $options);

Page handler scripts should not contain HTML.

Call elgg_push_breadcrumb() in the page handler scripts.

No need to set page owner if the URLs are in the standardized format.

For group content, check the container_guid by using elgg_get_page_owner_entity().

378 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

The object/:subtype view

Make sure there are views for $vars['full_view'] == true and $vars['full_view'] ==
false. $vars['full_view'] replaced $vars['full].

Check for the object in $vars['entity']. Use elgg_instance_of() to make sure it’s the type of
entity you want.

Return true to short circuit the view if the entity is missing or wrong.

Use elgg_view('object/elements/summary', array('entity' => $entity)); and
elgg_view_menu('entity', array('entity' => $entity)); to help format. You should use
very little markup in these views.

Update action structure

Namespace action files and action names (example: mod/blog/actions/blog/save.php => action/
blog/save)

Use the following action URLs:

• Add: action/:plugin/save

• Edit: action/:plugin/save

• Delete: action/:plugin/delete

Make the delete action accept action/:handler/delete?guid=:guid so the metadata entity menu
has the correct URL by default.

Update deprecated functions

Functions deprecated in 1.7 will produce visible errors in 1.8.

You can also update functions deprecated in 1.8.

• Many registration functions simply added an elgg_ prefix for consistency, and should be easy to update.

• See /engine/lib/deprecated-1.8.php for the full list.

• You can set the debug level to “warning” to get visual reminders of deprecated functions.

Update the widget views

See the blog or file widgets for examples.

Update the group profile module

Use the blog or file plugins for examples. This will help with making your plugin themeable by the new CSS frame-
work.

3.7. Appendix 379

Elgg Documentation, Versión master

Update forms

Move form bodies to the forms/:action view to use Evan’s new elgg_view_form.

Use input views in form bodies rather than html. This helps with theming and future-proofing.

Add a function that prepares the form (see mod/file/lib/file.php for an example)

Make your forms sticky (see the file plugin’s upload action and form prepare function).

The forms API is discussed in more detail in Forms + Actions.

Clean up CSS/HTML

We have added many CSS patterns to the base CSS file (modules, image block, spacing primitives). We encourage you
to use these patterns and classes wherever possible. Doing so should:

1. Reduce maintenance costs, since you can delete most custom CSS.

2. Make your plugin more compatible with community themes.

Look for patterns that can be moved into core if you need significant CSS.

We use hyphens rather than underscores in classes/ids and encourage you do the same for consistency.

If you do need your own CSS, you should use your own namespace, rather than elgg-.

Update manifest.xml

Use http://el.gg/manifest17to18 to automate this.

Don’t use the «bundled» category with your plugins. That is only for plugins distributed with Elgg.

Update settings and user settings views

The view for settings is now plugins/:plugin/settings (previously settings/:plugin/edit).

The view for user settings is now plugins/:plugin/usersettings (previously usersettings/
:plugin/edit).

3.7.2 FAQs and Other Troubleshooting

Below are some commonly asked questions about Elgg.

Contents

General

• «Plugin cannot start and has been deactivated» or «This plugin is invalid»

• White Page (WSOD)

• Page not found

• Login token mismatch

380 Capítulo 3. Continue Reading

http://el.gg/manifest17to18

Elgg Documentation, Versión master

• Form is missing __token or __ts fields

• Maintenance mode

• Missing email

• Server logs

• How does registration work?

• User validation

• Manually add user

• I’m making or just installed a new theme, but graphics or other elements aren’t working

• Changing profile fields

• Changing registration

• How do I change PHP settings using .htaccess?

• HTTPS login turned on accidently

• Using a test site

• 500 - Internal Server Error

• When I upload a photo or change my profile picture I get a white screen

• CSS is missing

• Should I edit the database manually?

• Internet Explorer (IE) login problem

• Emails don’t support non-Latin characters

• Session length

• File is missing an owner

• No images

• Deprecation warnings

• Javascript not working

• IP addresses in the logs are wrong

Security

• Is upgrade.php a security concern?

• Should I delete install.php?

• Filtering

Development

• What should I use to edit php code?

• I don’t like the wording of something in Elgg. How do I change it?

• How do I find the code that does x?

• Debug mode

• What events are triggered on every page load?

3.7. Appendix 381

Elgg Documentation, Versión master

• Copy a plugin

General

Ver también:

Getting Help

«Plugin cannot start and has been deactivated» or «This plugin is invalid»

This error is usually accompanied by more details explaining why the plugin is invalid. This is usually caused by an
incorrectly installed plugin.

If you are installing a plugin called «test», there will be a test directory under mod. In that test directory there needs to
be a composer.json file /mod/test/composer.json.

If this file does not exist, it could be caused by:

installing a plugin to the wrong directory

creating a directory under /mod that does not contain a plugin

a bad ftp transfer

unzipping a plugin into an extra directory (myplugin.zip unzips to myplugin/myplugin)

incompatible plugin

If you are on a Unix-based host and the files exist in the correct directory, check the permissions. Elgg must have read
access to the files and read + execute access on the directories.

White Page (WSOD)

A blank, white page (often called a «white screen of death») means there is a PHP syntax error. There are a few possible causes of this:

corrupted file - try transfering the code again to your server

a call to a php module that was not loaded - this can happen after you install a plugin that requires a specific
module.

bad plugin - not all plugins have been written to the same quality so you should be careful which ones you
install.

To find where the error is occurring, change the .htaccess file to display errors to the browser. Set display_errors to
1 and load the same page again. You should see a PHP error in your browser. Change the setting back once you’ve
resolved the problem.

Nota: If you are using the Developer’s Tools plugin, go to its settings page and make sure you have «Display fatal
PHP errors» enabled.

If the white screen is due to a bad plugin, remove the latest plugins that you have installed by deleting their directories
and then reload the page.

382 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Nota: You can temporarily disable all plugins by creating an empty file at mod/disabled. You can then disable
the offending module via the administrator tools panel.

If you are getting a WSOD when performing an action, like logging in or posting a blog, but there are no error
messages, it’s most likely caused by non-printable characters in plugin code. Check the plugin for white spaces/new
lines characters after finishing php tag (?>) and remove them.

Page not found

If you have recently installed your Elgg site, the most likely cause for a page not found error is that mod_rewrite is
not setup correctly on your server. There is information in the Install Troubleshooting page on fixing this. The second
most likely cause is that your site url in your database is incorrect.

If you’ve been running your site for a while and suddenly start getting page not found errors, you need to ask yourself
what has changed. Have you added any plugins? Did you change your server configuration?

To debug a page not found error:

Confirm that the link leading to the missing page is correct. If not, how is that link being generated?

Confirm that the .htaccess rewrite rules are being picked up.

Login token mismatch

If you have to log in twice to your site and the error message after the first attempt says there was a token mismatch
error, the URL in Elgg’s settings does not match the URL used to access it. The most common cause for this is adding
or removing the «www» when accessing the site. For example, www.elgg.org vs elgg.org. This causes a problem with
session handling because of the way that web browsers save cookies.

To fix this, you can add rewrite rules. To redirect from www.elgg.org to elgg.org in Apache, the rules might look like:

RewriteCond %{HTTP_HOST} .
RewriteCond %{HTTP_HOST} !^elgg\.org
RewriteRule (.*) http://elgg.org/$1 [R=301,L]

Redirecting from non-www to www could look like this:

RewriteCond %{HTTP_HOST} ^elgg\.org
RewriteRule ^(.*)$ http://www.elgg.org/$1 [R=301,L]

If you don’t know how to configure rewrite rules, ask your host for more information.

Form is missing __token or __ts fields

All Elgg actions require a security token, and this error occurs when that token is missing. This is either a problem
with your server configuration or with a 3rd party plugin.

If you experience this on a new installation, make sure that your server is properly configured and your rewrite rules
are correct. If you experience this on an upgrade, make sure you have updated your rewrite rules either in .htaccess
(Apache) or in the server configuration.

If you are experiencing this, disable all 3rd party plugins and try again. Very old plugins for Elgg don’t use security
tokens. If the problem goes away when plugins are disabled, it’s due to a plugin that should be updated by its author.

3.7. Appendix 383

Elgg Documentation, Versión master

Maintenance mode

To take your site temporarily offline, go to Administration -> Utilities -> Maintenance Mode. Complete the form and
hit save to disable your site for everyone except admin users.

Missing email

If your users are reporting that validation emails are not showing up, have them check their spam folder. It is possible
that the emails coming from your server are being marked as spam. This depends on many factors such as whether
your hosting provider has a problem with spammers, how your PHP mail configuration is set up, what mail transport
agent your server is using, or your host limiting the number of email that you can send in an hour.

If no one gets email at all, it is quite likely your server is not configured properly for email. Your server needs a
program to send email (called a Mail Transfer Agent - MTA) and PHP must be configured to use the MTA.

To quickly check if PHP and an MTA are correctly configured, create a file on your server with the following content:

<?php
$address = "your_email@your_host.com";

$subject = 'Test email.';

$body = 'If you can read this, your email is working.';

echo "Attempting to email $address...
";

if (mail($address, $subject, $body)) {
echo 'SUCCESS! PHP successfully delivered email to your MTA. If you don\'t

→˓see the email in your inbox in a few minutes, there is a problem with your MTA.';
} else {

echo 'ERROR! PHP could not deliver email to your MTA. Check that your PHP
→˓settings are correct for your MTA and your MTA will deliver email.';
}

Be sure to replace «your_email@your_host.com» with your actual email address. Take care to keep quotes around it!
When you access this page through your web browser, it will attempt to send a test email. This test will let you know
that PHP and your MTA are correctly configured. If it fails–either you get an error or you never receive the email–you
will need to do more investigating and possibly contact your service provider.

Fully configuring an MTA and PHP’s email functionality is beyond the scope of this FAQ and you should search the
Internet for more resources on this. Some basic information on php parameters can be found on PHP’s site

Server logs

Most likely you are using Apache as your web server. Warnings and errors are written to a log by the web server
and can be useful for debugging problems. You will commonly see two types of log files: access logs and error logs.
Information from PHP and Elgg is written to the server error log.

Linux – The error log is probably in /var/log/httpd or /var/log/apache2.

Windows - It is probably inside your Apache directory.

Mac OS - The error log is probably in /var/log/apache2/error_log

If you are using shared hosting without ssh access, your hosting provider may provide a mechanism for obtaining
access to your server logs. You will need to ask them about this.

384 Capítulo 3. Continue Reading

mailto:your_email@your_host.com
http://php.net/manual/en/mail.configuration.php

Elgg Documentation, Versión master

How does registration work?

With a default setup, this is how registration works:

1. User fills out registration form and submits it

2. User account is created and disabled until validated

3. Email is sent to user with a link to validate the account

4. When a user clicks on the link, the account is validated

5. The user can now log in

Failures during this process include the user entering an incorrect email address, the validation email being marked as
spam, or a user never bothering to validate the account.

User validation

By default, all users who self-register must validate their accounts through email. If a user has problems validating an
account, you can validate users manually by going to Administration -> Users -> Unvalidated.

You can remove this requirement by deactivating the User Validation by Email plugin.

Nota: Removing validation has some consequences: There is no way to know that a user registered with a working
email address, and it may leave you system open to spammers.

Manually add user

To manually add a user, under the Administer controls go to Users. There you will see a link title «Add new User».
After you fill out the information and submit the form, the new user will receive an email with username and password
and a reminder to change the password.

Nota: Elgg does not force the user to change the password.

I’m making or just installed a new theme, but graphics or other elements aren’t working

Make sure the theme is at the bottom of the plugin list.

Clear your browser cache and reload the page. To lighten the load on the server, Elgg instructs the browser to rarely
load the CSS file. A new theme will completely change the CSS file and a refresh should cause the browser to request
the CSS file again.

If you’re building or modifying a theme, make sure you have disabled the simple and system caches. This can be done
by enabling the Developer Tools plugin, then browsing to Administration -> Develop -> Settings. Once you’re satisfied
with the changes, enable the caches or performance will suffer.

Changing profile fields

Within the Administration settings of Elgg is a page for replacing the default profile fields. Elgg by default gives the
administrator two choices:

3.7. Appendix 385

Elgg Documentation, Versión master

Use the default profile fields

Replace the default with a set of custom profile fields

You cannot add new profile fields to the default ones. Adding a new profile field through the replace profile fields
option clears the default ones. Before letting in users, it is best to determine what profile fields you want, what field
types they should be, and the order they should appear. You cannot change the field type or order or delete fields after
they have been created without wiping the entire profile blank.

More flexibility can be gained through plugins. There is at least two plugins on the community site that enable you to
have more control over profile fields. The Profile Manager plugin has become quite popular in the Elgg community. It
lets you add new profile fields whenever you want, change the order, group profile fields, and add them to registration.

Changing registration

The registration process can be changed through a plugin. Everything about registration can be changed: the look and
feel, different registration fields, additional validation of the fields, additional steps and so on. These types of changes
require some basic knowledge of HTML, CSS, PHP.

Another option is to use the Profile Manager plugin that lets you add fields to both user profiles and the registration
form.

Create the plugin skeleton Plugin skeleton

Changing registration display Override the account/forms/register view

Changing the registration action handler You can write your own action to create the user’s account

How do I change PHP settings using .htaccess?

You may want to change php settings in your .htaccess file. This is especially true if your hosting provider does
not give you access to the server’s php.ini file. The variables could be related to file upload size limits, security,
session length, or any number of other php attributes. For examples of how to do this, see the PHP documentation on
this.

HTTPS login turned on accidently

If you have turned on HTTPS login but do not have SSL configured, you are now locked out of your Elgg install. To
turn off this configuration parameter, you will need to edit your database. Use a tool like phpMyAdmin to view your
database. Select the config table and delete the row that has the name https_login.

Using a test site

It is recommended to always try out new releases or new plugins on a test site before running them on a production
site (a site with actual users). The easiest way to do this is to maintain a separate install of Elgg with dummy accounts.
When testing changes it is important to use dummy accounts that are not admins to test what your users will see.

A more realistic test is to mirror the content from your production site to your test site. Following the instructions for
duplicating a site. Then make sure you prevent emails from being sent to your users. You could write a small plugin
that redirects all email to your own account (be aware of plugins that include their own custom email sending code so
you’ll have to modify those plugins). After this is done you can view all of the content to make sure the upgrade or
new plugin is functioning as desired and is not breaking anything. If this process sounds overwhelming, please stick
with running a simple test site.

386 Capítulo 3. Continue Reading

https://community.elgg.org/plugins/385114
https://community.elgg.org/plugins/385114
http://us2.php.net/configuration.changes

Elgg Documentation, Versión master

500 - Internal Server Error

What is it?

A 500 - Internal Server Error means the web server experienced a problem serving a request.

Ver también:

The Wikipedia page on HTTP status codes

Possible causes

Web server configuration The most common cause for this is an incorrectly configured server. If you edited the
.htaccess file and added something incorrect, Apache will send a 500 error.

Permissions on files It could also be a permissions problem on a file. Apache needs to be able to read Elgg’s files.
Using permissions 755 on directories and 644 on files will allow Apache to read the files.

When I upload a photo or change my profile picture I get a white screen

Most likely you don’t have the PHP GD library installed or configured properly. You may need assistance from the
administrator of your server.

CSS is missing

Wrong URL

Sometimes people install Elgg so that the base URL is localhost and then try to view the site using a hostname. In
this case, the browser won’t be able to load the CSS file. Try viewing the source of the web page and copying the link
for the CSS file. Paste that into your browser. If you get a 404 error, it is likely this is your problem. You will need to
change the base URL of your site.

Syntax error

Elgg stores its CSS as PHP code to provide flexibility and power. If there is a syntax error, the CSS file served to the
browser may be blank. Disabling non-bundled plugins is the recommended first step.

Rewrite rules errors

A bad .htaccess file could also result in a 404 error when requesting the CSS file. This could happen when doing
an upgrade and forgetting to also upgrade .htaccess.

Should I edit the database manually?

Advertencia: No, you should never manually edit the database!

3.7. Appendix 387

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#5xx_Server_Error

Elgg Documentation, Versión master

Will editing the database manually break my site?

Yes.

Can I add extra fields to tables in the database?

(AKA: I don’t understand the Elgg data model so I’m going to add columns. Will you help?)

No, this is a bad idea. Learn the data model and you will see that unless it’s a very specific and highly customized
installation, you can do everything you need within Elgg’s current data model.

I want to remove users. Can’t I just delete them from the elgg_entities table?

No, it will corrupt your database. Delete them through the site.

I want to remove spam. Can’t I just search and delete it from the elgg_entities table?

No, it will corrupt your database. Delete it through the site.

Someone on the community site told me to edit the database manually. Should I?

Who was it? Is it someone experienced with Elgg, like one of the core developers or a well-known plugin author?
Did he or she give you clear and specific instructions on what to edit? If you don’t know who it is, or if you can’t
understand or aren’t comfortable following the instructions, do not edit the database manually.

I know PHP and MySQL and have a legitimate reason to edit the database. Is it okay to manually edit
the database?

Make sure you understand Elgg’s data model and schema first. Make a backup, edit carefully, then test copiously.

Internet Explorer (IE) login problem

Canonical URL

IE does not like working with sites that use both http://example.org and http://www.example.org. It stores multiple
cookies and this causes problems. Best to only use one base URL. For details on how to do this see Login token
mismatch error.

Chrome Frame

Using the chrome frame within IE can break the login process.

388 Capítulo 3. Continue Reading

http://example.org
http://www.example.org

Elgg Documentation, Versión master

Emails don’t support non-Latin characters

In order to support non-Latin characters, (such as Cyrillic or Chinese) Elgg requires multibyte string support to be
compiled into PHP.

On many installs (e.g. Debian & Ubuntu) this is turned on by default. If it is not, you need to turn it on (or recompile
PHP to include it). To check whether your server supports multibyte strings, check phpinfo.

Session length

Session length is controlled by your php configuration. You will first need to locate your php.ini file. In that file
will be several session variables. A complete list and what they do can be found in the php manual.

File is missing an owner

There are three causes for this error. You could have an entity in your database that has an owner_guid of 0. This
should be extremely rare and may only occur if your database/server crashes during a write operation.

The second cause would be an entity where the owner no longer exists. This could occur if a plugin is turned off
that was involved in the creation of the entity and then the owner is deleted but the delete operation failed (because
the plugin is turned off). If you can figure out entity is causing this, look in your entities table and change the
owner_guid to your own and then you can delete the entity through Elgg.

Advertencia: Reed the section «Should I edit the database manually?». Be very carefull when editing the database
directly. It can break your site. Always make a backup before doing this.

Fixes

Database Validator plugin will check your database for these causes and provide an option to fix them. Be sure to
backup the database before you try the fix option.

No images

If profile images, group images, or other files have stopped working on your site it is likely due to a misconfiguration,
especially if you have migrated to a new server.

These are the most common misconfigurations that cause images and other files to stop working.

Wrong path for data directory

Make sure the data directory’s path is correct in the Site Administration admin area. It should have a trailing slash.

Wrong permissions on the data directory

Check the permissions for the data directory. The data directory should be readable and writeable by the web server
user.

3.7. Appendix 389

http://uk.php.net/manual/en/mbstring.installation.php
http://php.net/manual/en/function.phpinfo.php
http://php.net/manual/en/session.configuration.php
https://community.elgg.org/plugins/438616

Elgg Documentation, Versión master

Migrated installation with new data directory location

If you migrated an installation and need to change your data directory path, be sure to update the SQL for the filestore
location as documented in the Duplicate Installation instructions.

Deprecation warnings

If you are seeing many deprecation warnings that say things like

Deprecated in 1.7: extend_view() was deprecated by elgg_extend_view()!

then you are using a plugin that was written for an older version of Elgg. This means the plugin is using functions that
are scheduled to be removed in a future version of Elgg. You can ask the plugin developer if the plugin will be updated
or you can update the plugin yourself. If neither of those are likely to happen, you should not use that plugin.

Javascript not working

If the user hover menu stops working or you cannot dismiss system messages, that means JavaScript is broken on
your site. This usually due to a plugin having bad JavaScript code. You should find the plugin causing the problem
and disable it. You can do this be disabling non-bundled plugins one at a time until the problem goes away. Another
approach is disabling all non-bundled plugins and then enabling them one by one until the problem occurs again.

Most web browsers will give you a hint as to what is breaking the JavaScript code. They often have a console for
JavaScript errors or an advanced mode for displaying errors. Once you see the error message, you may have an easier
time locating the problem.

IP addresses in the logs are wrong

When your Elgg installation is behind a proxy server or loadbalancer the IP addresses logged in the System Log plugin
can be wrong. It could show only the IP addresses for the proxy server.

In order to solve this you can configure the IP addresses of the proxy server as a trusted IP address and with that allow
the system access to the correct IP address of your users.

In the settings.php file you can configure settings for $CONFIG->http_request_trusted_proxy_ips
and $CONFIG->http_request_trusted_proxy_headers check the settings.php file for more infor-
mation.

Security

Is upgrade.php a security concern?

Upgrade.php is a file used to run code and database upgrades. It is in the root of the directory and doesn’t require a
logged in account to access. On a fully upgraded site, running the file will only reset the caches and exit, so this is not
a security concern.

If you are still concerned, you can either delete, move, or change permissions on the file until you need to upgrade.

390 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Should I delete install.php?

This file is used to install Elgg and doesn’t need to be deleted. The file checks if Elgg is already installed and forwards
the user to the front page if it is.

Filtering

Filtering is used in Elgg to make XSS attacks more difficult. The purpose of the filtering is to remove Javascript and
other dangerous input from users.

Filtering is performed through the function filter_tags(). This function takes in a string and returns a filtered
string. It triggers a validate, input plugin hook. By default Elgg comes with the htmLawed filtering code as a plugin.
Developers can drop in any additional or replacement filtering code as a plugin.

The filter_tags() function is called on any user input as long as the input is obtained through a call to
get_input(). If for some reason a developer did not want to perform the default filtering on some user input,
the get_input() function has a parameter for turning off filtering.

Development

What should I use to edit php code?

There are two main options: text editor or integrated development environment (IDE).

Text Editor

If you are new to software development or do not have much experience with IDEs, using a text editor will get you up
and running the quickest. At a minimum, you will want one that does syntax highlighting to make the code easier to
read. If you think you might submit patches to the bug tracker, you will want to make sure that your text editor does
not change line endings. If you are using Windows, Notepad++ is a good choice. If you are on a Mac, TextWrangler
is a popular choice. You could also give TextMate a try.

Integrated Development Environment

An IDE does just what its name implies: it includes a set of tools that you would normally use separately. Most
IDEs will include source code control which will allow you to directly commit and update your code from your cvs
repository. It may have an FTP client built into it to make the transfer of files to a remote server easier. It will have
syntax checking to catch errors before you try to execute the code on a server.

The two most popular free IDEs for PHP developers are Eclipse and NetBeans. Eclipse has two different plugins for
working with PHP code: PDT and PHPEclipse.

I don’t like the wording of something in Elgg. How do I change it?

The best way to do this is with a plugin.

Create the plugin skeleton

Plugin skeleton

3.7. Appendix 391

http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Integrated_development_environment
http://notepad-plus-plus.org/
http://www.barebones.com/products/textwrangler/index.html
http://macromates.com/
http://www.eclipse.org/
http://netbeans.org/
http://www.eclipse.org/pdt/
http://www.phpeclipse.com/

Elgg Documentation, Versión master

Locate the string that you want to change

All the strings that a user sees should be in the /languages directory or in a plugin’s languages directory (/
mod/<plugin name>/languages). This is done so that it is easy to change what language Elgg uses. For more
information on this see the developer documentation on Internationalization .

To find the string use grep or a text editor that provides searching through files to locate the string. (A good text editor
for Windows is Notepad++) Let’s say we want to change the string «Add friend» to «Make a new friend». The grep
command to find this string would be grep -r "Add friend" *. Using Notepad++ , you would use the «Find
in files» command. You would search for the string, set the filter to *.php, set the directory to the base directory of
Elgg, and make sure it searches all subdirectories. You might want to set it to be case sensitive also.

You should locate the string «Add friend» in /languages/en.php. You should see something like this in the file:

'friend:add' => "Add friend",

This means every time Elgg sees friend:add it replaces it with «Add friend». We want to change the definition of
friend:add.

Override the string

To override this definition, we will add a languages file to the plugin that we built in the first step.

1. Create a new directory: /mod/<your plugin name>/languages

2. Create a file in that directory called en.php

3. Add these lines to that file

<?php

return array(
'friend:add' => 'Make a new friend',

);

Make sure that you do not have any spaces or newlines before the <?php.

You’re done now and should be able to enable the plugin and see the change. If you are override the language of a
plugin, make sure your plugin is loaded after the one you are trying to modify. The loading order is determined in
the Tools Administration page of the admin section. As you find more things that you’d like to change, you can keep
adding them to this plugin.

How do I find the code that does x?

The best way to find the code that does something that you would like to change is to use grep or a similar search tool.
If you do not have grep as a part of your operating system, you will want to install a grep tool or use a text-editor/IDE
that has good searching in files. Notepad++ is a good choice for Windows users. Eclipse with PHP and NetBeans are
good choices for any platform.

String Example

Let’s say that you want to find where the Log In box code is located. A string from the Log In box that should be
fairly unique is Remember me. Grep for that string. You will find that it is only used in the en.php file in the
/languages directory. There it is used to define the Internationalization string user:persistent. Grep for

392 Capítulo 3. Continue Reading

http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://www.eclipse.org/
http://netbeans.org/

Elgg Documentation, Versión master

that string now. You will find it in two places: the same en.php language file and in /views/default/forms/
login.php. The latter defines the html code that makes up the Log In box.

Action Example

Let’s say that you want to find the code that is run when a user clicks on the Save button when arranging widgets on
a profile page. View the Profile page for a test user. Use Firebug to drill down through the html of the page until you
come to the action of the edit widgets form. You’ll see the url from the base is action/widgets/move.

Grep on widgets/move and two files are returned. One is the JavaScript code for the widgets : /js/
lib/ui.widgets.js. The other one, /engine/lib/widgets.php, is where the action is registered using
elgg_register_action('widgets/reorder'). You may not be familiar with that function in which case,
you should look it up at the API reference. Do a search on the function and it returns the documentation on the fun-
ction. This tells you that the action is in the default location since a file location was not specified. The default location
for actions is /actions so you will find the file at /actions/widgets/move.php.

Debug mode

During the installation process you might have noticed a checkbox that controlled whether debug mode was turned
on or off. This setting can also be changed on the Site Administration page. Debug mode writes a lot of extra data to
your php log. For example, when running in this mode every query to the database is written to your logs. It may be
useful for debugging a problem though it can produce an overwhelming amount of data that may not be related to the
problem at all. You may want to experiment with this mode to understand what it does, but make sure you run Elgg in
normal mode on a production server.

Advertencia: Because of the amount of data being logged, don’t enable this on a production server as it can fill
up the log files really quick.

What goes into the log in debug mode?

All database queries

Database query profiling

Page generation time

Number of queries per page

List of plugin language files

Additional errors/warnings compared to normal mode (it’s very rare for these types of errors to be related to any
problem that you might be having)

What does the data look like?

[07-Mar-2009 14:27:20] Query cache invalidated
[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and
→˓enabled='yes') results cached
[07-Mar-2009 14:27:20] SELECT guid from elggsites_entity where guid = 1 results cached
[07-Mar-2009 14:27:20] Query cache invalidated

(continué en la próxima página)

3.7. Appendix 393

Elgg Documentation, Versión master

(proviene de la página anterior)

[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and
→˓enabled='yes') results cached
[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and
→˓enabled='yes') results returned from cache
[07-Mar-2009 14:27:20] ** Sub part of GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggsites_entity where guid=1 results cached
[07-Mar-2009 14:27:20] Query cache invalidated
[07-Mar-2009 14:27:20] DEBUG: 2009-03-07 14:27:20 (MST): "Undefined index: user" in
→˓file /var/www/elgg/engine/lib/elgglib.php (line 62)
[07-Mar-2009 14:27:20] DEBUG: 2009-03-07 14:27:20 (MST): "Undefined index: pass" in
→˓file /var/www/elgg/engine/lib/elgglib.php (line 62)
[07-Mar-2009 14:27:20] ***************** DB PROFILING ********************
[07-Mar-2009 14:27:20] 1 times: 'SELECT * from elggentities where guid=1 and (
→˓(access_id in (2) or (owner_guid = -1) or (access_id = 0 and owner_guid = -1)) and
→˓enabled='yes')'
...
[07-Mar-2009 14:27:20] 2 times: 'update elggmetadata set access_id = 2 where entity_
→˓guid = 1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggentities set owner_guid='0', access_id='2
→˓', container_guid='0', time_updated='1236461868' WHERE guid=1'
[07-Mar-2009 14:27:20] 1 times: 'SELECT guid from elggsites_entity where guid = 1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggsites_entity set name='3124/944',
→˓description='', url='http://example.org/' where guid=1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggusers_entity set prev_last_action = last_
→˓action, last_action = 1236461868 where guid = 2'
[07-Mar-2009 14:27:20] DB Queries for this page: 56
[07-Mar-2009 14:27:20] ***
[07-Mar-2009 14:27:20] Page /action/admin/site/update_basic generated in 0.
→˓36997294426 seconds

What events are triggered on every page load?

There are 4 Elgg events that are triggered on every page load:

1. plugins_boot, system

2. init, system

3. ready, system

4. shutdown, system

The first three are triggered in Elgg\Application::bootCore. shutdown, system is triggered in
\Elgg\Application\ShutdownHandler after the response has been sent to the client. They are all docu-
mented.

There are other events triggered by Elgg occasionally (such as when a user logs in).

Copy a plugin

There are many questions asked about how to copy a plugin. Let’s say you want to copy the blog plugin in order to
run one plugin called blog and another called poetry. This is not difficult but it does require a lot of work. You
would need to

394 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

change the directory name

change the names of every function (having two functions causes PHP to crash)

change the name of every view (so as not to override the views on the original plugin)

change any data model subtypes

change the language file

change anything else that was specific to the original plugin

Nota: If you are trying to clone the groups plugin, you will have the additional difficulty that the group plugin does
not set a subtype.

General

Ver también:

Getting Help

«Plugin cannot start and has been deactivated» or «This plugin is invalid»

This error is usually accompanied by more details explaining why the plugin is invalid. This is usually caused by an
incorrectly installed plugin.

If you are installing a plugin called «test», there will be a test directory under mod. In that test directory there needs to
be a composer.json file /mod/test/composer.json.

If this file does not exist, it could be caused by:

installing a plugin to the wrong directory

creating a directory under /mod that does not contain a plugin

a bad ftp transfer

unzipping a plugin into an extra directory (myplugin.zip unzips to myplugin/myplugin)

incompatible plugin

If you are on a Unix-based host and the files exist in the correct directory, check the permissions. Elgg must have read
access to the files and read + execute access on the directories.

White Page (WSOD)

A blank, white page (often called a «white screen of death») means there is a PHP syntax error. There are a few possible causes of this:

corrupted file - try transfering the code again to your server

a call to a php module that was not loaded - this can happen after you install a plugin that requires a specific
module.

bad plugin - not all plugins have been written to the same quality so you should be careful which ones you
install.

3.7. Appendix 395

Elgg Documentation, Versión master

To find where the error is occurring, change the .htaccess file to display errors to the browser. Set display_errors to
1 and load the same page again. You should see a PHP error in your browser. Change the setting back once you’ve
resolved the problem.

Nota: If you are using the Developer’s Tools plugin, go to its settings page and make sure you have «Display fatal
PHP errors» enabled.

If the white screen is due to a bad plugin, remove the latest plugins that you have installed by deleting their directories
and then reload the page.

Nota: You can temporarily disable all plugins by creating an empty file at mod/disabled. You can then disable
the offending module via the administrator tools panel.

If you are getting a WSOD when performing an action, like logging in or posting a blog, but there are no error
messages, it’s most likely caused by non-printable characters in plugin code. Check the plugin for white spaces/new
lines characters after finishing php tag (?>) and remove them.

Page not found

If you have recently installed your Elgg site, the most likely cause for a page not found error is that mod_rewrite is
not setup correctly on your server. There is information in the Install Troubleshooting page on fixing this. The second
most likely cause is that your site url in your database is incorrect.

If you’ve been running your site for a while and suddenly start getting page not found errors, you need to ask yourself
what has changed. Have you added any plugins? Did you change your server configuration?

To debug a page not found error:

Confirm that the link leading to the missing page is correct. If not, how is that link being generated?

Confirm that the .htaccess rewrite rules are being picked up.

Login token mismatch

If you have to log in twice to your site and the error message after the first attempt says there was a token mismatch
error, the URL in Elgg’s settings does not match the URL used to access it. The most common cause for this is adding
or removing the «www» when accessing the site. For example, www.elgg.org vs elgg.org. This causes a problem with
session handling because of the way that web browsers save cookies.

To fix this, you can add rewrite rules. To redirect from www.elgg.org to elgg.org in Apache, the rules might look like:

RewriteCond %{HTTP_HOST} .
RewriteCond %{HTTP_HOST} !^elgg\.org
RewriteRule (.*) http://elgg.org/$1 [R=301,L]

Redirecting from non-www to www could look like this:

RewriteCond %{HTTP_HOST} ^elgg\.org
RewriteRule ^(.*)$ http://www.elgg.org/$1 [R=301,L]

If you don’t know how to configure rewrite rules, ask your host for more information.

396 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Form is missing __token or __ts fields

All Elgg actions require a security token, and this error occurs when that token is missing. This is either a problem
with your server configuration or with a 3rd party plugin.

If you experience this on a new installation, make sure that your server is properly configured and your rewrite rules
are correct. If you experience this on an upgrade, make sure you have updated your rewrite rules either in .htaccess
(Apache) or in the server configuration.

If you are experiencing this, disable all 3rd party plugins and try again. Very old plugins for Elgg don’t use security
tokens. If the problem goes away when plugins are disabled, it’s due to a plugin that should be updated by its author.

Maintenance mode

To take your site temporarily offline, go to Administration -> Utilities -> Maintenance Mode. Complete the form and
hit save to disable your site for everyone except admin users.

Missing email

If your users are reporting that validation emails are not showing up, have them check their spam folder. It is possible
that the emails coming from your server are being marked as spam. This depends on many factors such as whether
your hosting provider has a problem with spammers, how your PHP mail configuration is set up, what mail transport
agent your server is using, or your host limiting the number of email that you can send in an hour.

If no one gets email at all, it is quite likely your server is not configured properly for email. Your server needs a
program to send email (called a Mail Transfer Agent - MTA) and PHP must be configured to use the MTA.

To quickly check if PHP and an MTA are correctly configured, create a file on your server with the following content:

<?php
$address = "your_email@your_host.com";

$subject = 'Test email.';

$body = 'If you can read this, your email is working.';

echo "Attempting to email $address...
";

if (mail($address, $subject, $body)) {
echo 'SUCCESS! PHP successfully delivered email to your MTA. If you don\'t

→˓see the email in your inbox in a few minutes, there is a problem with your MTA.';
} else {

echo 'ERROR! PHP could not deliver email to your MTA. Check that your PHP
→˓settings are correct for your MTA and your MTA will deliver email.';
}

Be sure to replace «your_email@your_host.com» with your actual email address. Take care to keep quotes around it!
When you access this page through your web browser, it will attempt to send a test email. This test will let you know
that PHP and your MTA are correctly configured. If it fails–either you get an error or you never receive the email–you
will need to do more investigating and possibly contact your service provider.

Fully configuring an MTA and PHP’s email functionality is beyond the scope of this FAQ and you should search the
Internet for more resources on this. Some basic information on php parameters can be found on PHP’s site

3.7. Appendix 397

mailto:your_email@your_host.com
http://php.net/manual/en/mail.configuration.php

Elgg Documentation, Versión master

Server logs

Most likely you are using Apache as your web server. Warnings and errors are written to a log by the web server
and can be useful for debugging problems. You will commonly see two types of log files: access logs and error logs.
Information from PHP and Elgg is written to the server error log.

Linux – The error log is probably in /var/log/httpd or /var/log/apache2.

Windows - It is probably inside your Apache directory.

Mac OS - The error log is probably in /var/log/apache2/error_log

If you are using shared hosting without ssh access, your hosting provider may provide a mechanism for obtaining
access to your server logs. You will need to ask them about this.

How does registration work?

With a default setup, this is how registration works:

1. User fills out registration form and submits it

2. User account is created and disabled until validated

3. Email is sent to user with a link to validate the account

4. When a user clicks on the link, the account is validated

5. The user can now log in

Failures during this process include the user entering an incorrect email address, the validation email being marked as
spam, or a user never bothering to validate the account.

User validation

By default, all users who self-register must validate their accounts through email. If a user has problems validating an
account, you can validate users manually by going to Administration -> Users -> Unvalidated.

You can remove this requirement by deactivating the User Validation by Email plugin.

Nota: Removing validation has some consequences: There is no way to know that a user registered with a working
email address, and it may leave you system open to spammers.

Manually add user

To manually add a user, under the Administer controls go to Users. There you will see a link title «Add new User».
After you fill out the information and submit the form, the new user will receive an email with username and password
and a reminder to change the password.

Nota: Elgg does not force the user to change the password.

398 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

I’m making or just installed a new theme, but graphics or other elements aren’t working

Make sure the theme is at the bottom of the plugin list.

Clear your browser cache and reload the page. To lighten the load on the server, Elgg instructs the browser to rarely
load the CSS file. A new theme will completely change the CSS file and a refresh should cause the browser to request
the CSS file again.

If you’re building or modifying a theme, make sure you have disabled the simple and system caches. This can be done
by enabling the Developer Tools plugin, then browsing to Administration -> Develop -> Settings. Once you’re satisfied
with the changes, enable the caches or performance will suffer.

Changing profile fields

Within the Administration settings of Elgg is a page for replacing the default profile fields. Elgg by default gives the
administrator two choices:

Use the default profile fields

Replace the default with a set of custom profile fields

You cannot add new profile fields to the default ones. Adding a new profile field through the replace profile fields
option clears the default ones. Before letting in users, it is best to determine what profile fields you want, what field
types they should be, and the order they should appear. You cannot change the field type or order or delete fields after
they have been created without wiping the entire profile blank.

More flexibility can be gained through plugins. There is at least two plugins on the community site that enable you to
have more control over profile fields. The Profile Manager plugin has become quite popular in the Elgg community. It
lets you add new profile fields whenever you want, change the order, group profile fields, and add them to registration.

Changing registration

The registration process can be changed through a plugin. Everything about registration can be changed: the look and
feel, different registration fields, additional validation of the fields, additional steps and so on. These types of changes
require some basic knowledge of HTML, CSS, PHP.

Another option is to use the Profile Manager plugin that lets you add fields to both user profiles and the registration
form.

Create the plugin skeleton Plugin skeleton

Changing registration display Override the account/forms/register view

Changing the registration action handler You can write your own action to create the user’s account

How do I change PHP settings using .htaccess?

You may want to change php settings in your .htaccess file. This is especially true if your hosting provider does
not give you access to the server’s php.ini file. The variables could be related to file upload size limits, security,
session length, or any number of other php attributes. For examples of how to do this, see the PHP documentation on
this.

3.7. Appendix 399

https://community.elgg.org/plugins/385114
https://community.elgg.org/plugins/385114
http://us2.php.net/configuration.changes

Elgg Documentation, Versión master

HTTPS login turned on accidently

If you have turned on HTTPS login but do not have SSL configured, you are now locked out of your Elgg install. To
turn off this configuration parameter, you will need to edit your database. Use a tool like phpMyAdmin to view your
database. Select the config table and delete the row that has the name https_login.

Using a test site

It is recommended to always try out new releases or new plugins on a test site before running them on a production
site (a site with actual users). The easiest way to do this is to maintain a separate install of Elgg with dummy accounts.
When testing changes it is important to use dummy accounts that are not admins to test what your users will see.

A more realistic test is to mirror the content from your production site to your test site. Following the instructions for
duplicating a site. Then make sure you prevent emails from being sent to your users. You could write a small plugin
that redirects all email to your own account (be aware of plugins that include their own custom email sending code so
you’ll have to modify those plugins). After this is done you can view all of the content to make sure the upgrade or
new plugin is functioning as desired and is not breaking anything. If this process sounds overwhelming, please stick
with running a simple test site.

500 - Internal Server Error

What is it?

A 500 - Internal Server Error means the web server experienced a problem serving a request.

Ver también:

The Wikipedia page on HTTP status codes

Possible causes

Web server configuration The most common cause for this is an incorrectly configured server. If you edited the
.htaccess file and added something incorrect, Apache will send a 500 error.

Permissions on files It could also be a permissions problem on a file. Apache needs to be able to read Elgg’s files.
Using permissions 755 on directories and 644 on files will allow Apache to read the files.

When I upload a photo or change my profile picture I get a white screen

Most likely you don’t have the PHP GD library installed or configured properly. You may need assistance from the
administrator of your server.

CSS is missing

Wrong URL

Sometimes people install Elgg so that the base URL is localhost and then try to view the site using a hostname. In
this case, the browser won’t be able to load the CSS file. Try viewing the source of the web page and copying the link
for the CSS file. Paste that into your browser. If you get a 404 error, it is likely this is your problem. You will need to
change the base URL of your site.

400 Capítulo 3. Continue Reading

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#5xx_Server_Error

Elgg Documentation, Versión master

Syntax error

Elgg stores its CSS as PHP code to provide flexibility and power. If there is a syntax error, the CSS file served to the
browser may be blank. Disabling non-bundled plugins is the recommended first step.

Rewrite rules errors

A bad .htaccess file could also result in a 404 error when requesting the CSS file. This could happen when doing
an upgrade and forgetting to also upgrade .htaccess.

Should I edit the database manually?

Advertencia: No, you should never manually edit the database!

Will editing the database manually break my site?

Yes.

Can I add extra fields to tables in the database?

(AKA: I don’t understand the Elgg data model so I’m going to add columns. Will you help?)

No, this is a bad idea. Learn the data model and you will see that unless it’s a very specific and highly customized
installation, you can do everything you need within Elgg’s current data model.

I want to remove users. Can’t I just delete them from the elgg_entities table?

No, it will corrupt your database. Delete them through the site.

I want to remove spam. Can’t I just search and delete it from the elgg_entities table?

No, it will corrupt your database. Delete it through the site.

Someone on the community site told me to edit the database manually. Should I?

Who was it? Is it someone experienced with Elgg, like one of the core developers or a well-known plugin author?
Did he or she give you clear and specific instructions on what to edit? If you don’t know who it is, or if you can’t
understand or aren’t comfortable following the instructions, do not edit the database manually.

I know PHP and MySQL and have a legitimate reason to edit the database. Is it okay to manually edit
the database?

Make sure you understand Elgg’s data model and schema first. Make a backup, edit carefully, then test copiously.

3.7. Appendix 401

Elgg Documentation, Versión master

Internet Explorer (IE) login problem

Canonical URL

IE does not like working with sites that use both http://example.org and http://www.example.org. It stores multiple
cookies and this causes problems. Best to only use one base URL. For details on how to do this see Login token
mismatch error.

Chrome Frame

Using the chrome frame within IE can break the login process.

Emails don’t support non-Latin characters

In order to support non-Latin characters, (such as Cyrillic or Chinese) Elgg requires multibyte string support to be
compiled into PHP.

On many installs (e.g. Debian & Ubuntu) this is turned on by default. If it is not, you need to turn it on (or recompile
PHP to include it). To check whether your server supports multibyte strings, check phpinfo.

Session length

Session length is controlled by your php configuration. You will first need to locate your php.ini file. In that file
will be several session variables. A complete list and what they do can be found in the php manual.

File is missing an owner

There are three causes for this error. You could have an entity in your database that has an owner_guid of 0. This
should be extremely rare and may only occur if your database/server crashes during a write operation.

The second cause would be an entity where the owner no longer exists. This could occur if a plugin is turned off
that was involved in the creation of the entity and then the owner is deleted but the delete operation failed (because
the plugin is turned off). If you can figure out entity is causing this, look in your entities table and change the
owner_guid to your own and then you can delete the entity through Elgg.

Advertencia: Reed the section «Should I edit the database manually?». Be very carefull when editing the database
directly. It can break your site. Always make a backup before doing this.

Fixes

Database Validator plugin will check your database for these causes and provide an option to fix them. Be sure to
backup the database before you try the fix option.

No images

If profile images, group images, or other files have stopped working on your site it is likely due to a misconfiguration,
especially if you have migrated to a new server.

402 Capítulo 3. Continue Reading

http://example.org
http://www.example.org
http://uk.php.net/manual/en/mbstring.installation.php
http://php.net/manual/en/function.phpinfo.php
http://php.net/manual/en/session.configuration.php
https://community.elgg.org/plugins/438616

Elgg Documentation, Versión master

These are the most common misconfigurations that cause images and other files to stop working.

Wrong path for data directory

Make sure the data directory’s path is correct in the Site Administration admin area. It should have a trailing slash.

Wrong permissions on the data directory

Check the permissions for the data directory. The data directory should be readable and writeable by the web server
user.

Migrated installation with new data directory location

If you migrated an installation and need to change your data directory path, be sure to update the SQL for the filestore
location as documented in the Duplicate Installation instructions.

Deprecation warnings

If you are seeing many deprecation warnings that say things like

Deprecated in 1.7: extend_view() was deprecated by elgg_extend_view()!

then you are using a plugin that was written for an older version of Elgg. This means the plugin is using functions that
are scheduled to be removed in a future version of Elgg. You can ask the plugin developer if the plugin will be updated
or you can update the plugin yourself. If neither of those are likely to happen, you should not use that plugin.

Javascript not working

If the user hover menu stops working or you cannot dismiss system messages, that means JavaScript is broken on
your site. This usually due to a plugin having bad JavaScript code. You should find the plugin causing the problem
and disable it. You can do this be disabling non-bundled plugins one at a time until the problem goes away. Another
approach is disabling all non-bundled plugins and then enabling them one by one until the problem occurs again.

Most web browsers will give you a hint as to what is breaking the JavaScript code. They often have a console for
JavaScript errors or an advanced mode for displaying errors. Once you see the error message, you may have an easier
time locating the problem.

IP addresses in the logs are wrong

When your Elgg installation is behind a proxy server or loadbalancer the IP addresses logged in the System Log plugin
can be wrong. It could show only the IP addresses for the proxy server.

In order to solve this you can configure the IP addresses of the proxy server as a trusted IP address and with that allow
the system access to the correct IP address of your users.

In the settings.php file you can configure settings for $CONFIG->http_request_trusted_proxy_ips
and $CONFIG->http_request_trusted_proxy_headers check the settings.php file for more infor-
mation.

3.7. Appendix 403

Elgg Documentation, Versión master

Security

Is upgrade.php a security concern?

Upgrade.php is a file used to run code and database upgrades. It is in the root of the directory and doesn’t require a
logged in account to access. On a fully upgraded site, running the file will only reset the caches and exit, so this is not
a security concern.

If you are still concerned, you can either delete, move, or change permissions on the file until you need to upgrade.

Should I delete install.php?

This file is used to install Elgg and doesn’t need to be deleted. The file checks if Elgg is already installed and forwards
the user to the front page if it is.

Filtering

Filtering is used in Elgg to make XSS attacks more difficult. The purpose of the filtering is to remove Javascript and
other dangerous input from users.

Filtering is performed through the function filter_tags(). This function takes in a string and returns a filtered
string. It triggers a validate, input plugin hook. By default Elgg comes with the htmLawed filtering code as a plugin.
Developers can drop in any additional or replacement filtering code as a plugin.

The filter_tags() function is called on any user input as long as the input is obtained through a call to
get_input(). If for some reason a developer did not want to perform the default filtering on some user input,
the get_input() function has a parameter for turning off filtering.

Development

What should I use to edit php code?

There are two main options: text editor or integrated development environment (IDE).

Text Editor

If you are new to software development or do not have much experience with IDEs, using a text editor will get you up
and running the quickest. At a minimum, you will want one that does syntax highlighting to make the code easier to
read. If you think you might submit patches to the bug tracker, you will want to make sure that your text editor does
not change line endings. If you are using Windows, Notepad++ is a good choice. If you are on a Mac, TextWrangler
is a popular choice. You could also give TextMate a try.

Integrated Development Environment

An IDE does just what its name implies: it includes a set of tools that you would normally use separately. Most
IDEs will include source code control which will allow you to directly commit and update your code from your cvs
repository. It may have an FTP client built into it to make the transfer of files to a remote server easier. It will have
syntax checking to catch errors before you try to execute the code on a server.

The two most popular free IDEs for PHP developers are Eclipse and NetBeans. Eclipse has two different plugins for
working with PHP code: PDT and PHPEclipse.

404 Capítulo 3. Continue Reading

http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Integrated_development_environment
http://notepad-plus-plus.org/
http://www.barebones.com/products/textwrangler/index.html
http://macromates.com/
http://www.eclipse.org/
http://netbeans.org/
http://www.eclipse.org/pdt/
http://www.phpeclipse.com/

Elgg Documentation, Versión master

I don’t like the wording of something in Elgg. How do I change it?

The best way to do this is with a plugin.

Create the plugin skeleton

Plugin skeleton

Locate the string that you want to change

All the strings that a user sees should be in the /languages directory or in a plugin’s languages directory (/
mod/<plugin name>/languages). This is done so that it is easy to change what language Elgg uses. For more
information on this see the developer documentation on Internationalization .

To find the string use grep or a text editor that provides searching through files to locate the string. (A good text editor
for Windows is Notepad++) Let’s say we want to change the string «Add friend» to «Make a new friend». The grep
command to find this string would be grep -r "Add friend" *. Using Notepad++ , you would use the «Find
in files» command. You would search for the string, set the filter to *.php, set the directory to the base directory of
Elgg, and make sure it searches all subdirectories. You might want to set it to be case sensitive also.

You should locate the string «Add friend» in /languages/en.php. You should see something like this in the file:

'friend:add' => "Add friend",

This means every time Elgg sees friend:add it replaces it with «Add friend». We want to change the definition of
friend:add.

Override the string

To override this definition, we will add a languages file to the plugin that we built in the first step.

1. Create a new directory: /mod/<your plugin name>/languages

2. Create a file in that directory called en.php

3. Add these lines to that file

<?php

return array(
'friend:add' => 'Make a new friend',

);

Make sure that you do not have any spaces or newlines before the <?php.

You’re done now and should be able to enable the plugin and see the change. If you are override the language of a
plugin, make sure your plugin is loaded after the one you are trying to modify. The loading order is determined in
the Tools Administration page of the admin section. As you find more things that you’d like to change, you can keep
adding them to this plugin.

How do I find the code that does x?

The best way to find the code that does something that you would like to change is to use grep or a similar search tool.
If you do not have grep as a part of your operating system, you will want to install a grep tool or use a text-editor/IDE

3.7. Appendix 405

http://notepad-plus-plus.org/
http://notepad-plus-plus.org/

Elgg Documentation, Versión master

that has good searching in files. Notepad++ is a good choice for Windows users. Eclipse with PHP and NetBeans are
good choices for any platform.

String Example

Let’s say that you want to find where the Log In box code is located. A string from the Log In box that should be
fairly unique is Remember me. Grep for that string. You will find that it is only used in the en.php file in the
/languages directory. There it is used to define the Internationalization string user:persistent. Grep for
that string now. You will find it in two places: the same en.php language file and in /views/default/forms/
login.php. The latter defines the html code that makes up the Log In box.

Action Example

Let’s say that you want to find the code that is run when a user clicks on the Save button when arranging widgets on
a profile page. View the Profile page for a test user. Use Firebug to drill down through the html of the page until you
come to the action of the edit widgets form. You’ll see the url from the base is action/widgets/move.

Grep on widgets/move and two files are returned. One is the JavaScript code for the widgets : /js/
lib/ui.widgets.js. The other one, /engine/lib/widgets.php, is where the action is registered using
elgg_register_action('widgets/reorder'). You may not be familiar with that function in which case,
you should look it up at the API reference. Do a search on the function and it returns the documentation on the fun-
ction. This tells you that the action is in the default location since a file location was not specified. The default location
for actions is /actions so you will find the file at /actions/widgets/move.php.

Debug mode

During the installation process you might have noticed a checkbox that controlled whether debug mode was turned
on or off. This setting can also be changed on the Site Administration page. Debug mode writes a lot of extra data to
your php log. For example, when running in this mode every query to the database is written to your logs. It may be
useful for debugging a problem though it can produce an overwhelming amount of data that may not be related to the
problem at all. You may want to experiment with this mode to understand what it does, but make sure you run Elgg in
normal mode on a production server.

Advertencia: Because of the amount of data being logged, don’t enable this on a production server as it can fill
up the log files really quick.

What goes into the log in debug mode?

All database queries

Database query profiling

Page generation time

Number of queries per page

List of plugin language files

Additional errors/warnings compared to normal mode (it’s very rare for these types of errors to be related to any
problem that you might be having)

406 Capítulo 3. Continue Reading

http://notepad-plus-plus.org/
http://www.eclipse.org/
http://netbeans.org/

Elgg Documentation, Versión master

What does the data look like?

[07-Mar-2009 14:27:20] Query cache invalidated
[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and
→˓enabled='yes') results cached
[07-Mar-2009 14:27:20] SELECT guid from elggsites_entity where guid = 1 results cached
[07-Mar-2009 14:27:20] Query cache invalidated
[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and
→˓enabled='yes') results cached
[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and
→˓enabled='yes') results returned from cache
[07-Mar-2009 14:27:20] ** Sub part of GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggsites_entity where guid=1 results cached
[07-Mar-2009 14:27:20] Query cache invalidated
[07-Mar-2009 14:27:20] DEBUG: 2009-03-07 14:27:20 (MST): "Undefined index: user" in
→˓file /var/www/elgg/engine/lib/elgglib.php (line 62)
[07-Mar-2009 14:27:20] DEBUG: 2009-03-07 14:27:20 (MST): "Undefined index: pass" in
→˓file /var/www/elgg/engine/lib/elgglib.php (line 62)
[07-Mar-2009 14:27:20] ***************** DB PROFILING ********************
[07-Mar-2009 14:27:20] 1 times: 'SELECT * from elggentities where guid=1 and (
→˓(access_id in (2) or (owner_guid = -1) or (access_id = 0 and owner_guid = -1)) and
→˓enabled='yes')'
...
[07-Mar-2009 14:27:20] 2 times: 'update elggmetadata set access_id = 2 where entity_
→˓guid = 1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggentities set owner_guid='0', access_id='2
→˓', container_guid='0', time_updated='1236461868' WHERE guid=1'
[07-Mar-2009 14:27:20] 1 times: 'SELECT guid from elggsites_entity where guid = 1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggsites_entity set name='3124/944',
→˓description='', url='http://example.org/' where guid=1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggusers_entity set prev_last_action = last_
→˓action, last_action = 1236461868 where guid = 2'
[07-Mar-2009 14:27:20] DB Queries for this page: 56
[07-Mar-2009 14:27:20] ***
[07-Mar-2009 14:27:20] Page /action/admin/site/update_basic generated in 0.
→˓36997294426 seconds

What events are triggered on every page load?

There are 4 Elgg events that are triggered on every page load:

1. plugins_boot, system

2. init, system

3. ready, system

4. shutdown, system

The first three are triggered in Elgg\Application::bootCore. shutdown, system is triggered in
\Elgg\Application\ShutdownHandler after the response has been sent to the client. They are all docu-
mented.

There are other events triggered by Elgg occasionally (such as when a user logs in).

3.7. Appendix 407

Elgg Documentation, Versión master

Copy a plugin

There are many questions asked about how to copy a plugin. Let’s say you want to copy the blog plugin in order to
run one plugin called blog and another called poetry. This is not difficult but it does require a lot of work. You
would need to

change the directory name

change the names of every function (having two functions causes PHP to crash)

change the name of every view (so as not to override the views on the original plugin)

change any data model subtypes

change the language file

change anything else that was specific to the original plugin

Nota: If you are trying to clone the groups plugin, you will have the additional difficulty that the group plugin does
not set a subtype.

3.7.3 Roadmap

What direction is the project going? What exciting new features are coming soon?

We do not publish detailed roadmaps, but it’s possible to get a sense for our general direction by utilizing the following
resources:

Our feedback and planning group is used to host early discussion about what will be worked on next.

Our Github milestones represent a general direction for the future releases of Elgg. This is the closest thing to a
traditional roadmap that we have.

Github pull requests will give you a good idea of what’s currently being developed, but nothing is sure until the
PR is actually checked in.

We use the developer blog to post announcements of features that have recently been checked in to our develop-
ment branch, which gives the surest indication of what features will be available in the next release.

Values

We have several overarching goals/values that affect the direction of Elgg. Enhancements generally must promote
these values in order to be accepted.

Accessibility

Elgg-based sites should be usable by anyone anywhere. That means we’ll always strive to make Elgg:

Device-agnostic – mobile, tablet, desktop, etc. friendly

Language-agnostic – i18n, RTL, etc.

Capability-agnostic – touch, keyboard, screen-reader friendly

408 Capítulo 3. Continue Reading

http://community.elgg.org/groups/profile/211069/feedback-and-planning
https://github.com/Elgg/Elgg/issues/milestones
https://github.com/elgg/elgg/pulls
https://community.elgg.org/blog/all

Elgg Documentation, Versión master

Testability

We want to make manual testing unnecessary for core developers, plugin authors, and site administrators by promo-
ting and enabling fast, automated testing at every level of the Elgg stack.

We think APIs are broken if they require plugin authors to write untestable code. We know there are a lot of violations
of this principle in core currently and are working to fix it.

We look forward to a world where the core developers do not need to do any manual testing to verify the correctness of
code contributed to Elgg. Similarly, we envision a world where site administrators can upgrade and install new plugins
with confidence that everything works well together.

TODO: other goals/values?

FAQ

When will feature X be implemented?

We cannot promise when features will get implemented because new features are checked into Elgg only when so-
meone is motivated enough to implement the feature and submit a pull request. The best we can do is tell you to look
out for what features existing developers have expressed interest in working on.

The best way to ensure a feature gets implemented is to discuss it with the core team and implement it yourself. See
our Contributor Guides guide if you’re interested. We love new contributors!

Do not rely on future enhancements if you’re on the fence as to whether to use Elgg. Evaluate it given the current
feature set. Upcoming features will almost certainly not materialize within your timeline.

When is version X.Y.Z going to be released?

The next version will be released when the core team feels it’s ready and has time to cut the release. http://github.com/
Elgg/Elgg/issues/milestones will give you some rough ideas of timeline.

3.7.4 Release Policy

What to expect when upgrading Elgg.

We adhere to semantic versioning.

Follow the blog to stay up to date on the latest releases.

Contents

Patch/Bugfix Releases (2.1.x)

Minor/Feature Releases (2.x.0)

Major/Breaking Releases (x.0.0)

Alphas, Betas, and Release Candidates

Backwards compatibility

3.7. Appendix 409

http://github.com/Elgg/Elgg/issues/milestones
http://github.com/Elgg/Elgg/issues/milestones
http://semver.org
https://elgg.org/blog/all

Elgg Documentation, Versión master

Patch/Bugfix Releases (2.1.x)

Every two weeks.

Bugfix releases are made regularly to make sure Elgg stays stable, secure, and bug-free. The higher the third digit, the
more tested and stable the release is.

Since bugfix release focus on fixing bugs and not making major changes, themes and plugins should work from bugfix
release to bugfix release.

Minor/Feature Releases (2.x.0)

Every three months.

Whenever we introduce new features, we’ll bump the middle version number. These releases aren’t as mature as bugfix
release, but are considered stable and useable.

We make every effort to be backward compatible in these releases, so plugins should work from minor release to minor
release.

However, plugins might need to be updated to make use of the new features.

Major/Breaking Releases (x.0.0)

Every year.

Inevitably, improving Elgg requires breaking changes and a new major release is made. These releases are opportuni-
ties for the core team to make strategic, breaking changes to the underlying platform. Themes and plugins from older
versions are not expected to work without modification on different major releases.

We may remove deprecated APIs, but we will not remove APIs without first deprecating them.

Elgg’s dependencies may be upgraded by their major version or removed entirely. We will not remove any dependences
before a major release, but we do not «deprecate» dependencies or issue any warnings before removing them.

Your package, plugin, or app should declare its own dependencies directly so that this does not cause a problem.

Alphas, Betas, and Release Candidates

Before major releases (and sometimes before feature releases), the core team will offer a pre-release version of Elgg
to get some real-world testing and feedback on the release. These are meant for testing only and should not be used on
a live site.

SemVer 2.0 does not define a particular meaning for pre-releases, but we approach alpha, beta, and rc releases with
these general guidelines:

An -alpha.X pre-release means that there are still breaking changes planned, but the feature set of the release is
frozen. No new features or breaking changes can be proposed for that release.

A -beta.X pre-release means that there are no known breaking changes left to be included, but there are known
regressions or critical bugs left to fix.

An -rc.X pre-release means that there are no known regressions or critical bugs left to be fixed. This version could
become the final stable version of Elgg if no new blockers are reported.

410 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Backwards compatibility

Some parts of the system need some additional clarification if we are talking about being backwards compatible.
Everything that is considered public API needs to adhere to the backwards compatibility rules that are part of semantic
versioning.

Classes and functions

Classes and functions marked with @internal are not considered part of the public API and can be changed /
removed at any time. If a class is marked with @internal all properties and methods in that class are considered
private API and therefor can be changed / removed at any time.

Event and plugin hook callbacks

All event and plugin hook callbacks should never be called directly but only be called by their respective event / plugin
hook.

The name of the callback function is considered API as plugin developers need to be able to rely on the fact that
they can (un)register a callback. This only applies if the callback still serves the same purpose. If a callback becomes
obsolete its allowed to be removed from the system.

Advertencia: Exceptions to these rules are the callback functions related to the following system events, these
callbacks can be renamed / removed at any time.

plugins_load

plugins_boot

init

ready

shutdown

upgrade

Views

View names are API.

View arguments ($vars array) are API.

Removing views or renaming views follows API deprecation policies.

Adding new views requires a minor version change.

View output is not API and can be changed between patch releases.

3.7.5 Support policy

As of Elgg 2.0, each minor release receives bug and security fixes only until the next minor release.

3.7. Appendix 411

http://semver.org
http://semver.org

Elgg Documentation, Versión master

Contents

Long Term Support Releases

• Bugs

• Security issues

Timeline

Long Term Support Releases

Within each major version, the last minor release is designated for long term support («LTS») and will receive bug
fixes until 1 year after the release of the next major version and security fixes until the 2nd following major version
release.

E.g. 2.3 is the last minor release within 2.x. It will receive bug fixes until 1 year aftr 3.0 is released and security fixes
until 4.0 is released.

Ver también:

Release Policy

Reporting Issues

Bugs

When bugs are found, a good faith effort will be made to patch the LTS release, but not all fixes will be back-ported.
E.g. some fixes may depend on new APIs, break backwards compatibility, or require significant refactoring.

Importante: If a fix risks stability of the LTS branch, it will not be included.

Security issues

When a security issue is found every effort will be made to patch the LTS release.

Atención: Please report any security issue to security @ elgg . org

Timeline

Below is a table outlining the specifics for each release (future dates are tentative):

412 Capítulo 3. Continue Reading

Elgg Documentation, Versión master

Version First stable release Bug fixes through Security fixes through
1.12 July 2015 April 2019 April 2019
2.0 December 2015 March 2016
2.1 March 2016 June 2016
2.2 June 2016 November 2016
2.3 November 2016 April 2020 September 2021
3.0 April 2019 July 2019
3.1 July 2019 October 2019
3.2 October 2019 January 2020
3.3 LTS January 2020 September 2022 Until 5.0
4.0 September 2021 January 2022
4.1 January 2022
5.0 TBD

3.7.6 History

The name comes from a town in Switzerland. It also means «elk» or «moose» in Danish.

Elgg’s initial funding was by a company called Curverider Ltd, which was started by David Tosh and Ben Werdmuller.
In 2010, Curverider was acquired by Thematic Networks and control of the open-source project was turned over to
The Elgg Foundation. Today, Elgg is a community-driven open source project and has a variety of contributors and
supporters.

3.7. Appendix 413

http://www.elgg.ch/de/
http://theelggfoundation.org

	Features
	Examples
	Continue Reading

